Friday, July 16, 2010

ISI Web of Knowledge Alert - Majumder M

ISI Web of Knowledge Citation Alert

Cited Article: Majumder M. Nanoscale hydrodynamics - Enhanced flow in carbon nanotubes
Alert Expires: 09 NOV 2010
Number of Citing Articles: 4 new records this week (4 in this e-mail)
Organization ID: 3b97d1bbc1878baed0ab183d8b03130b
========================================================================
Note: Instructions on how to purchase the full text of an article and Help Desk Contact information are at the end of the e-mail.
========================================================================

*Record 1 of 4.
*View Full Record: http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000279332300011
*Order Full Text [ ]

Title:
Programmable transdermal drug delivery of nicotine using carbon nanotube membranes

Authors:
Wu, J; Paudel, KS; Strasinger, C; Hammell, D; Stinchcomb, AL; Hinds, BJ

Author Full Names:
Wu, Ji; Paudel, Kalpana S.; Strasinger, Caroline; Hammell, Dana; Stinchcomb, Audra L.; Hinds, Bruce J.

Source:
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA 107 (26): 11698-11702 JUN 29 2010

Language:
English

Document Type:
Article

Author Keywords:
electroosmosis; electrophoresis; smoking cessation; medical device

KeyWords Plus:
HAIRLESS GUINEA-PIGS; ELECTROOSMOTIC FLOW; MASS-TRANSPORT; SKIN; MODEL; PHARMACOKINETICS; IONTOPHORESIS; NALTREXONE; ELECTRODE; PRODRUGS

Abstract:
Carbon nanotube (CNT) membranes were employed as the active element of a switchable transdermal drug delivery device that can facilitate more effective treatments of drug abuse and addiction. Due to the dramatically fast flow through CNT cores, high charge density, and small pore dimensions, highly efficient electrophoretic pumping through functionalized CNT membrane was achieved. These membranes were integrated with a nicotine formulation to obtain switchable transdermal nicotine delivery rates on human skin (in vitro) and are consistent with a Fickian diffusion in series model. The transdermal nicotine delivery device was able to successfully switch between high (1.3 +/- 0.65 mu mol/hr-cm(2)) and low (0.33 +/- 0.22 mu mol/hr-cm(2)) fluxes that coincide with therapeutic demand levels for nicotine cessation treatment. These highly energy efficient programmable devices with minimal skin irritation and no skin barrier disruption would open an avenue for single application long!
-wear patches for therapies that require variable or programmable delivery rates.

Reprint Address:
Stinchcomb, AL, Univ Kentucky, Coll Pharm, Lexington, KY 40536 USA.

Research Institution addresses:
[Paudel, Kalpana S.; Strasinger, Caroline; Hammell, Dana; Stinchcomb, Audra L.] Univ Kentucky, Coll Pharm, Lexington, KY 40536 USA; [Wu, Ji; Hinds, Bruce J.] Univ Kentucky, Dept Chem & Mat Engn, Lexington, KY 40506 USA

E-mail Address:
audra.stinchcomb@uky.edu; bjhinds@engr.uky.edu

Cited References:
*FOOD DRUG ADM, 2007, APPR DRUG PROD THER.
ABRAMS LS, 2002, BRIT J CLIN PHARMACO, V53, P141.
BAHR JL, 2001, J AM CHEM SOC, V123, P6536.
BAUMGARTNER S, 2002, AAPS PHARMSCITECH, V3, P86.
BRAND RM, 1995, J CONTROL RELEASE, V33, P285.
CHEN YF, 2008, NANO LETT, V8, P42, DOI 10.1021/nI0718566.
DAMOURS M, 2003, J PHYS CHEM B, V107, P4811, DOI 10.1021/jp027223r.
FEYERABEND C, 1985, BRIT J CLIN PHARMACO, V19, P239.
HINDS BJ, 2004, SCIENCE, V303, P62, DOI 10.1126/science.1092048.
HO H, 1993, DRUG DEV IND PHARM, V19, P295.
HOLT JK, 2006, SCIENCE, V312, P1034, DOI 10.1126/science.1126298.
KATZ E, 2003, ELECTROANAL, V15, P913.
KIM S, 2007, NANO LETT, V7, P2806, DOI 10.1021/nl071414u.
MAJUMDER M, 2005, NATURE, V438, P44, DOI 10.1038/43844a.
MAJUMDER M, 2007, LANGMUIR, V23, P8624, DOI 10.1021/la700686k.
MAJUMDER M, 2008, J MEMBRANE SCI, V316, P89, DOI 10.1016/j.memsci.2007.09.068.
MALIN DH, 2001, PHARMACOL BIOCHEM BE, V70, P551.
MANCHIKANTI L, 2007, PAIN PHYSICIAN, V10, P399.
MILLER SA, 2001, J AM CHEM SOC, V123, P12335.
PRAUSNITZ MR, 1996, ADV DRUG DELIVER REV, V18, P395.
PRAUSNITZ MR, 2004, NAT REV DRUG DISCOV, V3, P115, DOI 10.1038/nrd1304.
PRAUSNITZ MR, 2008, NAT BIOTECHNOL, V26, P1261, DOI 10.1038/nbt.1504.
SRINIVASAN V, 1990, INT J PHARM, V60, P133.
STONE HA, 2004, ANNU REV FLUID MECH, V36, P381, DOI 10.1146/annurev.fluid.36.050802.122124.
SUN L, 2000, J AM CHEM SOC, V122, P12340, DOI 10.1021/ja002429w.
TENJARLA SN, 1994, DRUG DEV IND PHARM, V20, P49.
VALIVETI S, 2005, J CONTROL RELEASE, V102, P509, DOI 10.1016/j.jconrel.2004.10.005.
VALIVETI S, 2005, PHARM RES, V22, P981, DOI 10.1007/s11095-005-4593-0.
WERMELING DP, 2008, P NATL ACAD SCI USA, V105, P2058, DOI 10.1073/pnas.0710355105.
WILLS S, 2005, DRUGS ABUSE.

Cited Reference Count:
30

Times Cited:
0

Publisher:
NATL ACAD SCIENCES; 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA

Subject Category:
Multidisciplinary Sciences

ISSN:
0027-8424

DOI:
10.1073/pnas.1004714107

IDS Number:
618DT

========================================================================

*Record 2 of 4.
*View Full Record: http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000279282600012
*Order Full Text [ ]

Title:
Methane Molecules Drive Water Molecules along Diameter-Gradient SWCNTs with Junctions

Authors:
Yu, HQ; Li, YF; Li, H; Zhang, K; An, CG; Liu, XF; Liew, KM

Author Full Names:
Yu, H. Q.; Li, Y. F.; Li, H.; Zhang, K.; An, C. G.; Liu, X. F.; Liew, K. M.

Source:
JOURNAL OF PHYSICAL CHEMISTRY B 114 (26): 8676-8679 JUL 8 2010

Language:
English

Document Type:
Article

KeyWords Plus:
WALLED CARBON NANOTUBES; TRANSPORT; MODEL; FLOW

Abstract:
We report the transport behavior of water molecules along a system of coaxial single-walled carbon nanotubes (SWCNTs) of different diameters with junctions under the driving force of methane molecules. The junctions are potential barriers to the transport of water molecules through SWCNTs. However, methane molecules can overcome these potential barriers and pull the water molecules across the junction region from one compartment to the next. Although a junction is an obstacle to water transport through SWCNTs, the presence of more junctions gives methane molecules a longer lasting driving force that helps them to pull the water molecules out of the SWCNTs.

Reprint Address:
Li, H, Shandong Univ, Minist Educ, Key Lab Liquid Solid Struct Evolut & Proc Mat, Jinan 250061, Peoples R China.

Research Institution addresses:
[Yu, H. Q.; Li, Y. F.; Li, H.; Zhang, K.; An, C. G.; Liu, X. F.] Shandong Univ, Minist Educ, Key Lab Liquid Solid Struct Evolut & Proc Mat, Jinan 250061, Peoples R China; [Liew, K. M.] City Univ Hong Kong, Dept Bldg & Construct, Kowloon, Hong Kong, Peoples R China

E-mail Address:
lihuilmy@hotmail.com

Cited References:
DELLAGO C, 2003, PHYS REV LETT, V90, ARTN 105902.
HOLT JK, 2006, SCIENCE, V312, P1034, DOI 10.1126/science.1126298.
HUMMER G, 2001, NATURE, V414, P188.
KALRA A, 2004, J PHYS CHEM B, V108, P544, DOI 10.1021/jp035828x.
LI H, 2008, J CHEM PHYS, V128, UNSP 034707/1-5.
LIJIMA S, 1992, NATURE, V356, P776.
MAIBAUM L, 2003, J PHYS CHEM B, V107, P1189, DOI 10.1021/jp0267196.
MAJUMDER M, 2005, NATURE, V438, P44, DOI 10.1038/43844a.
MANIWA Y, 2005, CHEM PHYS LETT, V401, P534, DOI 10.1016/j.cplett.2004.11.112.
MANIWA Y, 2007, NAT MATER, V6, P135, DOI 10.1038/nmat1823.
MILLER SA, 2001, J AM CHEM SOC, V123, P12335.
POWER TD, 2002, J AM CHEM SOC, V124, P1858.
REN ZF, 1998, SCIENCE, V282, P1105.
SKOULIDAS AI, 2002, PHYS REV LETT, V89, ARTN 185901.
STRIOLO A, 2006, NANO LETT, V6, P633, DOI 10.1021/nl052254u.
SUNAND L, 2000, J AM CHEM SOC, V122, P12340.
TELEMAN O, 1987, MOL PHYS, V60, P193.
THOMAS JA, 2008, NANO LETT, V8, P2788, DOI 10.1021/nl8013617.
WANG Q, 2009, CARBON, V47, P1870, DOI 10.1016/j.carbon.2009.03.030.
WANG Q, 2009, NANO LETT, V9, P245, DOI 10.1021/nl802829z.
WANG QY, 1999, PHYS REV LETT, V82, P956.
YU HQ, 2010, CARBON, V48, P417, DOI 10.1016/j.carbon.2009.09.055.
ZAMBRANO HA, 2009, NANO LETT, V9, P66, DOI 10.1021/nl802429s.
ZHAO YC, 2008, ADV MATER, V20, P1772, DOI 10.1002/adma.200702956.
ZHEN Y, 1999, NATURE, V402, P273.

Cited Reference Count:
25

Times Cited:
0

Publisher:
AMER CHEMICAL SOC; 1155 16TH ST, NW, WASHINGTON, DC 20036 USA

Subject Category:
Chemistry, Physical

ISSN:
1520-6106

DOI:
10.1021/jp102810j

IDS Number:
617LP

========================================================================

*Record 3 of 4.
*View Full Record: http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000279480600006
*Order Full Text [ ]

Title:
Analytic Solutions and Model Assessment for Electrokinetic Flow in Hydrophobic Microchannels with Various Boundary Conditions of Interfacial Electric and Slippage Phenomena

Authors:
Wang, JC; Soong, CY; Hwang, PW

Author Full Names:
Wang, J. C.; Soong, C. Y.; Hwang, P. W.

Source:
JOURNAL OF THE CHINESE SOCIETY OF MECHANICAL ENGINEERS 31 (3): 209-220 JUN 2010

Language:
English

Document Type:
Article

Author Keywords:
fluid slippage; microchannel flow; apparent zeta potential; hydrophobic wall; interfacial phenomena

KeyWords Plus:
SUPERHYDROPHOBIC SURFACE; LIQUID SLIP; MICROFLUIDICS

Abstract:
The present study is concerned with a theoretical analysis of pressure-driven electrokinetic flows in hydrophobic microchannels with emphasis on the slip effects under coupling of interfacial electric and fluid slippage phenomena. Nonlinear equations coupling hydrodynamics and electrical field are formulated and the corresponding linear version can be obtained by invoking Debye-Huckel approximation. To facilitate analytic solutions, the electrokinetic parameter K (defined as the ratio of channel semi-height to Debye length) is assumed high enough with electric double layer non-overlapping. Three zeta potential boundary conditions (BCs) including commonly used material true zeta potential and two kinds of slip-dependent relations are considered. Through comparisons of the six analytic solutions (linear and nonlinear models each with 3 BCs), the present analysis provides an assessment of various models with slip effects on electrokinetic flow in hydrophobic microchannels.

Reprint Address:
Soong, CY, Feng Chia Univ, Dept Aerosp & Syst Engn, Taichung 40724, Taiwan.

Research Institution addresses:
[Wang, J. C.; Soong, C. Y.; Hwang, P. W.] Feng Chia Univ, Dept Aerosp & Syst Engn, Taichung 40724, Taiwan

Cited References:
CHOI CH, 2006, PHYS REV LETT, V96, ARTN 066001.
CHURAEV NV, 2002, ADV COLLOID INTERFAC, V96, P265.
EIJKEL J, 2007, LAB CHIP, V7, P299, DOI 10.1039/b700364c.
HWANG PW, 2008, INT J HEAT MASS TRAN, V51, P210, DOI 10.1016/j.ijheatmasstransfer.2007.04.010.
JOLY L, 2004, PHYS REV LETT, V93, ARTN 257805.
MAJUMDER M, 2005, NATURE, V438, P44, DOI 10.1038/43844a.
NGOMA GD, 2007, INT J THERM SCI, V46, P1076, DOI 10.1016/j.ijthermalsci.2007.02.001.
SOONG CY, 2003, J COLLOID INTERF SCI, V265, P202, DOI 10.1016/S0021-9797(03)00513-7.
SOONG CY, 2004, J COLLOID INTERF SCI, V259, P484.
SOONG CY, 2004, T AERONAUTICAL ASTRO, V36, P29.
SOONG CY, 2010, MICROFLUID NANOFLUID, V9, P211, DOI 10.1007/s10404-009-0536-0.
TANDON V, 2008, ELECTROPHORESIS, V29, P1102, DOI 10.1002/elps.200800735.
TRETHEWAY DC, 2002, PHYS FLUIDS, V14, P9.
TRUESDELL R, 2006, PHYS REV LETT, V97, ARTN 044504.
VERONOV RS, 2008, IND ENG CHEM REV, V47, P2455.
YANG J, 2002, J PHYS CHEM B, V106, P12851, DOI 10.1021/jp0266796.
YANG J, 2003, J COLLOID INTERF SCI, V260, P225, DOI 10.1016/S0021-9797(02)00158-3.
YANG J, 2004, ANAL CHIM ACTA, V507, P39, DOI 10.1016/j.aca.2003.12.043.
YEN TH, 2009, J MECH, V25, P279.
ZHU YX, 2001, PHYS REV LETT, V87, ARTN 096105.

Cited Reference Count:
20

Times Cited:
0

Publisher:
CHINESE SOC MECHANICAL ENGINEERS; 4F NO 60 SEC 2 PA TE RD, TAIPEI, 10401, TAIWAN

Subject Category:
Engineering, Mechanical

ISSN:
0257-9731

IDS Number:
620EA

========================================================================

*Record 4 of 4.
*View Full Record: http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000279253300003
*Order Full Text [ ]

Title:
The Potential of Carbon Nanotube Membranes for Analytical Separations

Authors:
Lopez-Lorente, AI; Simonet, BM; Valcarcel, M

Author Full Names:
Lopez-Lorente, A. I.; Simonet, B. M.; Valcarcel, M.

Source:
ANALYTICAL CHEMISTRY 82 (13): 5399-5407 JUL 1 2010

Language:
English

Document Type:
Article

KeyWords Plus:
FAST MASS-TRANSPORT; ELECTROOSMOTIC FLOW; WATER; FABRICATION; BUCKYPAPERS; FILMS; TRANSPARENT; MODULATION; FILTERS; ARRAYS

Abstract:
Advances in nanotechnology have enabled the development of nanoporous membranes based on carbon nanotubes, which, by virtue of their exceptional properties, constitute excellent supports for analytical processes, including the selective separation of some molecules.

Reprint Address:
Valcarcel, M, Univ Cordoba, Dept Analyt Chem, E-14071 Cordoba, Spain.

Research Institution addresses:
[Valcarcel, M.] Univ Cordoba, Dept Analyt Chem, E-14071 Cordoba, Spain

E-mail Address:
qa1meobj@uco.es

Cited References:
AGO H, 2000, APPL PHYS LETT, V77, P79.
ANDREWS R, 1999, CHEM PHYS LETT, V303, P467.
ANDREWS R, 2001, NASA C PUBLICATION.
BASHEER C, 2006, ANAL CHEM, V78, P2853, DOI 10.1021/ac060240i.
BRADYESTEVEZ AS, 2008, SMALL, V4, P481, DOI 10.1002/smll.200700863.
CAO AY, 2005, SCIENCE, V310, P1307, DOI 10.1126/science.1118957.
CHE GL, 1998, NATURE, V393, P346.
CHEN HB, 2006, J MEMBRANE SCI, V269, P152, DOI 10.1016/j.memsci.2005.06.030.
CORRY B, 2008, J PHYS CHEM B, V112, P1427, DOI 10.1021/jp709845u.
DELLAGO C, 2003, PHYS REV LETT, V90, ARTN 105902.
DU Z, 2008, ANAL BIOANAL CHEM, V392, P937, DOI 10.1007/s00216-008-2331-2.
ENDO M, 2005, NATURE, V433, P476, DOI 10.1038/433476a.
FORNASIERO F, 2008, MATER RES SOC S P, P1106.
FORNASIERO F, 2008, P NATL ACAD SCI USA, V105, P17250, DOI 10.1073/pnas.0710437105.
HINDS BJ, 2004, SCIENCE, V303, P62, DOI 10.1126/science.1092048.
HOLT JK, 2004, NANO LETT, V4, P2245, DOI 10.1021/nl048876h.
HOLT JK, 2006, SCIENCE, V312, P1034, DOI 10.1126/science.1126298.
HOLT JK, 2009, ADV MATER, V21, P3542, DOI 10.1002/adma.200900867.
HUMMER G, 2001, NATURE, V414, P188.
JIA Y, 2007, CHINESE SCI BULL, V52, P997, DOI 10.1007/s11434-007-2217-2.
JIRAGE KB, 1997, SCIENCE, V278, P655.
KALRA A, 2003, P NATL ACAD SCI USA, V100, P10175.
KIM S, 2007, NANO LETT, V7, P2806, DOI 10.1021/nl071414u.
KIM YA, 2006, CHEM VAPOR DEPOS, V12, P327, DOI 10.1002/cvde.200504217.
KUKOVECZ A, 2007, CARBON, V45, P1696, DOI 10.1016/j.carbon.2007.04.033.
KULESZA S, 2006, CARBON, V44, P2178, DOI 10.1016/j.carbon.2006.03.012.
LI XS, 2007, SMALL, V3, P595, DOI 10.1002/smll.200600652.
MAJUMDER M, 2005, J AM CHEM SOC, V127, P9062, DOI 10.1021/ja043013b.
MAJUMDER M, 2005, NATURE, V438, P44, DOI 10.1038/43844a.
MAJUMDER M, 2007, LANGMUIR, V23, P8624, DOI 10.1021/la700686k.
MAJUMDER M, 2008, J MEMBRANE SCI, V316, P89, DOI 10.1016/j.memsci.2007.09.068.
MATRANGA C, 2006, LANGMUIR, V22, P1235, DOI 10.1021/la0516577.
MI WL, 2007, J MEMBRANE SCI, V304, P1, DOI 10.1016/j.memsci.2007.07.021.
MILLER SA, 2001, J AM CHEM SOC, V123, P12335.
MILLER SA, 2002, J ELECTROANAL CHEM, V522, P66.
MILLER SA, 2004, J AM CHEM SOC, V126, P6226, DOI 10.1021/ja0496322.
MIRANDA LD, 2009, J MEMBRANE SCI, V344, P26, DOI 10.1016/j.memsci.2009.07.037.
NEDNOOR P, 2005, J CHEM MAT, V17, P3595.
NIU HY, 2008, ANAL BIOANAL CHEM, V392, P927, DOI 10.1007/s00216-008-2332-1.
PENG FB, 2007, J MEMBRANE SCI, V297, P236, DOI 10.1016/j.memsci.2007.03.048.
REN ZF, 1998, SCIENCE, V282, P1105.
SHIMODA H, 2002, PHYSICA B, V323, P135.
SMAJDA R, 2007, CARBON, V45, P1176, DOI 10.1016/j.carbon.2007.02.022.
SREEKUMAR TV, 2003, CHEM MATER, V15, P175, DOI 10.1021/cm020367y.
SRIVASTAVA A, 2004, NAT MATER, V3, P610, DOI 10.1038/nmat1192.
STRASINGER CL, 2009, SUBST ABUSE RES TREA, V3, P31.
SUAREZ B, 2008, ENVIRON SCI TECHNOL, V42, P6100, DOI 10.1021/es800896c.
VERMISOGIOU EC, 2008, MICROPOR MESOPOR MAT, V110, P25, DOI 10.1016/j.micromeso.2007.08.001.
VERWEIJ H, 2007, SMALL, V3, P1996, DOI 10.1002/smll.200700368.
WANG D, 2008, NANOTECHNOLOGY, V19, UNSP 075609/1-6.
WANG Q, 2009, CARBON, V47, P2752.
WANG ZK, 2007, NANO LETT, V7, P697, DOI 10.1021/nl062853g.
WENG TH, 2009, INT J HYDROGEN ENERG, V34, P8707, DOI 10.1016/j.ijhydene.2009.08.027.
WHITBY RLD, 2008, CARBON, V46, P949, DOI 10.1016/j.carbon.2008.02.028.
WU ZC, 2004, SCIENCE, V305, P1273.
YEH IC, 2004, P NATL ACAD SCI USA, V101, P12177, DOI 10.1073/pnas.0402699101.
YU M, 2009, NANO LETT, V9, P225, DOI 10.1021/nl802816h.
ZHANG M, 2005, SCIENCE, V309, P1215, DOI 10.1126/science.1115311.
ZHANG XW, 2008, ADV MATER, V20, P4140, DOI 10.1002/adma.200801919.

Cited Reference Count:
59

Times Cited:
0

Publisher:
AMER CHEMICAL SOC; 1155 16TH ST, NW, WASHINGTON, DC 20036 USA

Subject Category:
Chemistry, Analytical

ISSN:
0003-2700

DOI:
10.1021/ac902629n

IDS Number:
617AO

========================================================================
*Order Full Text*
All Customers
--------------
Please contact your library administrator, or person(s) responsible for
document delivery, to find out more about your organization's policy for
obtaining the full text of the above articles. If your organization does
not have a current document delivery provider, your administrator can
contact ISI Document Solution at service@isidoc.com, or call 800-603-4367
or 734-459-8565.

IDS Customers
--------------
IDS customers can purchase the full text of an article (having page number,
volume, and issue information) by returning this ENTIRE message as a Reply
to Sender or Forward to orders@isidoc.com. Mark your choices with an X in
the "Order Full Text: []" brackets for each item. For example, [X].

Please enter your account number here:

========================================================================
*Help Desk Contact Information*
If you have any questions, please visit the Thomson Scientific Technical Support Contact Information Web page:
http://www.thomsonscientific.com/support/techsupport
========================================================================

No comments: