Friday, July 30, 2010

ISI Web of Knowledge Alert - Hummer, G

ISI Web of Knowledge Citation Alert

Cited Article: Hummer, G. Water conduction through the hydrophobic channel of a carbon nanotube
Alert Expires: 09 NOV 2010
Number of Citing Articles: 3 new records this week (3 in this e-mail)
Organization ID: 3b97d1bbc1878baed0ab183d8b03130b
========================================================================
Note: Instructions on how to purchase the full text of an article and Help Desk Contact information are at the end of the e-mail.
========================================================================

*Record 1 of 3.
*View Full Record: http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000279996400002
*Order Full Text [ ]

Title:
Electrolyte solution transport in electropolar nanotubes

Authors:
Zhao, JB; Culligan, PJ; Qiao, Y; Zhou, QL; Li, YB; Tak, M; Park, T; Chen, X

Author Full Names:
Zhao, Jianbing; Culligan, Patricia J.; Qiao, Yu; Zhou, Qulan; Li, Yibing; Tak, Moonho; Park, Taehyo; Chen, Xi

Source:
JOURNAL OF PHYSICS-CONDENSED MATTER 22 (31): Art. No. 315301 AUG 11 2010

Language:
English

Document Type:
Article

KeyWords Plus:
MONTE-CARLO SIMULATIONS; NANOPOROUS SILICA-GEL; MOLECULAR-DYNAMICS; CARBON NANOTUBES; INFILTRATION PRESSURE; POTENTIAL FUNCTIONS; SURFACE-TREATMENT; WATER; NANOFLUIDICS; CHANNELS

Abstract:
Electrolyte transport in nanochannels plays an important role in a number of emerging areas. Using non-equilibrium molecular dynamics (NEMD) simulations, the fundamental transport behavior of an electrolyte/water solution in a confined model nanoenvironment is systematically investigated by varying the nanochannel dimension, solid phase, electrolyte phase, ion concentration and transport rate. It is found that the shear resistance encountered by the nanofluid strongly depends on these material/system parameters; furthermore, several effects are coupled. The mechanisms of the nanofluidic transport characteristics are explained by considering the unique molecular/ion structure formed inside the nanochannel. The lower shear resistance observed in some of the systems studies could be beneficial for nanoconductors, while the higher shear resistance (or higher effective viscosity) observed in other systems might enhance the performance of energy dissipation devices.

Reprint Address:
Culligan, PJ, Columbia Univ, Sch Engn & Appl Sci, Dept Earth & Environm Engn, New York, NY 10027 USA.

Research Institution addresses:
[Zhao, Jianbing; Culligan, Patricia J.; Chen, Xi] Columbia Univ, Sch Engn & Appl Sci, Dept Earth & Environm Engn, New York, NY 10027 USA; [Qiao, Yu] Univ Calif San Diego, Dept Struct Engn, La Jolla, CA 92093 USA; [Zhou, Qulan] Xi An Jiao Tong Univ, State Key Lab Multiphase Flow Power Engn, Xian 710049, Peoples R China; [Li, Yibing] Tsinghua Univ, Dept Automot Engn, State Key Lab Automot Safety & Energy, Beijing 100084, Peoples R China; [Tak, Moonho; Park, Taehyo; Chen, Xi] Hanyang Univ, Dept Civil & Environm Engn, Seoul 133791, South Korea; [Chen, Xi] Xi An Jiao Tong Univ, Sch Aerosp, Xian 710049, Peoples R China

E-mail Address:
pjc2104@columbia.edu; xichen@columbia.edu

Cited References:
BARTOLOTTI LJ, 1991, J COMPUT CHEM, V12, P1125.
BELLAT JP, 2009, J PHYS CHEM C, V113, P8287, DOI 10.1021/jp810209t.
BOUZIGUES CI, 2008, PHYS REV LETT, V101, ARTN 114503.
CAILLIEZ F, 2008, PHYS CHEM CHEM PHYS, V10, P4817, DOI 10.1039/b807471b.
CAILLIEZ F, 2009, MOL SIMULAT, V35, P24, DOI 10.1080/08927020802398900.
CAO GX, 2008, MOL SIMULAT, V34, P1267, DOI 10.1080/08927020802175225.
CHEN NY, 1994, MOL TRANSPORT REACTI.
CHEN X, 2005, J AM CERAM SOC, V88, P1233.
CHEN X, 2006, APPL PHYS LETT, V89, ARTN 241918.
CHEN X, 2008, BIOPHYS J, V95, P563, DOI 10.1529/biophysj.107.128488.
CHEN X, 2008, NANO LETT, V8, P2988, DOI 10.1021/nl802046b.
COUDERT FX, 2008, PHYS CHEM CHEM PHYS, V141, P377.
FORMASIERO F, 2008, P NATL ACAD SCI USA, V105, P17250.
GONG XJ, 2008, PHYS REV LETT, V101, ARTN 257801.
GUENES S, 2008, INORG CHIM ACTA, V361, P581, DOI 10.1016/j.ica.2007.06.042.
GURIYANOVA S, 2008, PHYS CHEM CHEM PHYS, V10, P4871, DOI 10.1039/b806236f.
GYURCSANYI RE, 2008, TRAC-TREND ANAL CHEM, V27, P627, DOI 10.1016/j.trac.2008.06.002.
HALICIOGLU T, 1975, PHYS STATUS SOLIDI A, V30, P619.
HAN A, 2007, J MATER RES, V22, P644, DOI 10.1557/JMR.2007.0088.
HAN A, 2007, J PHYS D APPL PHYS, V40, P5743, DOI 10.1088/0022-3727/40/18/035.
HAN A, 2008, J APPL PHYS, V104, UNSP 124906.
HAN A, 2008, LANGMUIR, V24, P7044, DOI 10.1021/la800446z.
HAN AJ, 2007, CHEM LETT, V36, P882.
HAN AJ, 2009, SMART MATER STRUCT, V18, ARTN 024005.
HEALY K, 2007, NANOMEDICINE-UK, V2, P875, DOI 10.2217/17435889.2.6.875.
HOCKNEY R, 1981, COMPUTER SIMULATION.
HOLTZEL A, 2007, J SEP SCI, V30, P1398, DOI 10.1002/jssc.200600427.
HUANG DM, 2008, LANGMUIR, V24, P1442, DOI 10.1021/la7021787.
HUMMER G, 2001, NATURE, V414, P188.
JEFFREY GA, 1997, INTRO HYDROGEN BONDI.
JORGENSEN WL, 1983, J CHEM PHYS, V79, P926.
JORGENSEN WL, 1985, MOL PHYS, V56, P1381.
KENIS PJA, 2006, MRS BULL, V31, P87.
KORNHERR A, 2004, CHEM PHYS LETT, V393, P107, DOI 10.1016/j.cplett.2004.06.019.
LEARY SP, 2006, NEUROSURGERY, V58, P805, DOI 10.1227/01.NEU.0000216793.45952.ED.
LIM TC, 2003, Z NATURFORSCH A, V58, P615.
LIU L, 2008, APPL PHYS LETT, V92, ARTN 101927.
LIU L, 2009, PHYS REV LETT, V102, ARTN 184501.
MACKERELL AD, 1998, J PHYS CHEM B, V102, P3586.
MAJUMDER M, 2005, NATURE, V438, P44, DOI 10.1038/43844a.
MARRY V, 2008, PHYS CHEM CHEM PHYS, V10, P4802, DOI 10.1039/b807288d.
MARTINAC B, 2004, J CELL SCI, V117, P2449, DOI 10.1242/jcs.01232.
PETTITT BM, 1986, J CHEM PHYS, V84, P5836.
PLIMPTON S, 1995, J COMPUT PHYS, V117, P1.
QIAO R, 2005, COLLOID SURFACE A, V267, P103, DOI 10.1016/j.colsurfa.2005.06.067.
QIAO Y, 2007, J AM CHEM SOC, V129, P2355, DOI 10.1021/ja067185f.
RAUSCHER M, 2008, ANNU REV MATER RES, V38, P143, DOI 10.1146/annurev.matsci.38.060407.132451.
SCHOCH RB, 2008, REV MOD PHYS, V80, P839, DOI 10.1103/RevModPhys.80.839.
SONG CM, 2002, ACTA PHYS-CHIM SIN, V18, P279.
STEIN D, 2004, PHYS REV LETT, V93, ARTN 035901.
STEIN D, 2006, P NATL ACAD SCI USA, V103, P15853, DOI 10.1073/pnas.0605900103.
TOMBOLA F, 2006, ANNU REV CELL DEV BI, V22, P23, DOI 10.1146/annurev.cellbio.21.020404.145837.
VAITHEESWARAN S, 2004, J CHEM PHYS, V121, P7955, DOI 10.1063/1.1796271.
VAITHEESWARAN S, 2008, P NATL ACAD SCI USA, V105, P17636, DOI 10.1073/pnas.0803990105.
WHITE JA, 2000, J CHEM PHYS, V113, P4668.
XU J, 2008, NAT NANOTECHNOL, V3, P666, DOI 10.1038/nnano.2008.274.
YERNOOL D, 2004, NATURE, V431, P723.
ZHAO JB, 2010, J COMPUT THEOR NANOS, V7, P379, DOI 10.1166/jctn.2010.1369.
ZWOLAK M, 2009, PHYS REV LETT, V103, ARTN 128102.

Cited Reference Count:
59

Times Cited:
0

Publisher:
IOP PUBLISHING LTD; DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND

Subject Category:
Physics, Condensed Matter

ISSN:
0953-8984

DOI:
10.1088/0953-8984/22/31/315301

IDS Number:
626VV

========================================================================

*Record 2 of 3.
*View Full Record: http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000279787600025
*Order Full Text [ ]

Title:
Molecular Simulation of Ion-Specific Effects in Confined Electrolyte Solutions Using Polarizable Forcefields

Authors:
Cazade, PA; Dweik, J; Coasne, B; Henn, F; Palmeri, J

Author Full Names:
Cazade, P. -A.; Dweik, J.; Coasne, B.; Henn, F.; Palmeri, J.

Source:
JOURNAL OF PHYSICAL CHEMISTRY C 114 (28): 12245-12257 JUL 22 2010

Language:
English

Document Type:
Article

KeyWords Plus:
CARBON NANOTUBE MEMBRANES; DYNAMICS SIMULATIONS; NEUTRON-DIFFRACTION; AQUEOUS-SOLUTIONS; HYDROPHOBIC SURFACES; COMPUTER-SIMULATION; AIR/WATER INTERFACE; HYDRATION STRUCTURE; LIQUID INTERFACE; SODIUM-CHLORIDE

Abstract:
This paper reports on a molecular dynamics study of aqueous electrolyte solutions confined in hydrophobic nanopores. We examined for the first time the effect of the size and polarizability of the ions on the structure and dynamics of the confined electrolyte solution by considering the series of sodium halides (NaX with X = F, Cl, Br, and I). We also address the effect of pore size by varying the diameter of the nanochannel. As far as structural properties are concerned, the behavior of the NaF electrolyte solution significantly differs from that of the other sodium halide solutions. Because of their small size, Na and F in NaF are found to be significantly solvated by water. In addition, due to steric and hydrophobic effects [Chandler, D. Nature 2005, 437, 640], Cl, Br, and I tend to be repelled from the regions where the density of water is larger. Ion-specific effects on the dynamics of water and ions are found to be minimized when the electrolyte solution is confined at!
the nanoscale in comparison to bulk water and the water-air interface. For instance, both the data for water and the ionic species indicate that the ratio of the self-diffusivity for the confined solution to that for the bulk is independent of the nature of the anion F, Cl, Br, and I. Moreover, while the average solvation times for Na in NaF and Na in NaX (X = Cl, Br, I) significantly differ for bulk electrolyte solutions, they turn out to be very similar for the confined solutions. Such a leveling of the dynamical properties of the electrolyte solutions due to confinement is also observed on the pairing of the anions and cations.

Reprint Address:
Coasne, B, Univ Montpellier, ENSCM, CNRS, Inst Charles Gerhardt Montpellier,UMR 5253, 8 Rue Ecole Normale, F-34296 Montpellier 05, France.

Research Institution addresses:
[Cazade, P. -A.; Coasne, B.; Henn, F.] Univ Montpellier, ENSCM, CNRS, Inst Charles Gerhardt Montpellier,UMR 5253, F-34296 Montpellier 05, France; [Dweik, J.] Univ Montpellier, CNRS, UMR 5635, Inst Europeen Membranes, F-34095 Montpellier, France; [Palmeri, J.] Univ Toulouse 3, CNRS, IRSAMC, Phys Theor Lab,UMR 5152, F-31062 Toulouse 4, France

E-mail Address:
benoit.coasne@enscm.fr

Cited References:
ALANISSILA T, 2002, ADV PHYS, V51, P949.
ALBASIMIONESCO C, 2003, EUR PHYS J E, V19, P28.
ALBASIMIONESCO C, 2006, J PHYS-CONDENS MAT, V18, P15.
ALEXIADIS A, 2008, CHEM REV, V108, P5014, DOI 10.1021/cr078140f.
ALLEN MP, 1987, COMPUTER SIMULATION.
ALLEN TW, 1999, J CHEM PHYS, V111, P7985.
ARGYRIS D, 2008, J PHYS CHEM C, V112, P13587, DOI 10.1021/jp803234a.
ARGYRIS D, 2009, J PHYS CHEM C, V113, P19591, DOI 10.1021/jp906150n.
ARGYRIS D, 2009, LANGMUIR, V25, P8025, DOI 10.1021/la9005136.
BERENDSEN HJC, 1984, J CHEM PHYS, V81, P3684.
BEREZHKOVSKII A, 2002, PHYS REV LETT, V89, P64503, UNSP 064503-064506.
BONNAUD PA, 2010, J PHYS-CONDENS MAT, V22, ARTN 284110.
BOUAZIZI S, 2008, J MOL STRUCT, V892, P47, DOI 10.1016/j.molstruc.2008.04.062.
CALDWELL J, 1990, J AM CHEM SOC, V112, P9145.
CALDWELL JW, 1995, J AM CHEM SOC, V117, P4177.
CALDWELL JW, 1995, J PHYS CHEM-US, V99, P6208.
CASE DA, 2006, AMBER 9.
CASTRILLON SRV, 2009, J PHYS CHEM B, V113, P7973, DOI 10.1021/jp9025392.
CHANDLER D, 2005, NATURE, V437, P640, DOI 10.1038/nature04162.
CHANG TM, 1996, J CHEM PHYS, V104, P6772.
CHANG TM, 2006, CHEM REV, V106, P1305, DOI 10.1021/cr0403640.
CHMIEL H, 2006, HDB THEORETICAL COMP, V5, P93.
CHRISTENSON HK, 2001, ADV COLLOID INTERFAC, V91, P391.
COASNE B, 2006, MOL PHYS, V104, P3491, DOI 10.1080/00268970601012736.
CORRY B, 2008, J PHYS CHEM B, V112, P1427, DOI 10.1021/jp709845u.
DANG LX, 1991, J AM CHEM SOC, V113, P2481.
DANG LX, 1997, J CHEM PHYS, V106, P8149.
DANG LX, 1998, J PHYS CHEM B, V102, P620.
DANG LX, 1999, J PHYS CHEM B, V103, P8195.
DANG LX, 2002, J PHYS CHEM B, V106, P10388, DOI 10.1021/jp021871t.
DIESTLER DJ, 1991, J CHEM PHYS, V95, P5432.
DONG HT, 2008, J PHYS CHEM B, V112, P13552, DOI 10.1021/jp8057405.
DUBBELDAM D, 2007, MOL SIMULAT, V33, P305, DOI 10.1080/08927020601156418.
DUNG LX, 1992, J CHEM PHYS, V96, P6970.
FENN EE, 2009, P NATL ACAD SCI USA, V106, P15243, DOI 10.1073/pnas.0907875106.
FENNELL CJ, 2009, J PHYS CHEM B, V113, P6782, DOI 10.1021/jp809782z.
FLEURY P, 2007, J HYDROL, V339, P79, DOI 10.1016/j.jhydrol.2007.03.009.
FRENKEL D, 2002, UNDERSTANDING MOL SI.
GALLO P, 2002, J CHEM PHYS, V116, P342.
GALLO P, 2002, J CHEM PHYS, V117, P369.
GIOVAMBATTISTA N, 2006, PHYS REV E 1, V73, ARTN 041604.
GREGORY JK, 1997, SCIENCE, V275, P814.
HAAN M, 2009, MOL SIMULAT, V35, P13, DOI 10.1080/08927020802433160.
HAHN K, 1998, J PHYS CHEM B, V102, P5766.
HAWLICKA E, 2000, PHYS CHEM CHEM PHYS, V2, P3175.
HERCE DH, 2005, J CHEM PHYS, V122, ARTN 024513.
HORINEK D, 2007, PHYS REV LETT, V99, ARTN 226104.
HU ZQ, 2008, J MEMBRANE SCI, V324, P192, DOI 10.1016/j.memsci.2008.07.013.
HUANG DM, 2007, PHYS REV LETT, V100, UNSP 177801-177804.
HUANG DM, 2008, LANGMUIR, V24, P1442, DOI 10.1021/la7021787.
HUANG DM, 2008, PHYS REV LETT, V101, P64503.
HUMMER G, 2001, NATURE, V414, P188.
JUNGWIRTH P, 2006, CHEM REV, V106, P1259, DOI 10.1021/cr0403741.
KALRA A, 2003, P NATL ACAD SCI USA, V100, P10175.
KOGA K, 2001, NATURE, V412, P802.
KOLESNIKOV A, 2004, PHYS REV LETT, V93.
KRISHNAN SH, 2003, J CHEM PHYS, V118, P690, DOI 10.1063/1.1524191.
LEE SH, 1996, J PHYS CHEM-US, V100, P1420.
LEFEBVRE X, 2004, J PHYS CHEM B, V108, P16811, DOI 10.1021/jp048631t.
LI JY, 2007, P NATL ACAD SCI USA, V104, P3687, DOI 10.1073/pnas.0604541104.
LIU YC, 2005, PHYS REV B, V72, ARTN 085420.
LIU YC, 2008, PHYS REV B, V77, ARTN 125438.
LIU YC, 2009, DIFFUSION FUNDAMENTA, V11, P1.
LOEFFLER HH, 2002, J CHEM PHYS, V117, P110.
MANCINELLI R, 2007, PHYS CHEM CHEM PHYS, V9, P2959, DOI 10.1039/b701855j.
MARRONE TJ, 1994, J PHYS CHEM-US, V98, P1341.
MASON PE, 2006, J PHYS-CONDENS MAT, V18, P8437, DOI 10.1088/0953-8984/18/37/004.
MEYER EE, 2006, P NATL ACAD SCI USA, V103, P15739, DOI 10.1073/pnas.0606422103.
MOORE JD, 2010, APPL SURF SCI, V256, P5131, DOI 10.1016/j.apsusc.2009.12.071.
MORINEAU D, 2003, J CHEM PHYS, V118, P9389, DOI 10.1063/1.1568932.
MUKHERJEE B, 2007, J CHEM PHYS, V126, UNSP 124704-124711.
MUKHERJEE B, 2008, ACS NANO, V2, P1189, DOI 10.1021/nn800182v.
NICHOLSON D, 2003, MOL SIMULAT, V29, P287, DOI 10.1080/0892702031000078427.
NICOTERA I, 2009, J PHYS CHEM B, V113, P13935, DOI 10.1021/jp904691g.
NOON WH, 2002, CHEM PHYS LETT, V355, P445.
OHBA T, 2009, J PHYS CHEM C, V113, P12622, DOI 10.1021/jp9030688.
OHRN A, 2004, J PHYS CHEM B, V108, P8452, DOI 10.1021/jp049303w.
OHTAKI H, 1993, CHEM REV, V93, P1157.
OHTOMO N, 1980, B CHEM SOC JPN, V53, P1789.
PARK JH, 2006, NANOTECHNOLOGY, V17, P895, DOI 10.1088/0957-4484/17/3/046.
PERERA L, 1991, J CHEM PHYS, V95, P7556.
PETER C, 2005, BIOPHYS J, V89, P2222, DOI 10.1529/biophysj.105.065946.
POWELL MR, 2008, NAT NANOTECHNOL, V3, P51, DOI 10.1038/nnano.2007.420.
QIAO Y, 2007, J AM CHEM SOC, V129, P2355, DOI 10.1021/ja067185f.
RAMOS S, 2005, J CHEM PHYS, V123, ARTN 214501.
REN PY, 2002, J COMPUT CHEM, V23, P1497, DOI 10.1002/jcc.10127.
REN Y, 2008, NANOTECHNOLOGY, V19, UNSP 195707-195712.
ROWLINSON JS, 1982, LIQUIDS LIQUID MIXTU.
SCHOCH RB, 2008, REV MOD PHYS, V80, P839, DOI 10.1103/RevModPhys.80.839.
SCHOEN M, 1988, J CHEM PHYS, V88, P1394.
SHANNON MA, 2008, NATURE, V452, P301, DOI 10.1038/nature06599.
SHAO Q, 2008, PHYS CHEM CHEM PHYS, V10, P1896, DOI 10.1039/b719033f.
SHELLEY JC, 1993, LANGMUIR, V9, P916.
SOPER AK, 1977, J PHYS C SOLID STATE, V10, P1793.
SPARREBOOM W, 2009, NAT NANOTECHNOL, V4, P713, DOI 10.1038/NNANO.2009.332.
STANLEY HE, 2009, Z PHYS CHEM, V223, P939, DOI 10.1524/zpch.2009.6064.
SUK ME, 2009, PHYS CHEM CHEM PHYS, V11, P8614, DOI 10.1039/b903541a.
TRUDEAU TG, 2009, J PHYS CHEM C, V113, P20002, DOI 10.1021/jp907405h.
VACHA R, 2009, J PHYS CHEM A, V113, P7235, DOI 10.1021/jp809974e.
VARMA S, 2006, BIOPHYS CHEM, V124, P192, DOI 10.1016/j.bpc.2006.07.002.
WANG HJ, 2008, SCIENCE, V322, P80, DOI 10.1126/science.1162412.
WANG XW, 2008, CHEM PHYS LETT, V458, P235, DOI 10.1016/j.cplett.2008.04.092.
WEBB MB, 2009, J PHYS CHEM B, V113, P9886, DOI 10.1021/jp901667c.
WHITBY M, 2007, NAT NANOTECHNOL, V2, P87, DOI 10.1038/nnano.2006.175.
XANTHEAS SS, 1996, J PHYS CHEM-US, V100, P3989.
XU Y, 2008, APPL PHYS LETT, V93, P43122.
XUE JM, 2009, J PHYS D, V42, UNSP 105308-105314.
YANG L, 2007, J CHEM PHYS, V126, P84706.
ZHU SB, 1992, J CHEM PHYS, V97, P4336.

Cited Reference Count:
109

Times Cited:
0

Publisher:
AMER CHEMICAL SOC; 1155 16TH ST, NW, WASHINGTON, DC 20036 USA

Subject Category:
Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary

ISSN:
1932-7447

DOI:
10.1021/jp103880s

IDS Number:
624AD

========================================================================

*Record 3 of 3.
*View Full Record: http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000279759300018
*Order Full Text [ ]

Title:
Synthesis and Applications of Water Nanotubes

Authors:
Maniwa, Y; Kataura, H

Author Full Names:
Maniwa, Yutaka; Kataura, Hiromichi

Source:
INORGANIC AND METALLIC NANOTUBULAR MATERIALS: RECENT TECHNOLOGIES AND APPLICATIONS 117: 247-259 2010

Language:
English

Document Type:
Review

KeyWords Plus:
WALLED CARBON NANOTUBES; X-RAY-DIFFRACTION; ICE-NANOTUBES; TRANSITION; ADSORPTION

Abstract:
Characteristics of a material system strongly confined in a certain spatial region with nanometer dimension are not only dependent, on the number of atoms (molecules) but rather extremely dependent on the shape and dimensionality of the limited space. This chapter reports that a new tubularshaped ice, referred to as an ice nanotube (ice NT) is formed in the cylindrical cavity of a single-walled carbon nanotube (SWCNT) and that the ice NT exhibits an abnormal inching point dependency on the cavity diameter. Possible applications and "exchange transition" found in gas atmosphere are also briefly discussed.

Reprint Address:
Maniwa, Y, Tokyo Metropolitan Univ, Fac Sci, Dept Phys, Tokyo 1920397, Japan.

Research Institution addresses:
[Maniwa, Yutaka] Tokyo Metropolitan Univ, Fac Sci, Dept Phys, Tokyo 1920397, Japan; [Maniwa, Yutaka; Kataura, Hiromichi] CREST, JST, Kawaguchi, Saitama 3320012, Japan; [Kataura, Hiromichi] Natl Inst Adv Ind Sci & Technol, Nanotechnol Res Inst, Tsukuba, Ibaraki 3058562, Japan

E-mail Address:
maniwa@phys.metro-u.ac.jp; h-kataura@aist.go.jp

Cited References:
BAI JE, 2006, P NATL ACAD SCI USA, V103, P19664, DOI 10.1073/pnas.0608401104.
BYL O, 2006, J AM CHEM SOC, V128, P12090, DOI 10.1021/ja057856u.
DRESSELHAUS MS, 1995, SCI FULLERENCES CARB.
HUMMER G, 2001, NATURE, V414, P188.
JACKSON KA, 1958, J APPL PHYS, V29, P1178.
KOGA K, 2000, J CHEM PHYS, V113, P5037.
KOGA K, 2001, NATURE, V412, P802.
KOLESNIKOV AI, 2004, PHYS REV LETT, V93, ARTN 035503.
KUBO R, 1984, ANNU REV MATER SCI, V14, P49.
LIU ZH, 2003, PHYS REV E 1, V67, ARTN 061602.
LUM K, 1999, J PHYS CHEM B, V103, P4570.
MANIWA Y, 1999, JPN J APPL PHYS 2, V38, L668.
MANIWA Y, 2000, MOL CRYST LIQ CRYST, V340, P671.
MANIWA Y, 2001, PHYS REV B, V64, ARTN 241402.
MANIWA Y, 2002, J PHYS SOC JPN, V71, P2863, DOI 10.1143/JPSJ.71.2863.
MANIWA Y, 2005, CHEM PHYS LETT, V401, P534, DOI 10.1016/j.cplett.2004.11.112.
MANIWA Y, 2006, CHEM PHYS LETT, V424, P97, DOI 10.1016/j.cplett.2006.04.042.
MANIWA Y, 2007, NAT MATER, V6, P135, DOI 10.1038/nmat1823.
MATSUDA K, 2006, PHYS REV B, V74, ARTN 073415.
MORISHIGE K, 1999, J CHEM PHYS, V110, P4867.
NOZUE Y, 1992, PHYS REV LETT, V68, P3789.
PATI R, 2002, APPL PHYS LETT, V81, P2638, DOI 10.1063/1.1510969.
SANSOM MSP, 2001, NATURE, V414, P156.
SHIOMI J, 2007, J PHYS CHEM C, V111, P12188, DOI 10.1021/jp071508s.
STRIOLO A, 2005, J CHEM PHYS, V122, ARTN 234712.
TAKAIWA D, 2008, P NATL ACAD SCI USA, V105, P39, DOI 10.1073/pnas.0707917105.
TANAKA H, 2005, J CHEM PHYS, V123, ARTN 094706.
WANG HJ, 2008, SCIENCE, V322, P80, DOI 10.1126/science.1162412.
ZAHAB A, 2000, PHYS REV B, V62, P10000.

Cited Reference Count:
29

Times Cited:
0

Publisher:
SPRINGER-VERLAG BERLIN; HEIDELBERGER PLATZ 3, D-14197 BERLIN, GERMANY

ISSN:
0303-4216

DOI:
10.1007/978-3-642-03622-4_18

IDS Number:
BPS06

========================================================================
*Order Full Text*
All Customers
--------------
Please contact your library administrator, or person(s) responsible for
document delivery, to find out more about your organization's policy for
obtaining the full text of the above articles. If your organization does
not have a current document delivery provider, your administrator can
contact ISI Document Solution at service@isidoc.com, or call 800-603-4367
or 734-459-8565.

IDS Customers
--------------
IDS customers can purchase the full text of an article (having page number,
volume, and issue information) by returning this ENTIRE message as a Reply
to Sender or Forward to orders@isidoc.com. Mark your choices with an X in
the "Order Full Text: []" brackets for each item. For example, [X].

Please enter your account number here:

========================================================================
*Help Desk Contact Information*
If you have any questions, please visit the Thomson Scientific Technical Support Contact Information Web page:
http://www.thomsonscientific.com/support/techsupport
========================================================================

No comments: