Friday, July 2, 2010

ISI Web of Knowledge Alert - Hummer, G

ISI Web of Knowledge Citation Alert

Cited Article: Hummer, G. Water conduction through the hydrophobic channel of a carbon nanotube
Alert Expires: 09 NOV 2010
Number of Citing Articles: 2 new records this week (2 in this e-mail)
Organization ID: 3b97d1bbc1878baed0ab183d8b03130b
========================================================================
Note: Instructions on how to purchase the full text of an article and Help Desk Contact information are at the end of the e-mail.
========================================================================

*Record 1 of 2.
*View Full Record: http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000278905700026
*Order Full Text [ ]

Title:
Gated Ion Transport through Dense Carbon Nanotube Membranes

Authors:
Yu, MA; Funke, HH; Falconer, JL; Noble, RD

Author Full Names:
Yu, Miao; Funke, Hans H.; Falconer, John L.; Noble, Richard D.

Source:
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY 132 (24): 8285-8290 JUN 23 2010

Language:
English

Document Type:
Article

KeyWords Plus:
WATER-ADSORPTION; CHANNEL; SELECTIVITY; CONDUCTION

Abstract:
Gated ion diffusion is found widely in hydrophobic biological nanopores, upon changes in ligand binding, temperature, transmembrane voltage, and mechanical stress. Because water is the main media for ion diffusion in these hydrophobic biological pores, ion diffusion behavior through these nanochannels is expected to be influenced significantly when water wettability in hydrophobic biological nanopores is sensitive and changes upon small external changes. Here, we report for the first time that ion diffusion through highly hydrophobic nanopores (similar to 3 nm) showed a gated behavior due to change of water wettability on hydrophobic surface upon small temperature change or ultrasound. Dense carbon nanotube (CNT) membranes with both 3-nm CNTs and 3-nm interstitial pores were prepared by a solvent evaporation process and used as a model system to investigate ion diffusion behavior. Ion diffusion through these membranes exhibited a gated behavior. The ion flux was turned on an!
d off, apparently because the water wettability of CNTs changed. At 298 K, ion diffusion through dense CNT membranes stopped after a few hours, but it dramatically increased when the temperature was increased 20 K or the membrane was subjected to ultrasound. Likewise, water adsorption on dense CNT membranes increased dramatically at a water activity of 0.53 when the temperature increased from 293 to 306 K, indicating capillary condensation. Water adsorption isotherms of dense CNT membranes suggest that the adsorbed water forms a discontinuous phase at 293 K, but it probably forms a continuous layer, probably in the interstitial CNT regions, at higher temperatures. When the ion diffusion channel was opened by a temperature increase or ultrasound, ions diffused through the CNT membranes at a rate similar to bulk diffusion in water. This finding may have implications for using CNT membrane for desalination and water treatment.

Reprint Address:
Falconer, JL, Univ Colorado, Dept Chem & Biol Engn, Boulder, CO 80309 USA.

Research Institution addresses:
[Yu, Miao; Funke, Hans H.; Falconer, John L.; Noble, Richard D.] Univ Colorado, Dept Chem & Biol Engn, Boulder, CO 80309 USA

E-mail Address:
john.falconer@colorado.edu

Cited References:
BASS RB, 2002, SCIENCE, V298, P1582.
CHANG G, 1998, SCIENCE, V282, P2220.
CI LJ, 2007, ADV MAT, V19.
CUSSLER EL, 1984, DIFFUSION MASS TRANS.
DOYLE DA, 1998, SCIENCE, V280, P69.
FORNASIERO F, 2008, P NATL ACAD SCI USA, V105, P17250, DOI 10.1073/pnas.0710437105.
FUTABA DN, 2006, NAT MATER, V5, P987, DOI 10.1038/nmat1782.
HARPST JA, 1965, J PHYS CHEM-US, V69, P2333.
HATA K, 2004, SCIENCE, V306, P1362.
HINDS BJ, 2004, SCIENCE, V303, P62, DOI 10.1126/science.1092048.
HOLT JK, 2006, SCIENCE, V312, P1034, DOI 10.1126/science.1126298.
HUMMER G, 2001, NATURE, V414, P188.
KIM S, 2007, NANO LETT, V7, P2806, DOI 10.1021/nl071414u.
LI JY, 2007, P NATL ACAD SCI USA, V104, P3687, DOI 10.1073/pnas.0604541104.
MAJUMDER M, 2005, NATURE, V438, P44, DOI 10.1038/43844a.
MAO SH, 2006, CHEM PHYS LETT, V421, P513, DOI 10.1016/j.cplett.2006.02.011.
MURATA K, 2000, NATURE, V407, P599.
NISHIZAWA M, 1995, SCIENCE, V268, P700.
STRIOLO A, 2005, J CHEM PHYS, V122, ARTN 234712.
VOETS T, 2004, NATURE, V430, P748, DOI 10.1038/nature02732.
WANG HJ, 2008, SCIENCE, V322, P80, DOI 10.1126/science.1162412.
YU M, 2009, NANO LETT, V9, P225, DOI 10.1021/nl802816h.

Cited Reference Count:
22

Times Cited:
0

Publisher:
AMER CHEMICAL SOC; 1155 16TH ST, NW, WASHINGTON, DC 20036 USA

Subject Category:
Chemistry, Multidisciplinary

ISSN:
0002-7863

DOI:
10.1021/ja9091769

IDS Number:
612NJ

========================================================================

*Record 2 of 2.
*View Full Record: http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000278846100010
*Order Full Text [ ]

Title:
Role of Electrostatics in Modulating Hydrophobic Interactions and Barriers to Hydrophobic Assembly

Authors:
Bauer, BA; Patel, S

Author Full Names:
Bauer, Brad A.; Patel, Sandeep

Source:
JOURNAL OF PHYSICAL CHEMISTRY B 114 (24): 8107-8117 JUN 24 2010

Language:
English

Document Type:
Article

KeyWords Plus:
MOLECULAR-DYNAMICS SIMULATIONS; POLARIZABLE FORCE-FIELD; CLASSICAL DRUDE OSCILLATORS; MONTE-CARLO SIMULATIONS; LIQUID-VAPOR INTERFACE; HYDROGEN-BOND DYNAMICS; SCALED-PARTICLE THEORY; FREE-ENERGY; TEMPERATURE-DEPENDENCE; SOLVENT POLARIZABILITY

Abstract:
Hydrophobic effects continue to be an active area of research due to implications for a wide range of physicochemical phenomena. Molecular dynamics simulations have been used extensively in the study of such effects using various water potential models, with few studies addressing the differences between models. In particular, studies considering the explicit treatment of water polarizability are underrepresented in the literature. We present results from molecular dynamics simulations that systematically compare the dependence of large-scale hydrophobic effects on the water model. We consider three common nonpolarizable models (SPC/E, TIP3P, and TIP4P) and two common polarizable models (TIP4P-FQ and SWM4-NDP). Results highlight the similarities and differences of the different water models in the vicinity of two large hydrophobic plates. In particular, profiles of average density, density fluctuations, orientation, and hydrogen bonding show only minor differences among the !
water models studied. However, the potential of mean force for the hydrophobe dimerization is significantly reduced in the polarizable water systems. TIP4P-FQ shows the deepest minimum of approximately -54(+/-3) kcal/mol compared to -40(+/-3), -40(+/-2), -42(+/-3), and -45(+/-5) kcal/mol for TIP4P, TEMP, SPC/E, and SWM4-NDP (all relative to the dissociated state). We discuss the relationship between hydrophobic association and the strength of water-water interactions in the liquid phase. Results suggest that models treating polarizability (both implicitly and explicitly) influence a stronger driving force toward hydrophobic assembly. Implications of these results, as well as prospectives on future work, are discussed.

Reprint Address:
Patel, S, Univ Delaware, Dept Chem & Biochem, Newark, DE 19716 USA.

Research Institution addresses:
[Bauer, Brad A.; Patel, Sandeep] Univ Delaware, Dept Chem & Biochem, Newark, DE 19716 USA

E-mail Address:
sapatel@udel.edu

Cited References:
ANISIMOV VM, 2005, J CHEM THEORY COMPUT, V1, P153, DOI 10.1021/ct049930p.
ANTHAWALE MV, 2007, P NATL ACAD SCI USA, V104, P733.
APPLEQUIST J, 1972, J AM CHEM SOC, V94, P2952.
ASHBAUGH HS, 2010, J CHEM PHYS, V132, ARTN 124504.
BADYAL YS, 2000, J CHEM PHYS, V112, P9206.
BALDWIN RL, 1986, P NATL ACAD SCI USA, V83, P8069.
BAUER BA, 2009, J CHEM THEORY COMPUT, V5, P359, DOI 10.1021/ct800320f.
BERENDSEN HJC, 1987, J PHYS CHEM-US, V91, P6269.
BEREZHKOVSKII A, 2002, PHYS REV LETT, V89, UNSP 064503.
BERNE BJ, 1996, P NATL ACAD SCI USA, V93, P8800.
BERNE BJ, 2009, ANNU REV PHYS CHEM, V60, P85, DOI 10.1146/annurev.physchem.58.032806.104445.
BROOKS BR, 2009, J COMPUT CHEM, V30, P1545, DOI 10.1002/jcc.21287.
CHANDLER D, 2005, NATURE, V437, P640, DOI 10.1038/nature04162.
CHOUDHURY N, 2010, J CHEM PHYS, V132, ARTN 064505.
CHOWDHARY J, 2009, J PHYS CHEM B, V113, P4045, DOI 10.1021/jp8061509.
DANG LX, 1994, J CHEM PHYS, V100, P9032.
DARDEN T, 1993, J CHEM PHYS, V98, P10089.
DILL KA, 1990, BIOCHEMISTRY-US, V29, P7155.
EWELL J, 2008, J PHYS CHEM B, V112, P10272, DOI 10.1021/jp804429n.
GEIGER A, 1979, J CHEM PHYS, V70, P263.
GHOSH T, 2005, J PHYS CHEM B, V109, P642, DOI 10.1021/jp0475638.
GIOVAMBATTISTA N, 2006, PHYS REV E 1, V73, ARTN 041604.
GIOVAMBATTISTA N, 2009, J PHYS CHEM B, V113, P13723, DOI 10.1021/jp9018266.
GODAWAT R, 2009, P NATL ACAD SCI USA, V106, P15119, DOI 10.1073/pnas.0902778106.
GODAWAT R, 2010, J PHYS CHEM B, V114, P2246, DOI 10.1021/jp906976q.
GORDILLO MC, 2005, J CHEM PHYS, V123, ARTN 054707.
GRANICK S, 2008, SCIENCE, V322, P1477, DOI 10.1126/science.1167219.
GRAZIANO G, 2009, J PHYS CHEM B, V113, P11232, DOI 10.1021/jp9025738.
GROSSFIELD A, 2003, J AM CHEM SOC, V125, P15671, DOI 10.1021/ja037005r.
HUA L, 2009, J PHYS CHEM C, V113, P5244, DOI 10.1021/jp8088758.
HUANG DM, 2000, P NATL ACAD SCI USA, V97, P8324.
HUANG X, 2003, J PHYS CHEM B, V107, P11742, DOI 10.1021/jp030652k.
HUANG X, 2003, P NATL ACAD SCI USA, V100, P11953, DOI 10.1073/pnas.1934837100.
HUMMER G, 1996, P NATL ACAD SCI USA, V93, P8951.
HUMMER G, 1998, J PHYS CHEM B, V102, P10469.
HUMMER G, 1998, PHYS REV LETT, V80, P4193.
HUMMER G, 2000, CHEM PHYS, V258, P349.
HUMMER G, 2001, NATURE, V414, P188.
JAMADAGNI SN, 2009, J PHYS CHEM B, V113, P4093, DOI 10.1021/jp806528m.
JONSSON M, 2006, J PHYS CHEM B, V110, P8782, DOI 10.1021/jp0604241.
JORGENSEN WL, 1983, J CHEM PHYS, V79, P926.
JORGENSEN WL, 1998, J COMPUT CHEM, V19, P1179.
JORGENSEN WL, 2005, P NATL ACAD SCI USA, V102, P6665, DOI 10.1073/pnas.0408037102.
KATHMANN SM, 2008, J AM CHEM SOC, V130, P16556, DOI 10.1021/ja802851w.
KATHMANN SM, 2009, J AM CHEM SOC, V131, P17522, DOI 10.1021/ja908142d.
KAUZMANN W, 1959, ADV PROTEIN CHEM, V14, P1.
KRISHTAL A, 2006, J CHEM PHYS, V125, ARTN 034312.
KUMAR P, 2005, PHYS REV E 1, V72, ARTN 051503.
KUO IFW, 2006, J PHYS CHEM B, V110, P3738, DOI 10.1021/jp056330t.
LAMOUREUX G, 2003, J CHEM PHYS, V119, P3025, DOI 10.1063/1.1589749.
LAMOUREUX G, 2003, J CHEM PHYS, V119, P5185, DOI 10.1063/1.1598191.
LAMOUREUX G, 2006, CHEM PHYS LETT, V418, P245, DOI 10.1016/j.cplett.2005.10.135.
LI X, 2006, J AM CHEM SOC, V128, P12439, DOI 10.1021/ja057944e.
LIU P, 2005, J PHYS CHEM B, V109, P2949, DOI 10.1021/jp0468071.
LOPES PEM, 2007, J PHYS CHEM B, V111, P2873, DOI 10.1021/jp0663614.
LUM K, 1997, PHYS REV E, V56, P6283.
LUM K, 1999, J PHYS CHEM B, V103, P4570.
LUZAR A, 2000, J CHEM PHYS, V113, P5836.
MCGRATH MJ, 2007, MOL PHYS, V105, P1411, DOI 10.1080/00268970701364938.
MITTAL J, 2008, P NATL ACAD SCI USA, V105, P20130, DOI 10.1073/pnas.0809029105.
NAGARAJAN R, 1991, LANGMUIR, V7, P2934.
NEW MH, 1995, J AM CHEM SOC, V117, P7172.
NOSE S, 1984, MOL PHYS, V52, P255.
PANGALI C, 1979, J CHEM PHYS, V71, P2975.
PANGALI C, 1979, J CHEM PHYS, V71, P2982.
PATEL AJ, 2010, J PHYS CHEM B, V114, P1632, DOI 10.1021/jp909048f.
PATEL S, 2004, J COMPUT CHEM, V25, P1, DOI 10.1002/jcc.10355.
PATEL S, 2004, J COMPUT CHEM, V25, P1504, DOI 10.1002/jcc.20077.
PATEL S, 2006, MOL SIMULAT, V32, P231, DOI 10.1080/08927020600726708.
PI HL, 2009, MOL PHYS, V107, P365, DOI 10.1080/00268970902784926.
PONDER JW, 2010, J PHYS CHEM B, V114, P2549, DOI 10.1021/jp910674d.
PRATT LR, 1977, J CHEM PHYS, V67, P3683.
PRATT LR, 1980, J CHEM PHYS, V73, P3430.
PRATT LR, 2002, ANNU REV PHYS CHEM, V53, P409, DOI 10.1146/annurev.physchem.53.090401.093500.
PRATT LR, 2002, CHEM REV, V102, P2671, DOI 10.1021/cr000692+.
RAPPE AK, 1991, J PHYS CHEM-US, V95, P3358.
RASAIAH JC, 2008, ANNU REV PHYS CHEM, V59, P713, DOI 10.1146/annurev.physchem.59.032607.093815.
REN PY, 2002, J COMPUT CHEM, V23, P1497, DOI 10.1002/jcc.10127.
REN PY, 2003, J PHYS CHEM B, V107, P5933, DOI 10.1021/jp027815+.
RICK SW, 1994, J CHEM PHYS, V101, P6141.
RICK SW, 1995, J MOL LIQ, V65, P31.
RICK SW, 1997, J PHYS CHEM B, V101, P10488.
RICK SW, 2000, J PHYS CHEM B, V104, P6884, DOI 10.1021/jp000841s.
RICK SW, 2001, J CHEM PHYS, V114, P2276.
RYCKAERT JP, 1977, J COMPUT PHYS, V23, P327.
SARUPRIA S, 2009, PHYS REV LETT, V103, ARTN 037803.
SETNY P, 2009, PHYS REV LETT, V103, ARTN 187801.
SILVESTRELLI PL, 1999, PHYS REV LETT, V82, P3308.
SMITH DE, 1993, J CHEM PHYS, V98, P6445.
SOUTHALL NT, 2002, J PHYS CHEM B, V106, P521, DOI 10.1021/jp015514e.
SPRIK M, 1991, J CHEM PHYS, V95, P6762.
STILLINGER FH, 1973, J SOLUTION CHEM, V2, P141.
TANFORD C, 1962, J AM CHEM SOC, V84, P4240.
TANFORD C, 1997, PROTEIN SCI, V6, P1358.
THOLE BT, 1981, CHEM PHYS, V59, P341.
VAITHEESWARAN S, 2004, P NATL ACAD SCI USA, V101, P17002, DOI 10.1073/pnas.0407968101.
VANBELLE D, 1993, J AM CHEM SOC, V115, P647.
WALLQVIST A, 1995, J PHYS CHEM-US, V99, P2885.
WALLQVIST A, 2001, J PHYS CHEM B, V105, P6745.
WERDER T, 2003, J PHYS CHEM B, V107, P1345, DOI 10.1021/jp0268112.
WIDOM B, 2003, PHYS CHEM CHEM PHYS, V5, P3085, DOI 10.1039/b304038k.
WILLARD AP, 2008, J PHYS CHEM B, V112, P6187, DOI 10.1021/jp077186+.
YOUNG WS, 1997, J CHEM PHYS, V106, P9265.
YU HB, 2010, J CHEM THEORY COMPUT, V6, P774, DOI 10.1021/ct900576a.
ZANGI R, 2007, J AM CHEM SOC, V129, P4678, DOI 10.1021/ja068305m.
ZANGI R, 2008, J PHYS CHEM B, V112, P8634, DOI 10.1021/jp802135c.
ZANGI R, 2009, J AM CHEM SOC, V131, P1535, DOI 10.1021/ja807887g.
ZANGI R, 2010, J PHYS CHEM B, V114, P643, DOI 10.1021/jp909034c.
ZHU S, 2010, J CHEM THEORY COMPUT, V6.

Cited Reference Count:
109

Times Cited:
0

Publisher:
AMER CHEMICAL SOC; 1155 16TH ST, NW, WASHINGTON, DC 20036 USA

Subject Category:
Chemistry, Physical

ISSN:
1520-6106

DOI:
10.1021/jp101995d

IDS Number:
611TM

========================================================================
*Order Full Text*
All Customers
--------------
Please contact your library administrator, or person(s) responsible for
document delivery, to find out more about your organization's policy for
obtaining the full text of the above articles. If your organization does
not have a current document delivery provider, your administrator can
contact ISI Document Solution at service@isidoc.com, or call 800-603-4367
or 734-459-8565.

IDS Customers
--------------
IDS customers can purchase the full text of an article (having page number,
volume, and issue information) by returning this ENTIRE message as a Reply
to Sender or Forward to orders@isidoc.com. Mark your choices with an X in
the "Order Full Text: []" brackets for each item. For example, [X].

Please enter your account number here:

========================================================================
*Help Desk Contact Information*
If you have any questions, please visit the Thomson Scientific Technical Support Contact Information Web page:
http://www.thomsonscientific.com/support/techsupport
========================================================================

No comments: