Friday, September 24, 2010

ISI Web of Knowledge Alert - Holt JK

ISI Web of Knowledge Citation Alert

Cited Article: Holt JK. Fast mass transport through sub-2-nanometer carbon nanotubes
Alert Expires: 09 NOV 2010
Number of Citing Articles: 4 new records this week (4 in this e-mail)
Organization ID: 3b97d1bbc1878baed0ab183d8b03130b
========================================================================
Note: Instructions on how to purchase the full text of an article, import the records into an
ISI ResearchSoft product, and Help Desk Contact information are at the end of the e-mail.
========================================================================

FN ISI Export Format
VR 1.0

PT J
*Record 1 of 4.
L5 <http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;UT=000281624500007>
*Order Full Text [ ]
AU Gurdev, S
Rana, D
Matsuura, T
Ramakrishna, S
Narbaitz, RM
Tabe, S
AF Singh, Gurdev
Rana, Dipak
Matsuura, Takeshi
Ramakrishna, Seeram
Narbaitz, Roberto M.
Tabe, Shahram
TI Removal of disinfection byproducts from water by carbonized electrospun
nanofibrous membranes
SO SEPARATION AND PURIFICATION TECHNOLOGY
LA English
DT Article
DE Disinfection byproducts; Electrospun membrane; Carbonized nanofibrous
membrane; Multiwalled carbon nanotubes; Membrane adsorption
ID ENVIRONMENTAL APPLICATIONS; NANOTUBE MEMBRANES; MASS-TRANSPORT;
ADSORPTION; PURIFICATION; SURFACE; TRIHALOMETHANES; FILTERS; MEDIA;
LAYER
AB Disinfection byproducts (DBPs), trihalomethanes and haloacetic acids
present in water are well known carcinogens and their removal is an
important priority. Highly porous nanofibrous membrane filters produced
by electro-spinning were carbonized and used for the removal of DBPs
from water. In the present investigation, chloroform and
monochloroacetic acid (MCAA) was used as model DBPs compounds. The DBPs
concentration in the range of 1-100 mg/L was used in well controlled
adsorption experiments using the prepared membranes. For chloroform an
adsorption capacity of 554 mg/g of carbonized nanofibrous membranes
(CNMs) was determined based on the filtration of feed solution (100
mg/L). The adsorption capacity of MCAA was between 287 and 504 mg/g for
a feed concentration of 4-18 mg/L based on the static adsorption study.
The used membranes were regenerated by chemical/physical treatment and
removal efficiencies of the regenerated membranes were determined. The
DBPs removal from water was also investigated using multiwalled carbon
nanotubes (MWCNTs) incorporated in the CNMs and results were compared.
Although the initial removal of MCAA was increased with increasing
concentration of the MWCNTs, afterwards, the subsequent removals showed
no effect of addition of MWCNTs. The possible mechanism was also
discussed to better understand the adsorption phenomenon. These results
suggest that the CNMs could be used as DBPs removal filter for drinking
water purpose. (C) 2010 Elsevier B.V. All rights reserved.
C1 [Singh, Gurdev; Rana, Dipak; Matsuura, Takeshi] Univ Ottawa, Ind Membrane Res Inst, Dept Chem & Biol Engn, Ottawa, ON K1N 6N5, Canada.
[Singh, Gurdev; Ramakrishna, Seeram] Natl Univ Singapore, Fac Engn, Nanosci & Nanotechnol Initiat, Blk Nanobioengn Lab E3 05 12, Singapore 117576, Singapore.
[Narbaitz, Roberto M.] Univ Ottawa, Dept Civil Engn, Ottawa, ON K1N 6N5, Canada.
[Tabe, Shahram] Ontario Minist Environm, Stand Dev Branch, Water Stand Sect, Toronto, ON M4V 1M2, Canada.
RP Rana, D, Univ Ottawa, Ind Membrane Res Inst, Dept Chem & Biol Engn, 161
Louis Pasteur St, Ottawa, ON K1N 6N5, Canada.
EM rana@eng.uottawa.ca
matsuura@eng.uottawa.ca
CR 2005, SPECIAL PUB
*US EPA, 1994, FED REGISTER, V59, P38668
*US EPA, 1998, FED REGISTER, V63, P69389
AJAYAN PM, 1993, NATURE, V361, P333
AMADOU J, 2006, CARBON, V44, P2587, DOI 10.1016/j.carbon.2006.05.042
AMMA A, 2003, ADV FUNCT MATER, V13, P365, DOI 10.1002/adfm.200304232
AUSSAWASATHIEN D, 2008, J MEMBRANE SCI, V315, P11, DOI
10.1016/j.memsci.2008.01.049
BAKAJIN O, 2009, NANOTECHNOLOGY APPL, P77
BAOWAN D, 2010, NANOTECHNOLOGY, V21, ARTN 155305
BARHATE RS, 2007, J MEMBRANE SCI, V296, P1, DOI
10.1016/j.memsci.2007.03.038
BJORGE D, 2009, DESALINATION, V249, P942, DOI
10.1016/j.desal.2009.06.064
BURGER C, 2006, ANNU REV MATER RES, V36, P333, DOI
10.1146/annurev.matsci.36.011205.123537
CAMPBELL P, 2008, NATURE, V452, P269
CANNON J, 2010, MICROFLUID NANOFLUID, V8, P21, DOI
10.1007/s10404-009-0446-1
CHAKRAPANI N, 2004, P NATL ACAD SCI USA, V101, P4009, DOI
10.1073/pnas.0400734101
CHEN W, 2008, ENVIRON SCI TECHNOL, V42, P6862, DOI 10.1021/es8013612
CHU B, 2009, J POLYM SCI POL PHYS, V47, P2431, DOI 10.1002/polb.21854
DAELS N, 2010, DESALINATION, V257, P170, DOI 10.1016/j.desal.2010.02.027
DEEGAN RD, 1997, NATURE, V389, P829
FITZER E, 1998, CARBON REINFORCEMENT
HAIDER S, 2009, J MEMBRANE SCI, V328, P90, DOI
10.1016/j.memsci.2008.11.046
HINDS BJ, 2004, SCIENCE, V303, P62, DOI 10.1126/science.1092048
HOLT JK, 2006, SCIENCE, V312, P1034, DOI 10.1126/science.1126298
HUMMER G, 2001, NATURE, V414, P188
ISMAIL AF, 2009, SEP PURIF TECHNOL, V70, P12, DOI
10.1016/j.seppur.2009.09.002
KAUR S, 2008, MRS BULL, V33, P21
KI CS, 2007, J MEMBRANE SCI, V302, P20, DOI 10.1016/j.memsci.2007.06.003
KIM J, 2010, ENVIRON POLLUT, V158, P2335, DOI
10.1016/j.envpol.2010.03.024
LI XS, 2007, SMALL, V3, P595, DOI 10.1002/smll.200600652
LI YH, 2007, J PHYS C SER, V61, P698, DOI 10.1088/1742-6596/61/1/140
LIAO Q, 2008, COLLOID SURFACE A, V312, P160, DOI
10.1016/j.colsurfa.2007.06.045
LIDE DR, 1992, HDB CHEM PHYSICS, P16
LONG RQ, 2001, J AM CHEM SOC, V123, P2058
LU CS, 2005, WATER RES, V39, P1183, DOI 10.1016/j.watres.2004.12.033
MA H, 2010, MATER CHEM, V20, P4692
MAJUMDER M, 2005, NATURE, V438, P44, DOI 10.1038/43844a
MAJUMDER M, 2008, J MEMBRANE SCI, V316, P89, DOI
10.1016/j.memsci.2007.09.068
MATSUURA T, 1994, SYNTHETIC MEMBRANES, P62
MAUTER MS, 2008, ENVIRON SCI TECHNOL, V42, P5843, DOI 10.1021/es8006904
MCKEE MG, 2006, SCIENCE, V311, P353, DOI 10.1126/science.1119790
MORRIS RD, 1992, AM J PUBLIC HEALTH, V82, P955
PARK J, 2010, DESALIN WATER TREAT, V15, P76, DOI 10.5004/dwt.2010.1670
PARK SW, 2009, J APPL POLYM SCI, V112, P2320, DOI 10.1002/app.29520
PARSONS S, 2004, ADV OXIDATION PROCES
PENG XJ, 2003, CHEM PHYS LETT, V376, P154, DOI
10.1016/S0009-2614(03)00960-6
PRILUTSLCY S, 2008, NANOTECHNOLOGY, V19, UNSP 165603-165612
RAMAKRISHNA S, 2006, MATER TODAY, V9, P40
RAMAKRISHNA S, 2009, POLYM MEMBRANES BIOT
RAVAL HD, 2009, INT J NUCL DESAL, V3, P360
RIVERA JL, 2010, J PHYS CHEM C, V114, P3737, DOI 10.1021/jp906527c
ROH S, 2004, J VAC SCI TECHNOL B, V22, P1411, DOI 10.1116/1.1740758
SALIPIRA KL, 2007, CHEM LETT, V5, P13
SANG YM, 2008, DESALINATION, V223, P349, DOI 10.1016/j.desal.2007.01.208
SEARS K, 2010, MATERIALS, V3, P127
SERVICE RF, 2006, SCIENCE, V313, P1088
SHANNON MA, 2008, NATURE, V452, P301, DOI 10.1038/nature06599
SOURIRAJAN BS, 1985, REVERSE OSMOSISULTRA, P979
SRIVASTAVA A, 2004, NAT MATER, V3, P610, DOI 10.1038/nmat1192
STEMMAN R, 2009, G4S INT, V2, P34
SUN L, 2000, J AM CHEM SOC, V122, P12340, DOI 10.1021/ja002429w
TAN K, 2007, J MEMBRANE SCI, V305, P287, DOI
10.1016/j.memsci.2007.08.015
THAVASI V, 2008, ENERG ENVIRON SCI, V1, P205, DOI 10.1039/b809074m
TSAI JH, 2008, J HAZARD MATER, V154, P1183
TUNG HH, 2006, J AM WATER WORKS ASS, V98, P107
UYAR T, 2009, J MEMBRANE SCI, V332, P129, DOI
10.1016/j.memsci.2009.01.047
WALLER K, 1998, EPIDEMIOLOGY, V9, P134
WANG XF, 2010, J MEMBRANE SCI, V356, P110, DOI
10.1016/j.memsci.2010.03.039
WHITBY M, 2007, NAT NANOTECHNOL, V2, P87, DOI 10.1038/nnano.2006.175
XU X, 2010, J MEMBRANE SCI, V348, P231, DOI 10.1016/j.memsci.2009.11.006
XU Z, 2009, SURFACE ENG POLYM ME, P306
YANG RT, 2003, ADSORBENTS FUNDAMENT, P79
YAO C, 2008, J MEMBRANE SCI, V320, P259, DOI
10.1016/j.memsci.2008.04.012
YE XY, 2009, MATER LETT, V63, P1810, DOI 10.1016/j.matlet.2009.05.054
YOON K, 2008, J MATER CHEM, V18, P5326, DOI 10.1039/b804128h
YOON K, 2009, J MEMBRANE SCI, V338, P145
YOON K, 2009, POLYMER, V50, P2893, DOI 10.1016/j.polymer.2009.04.047
ZUSSMAN E, 2005, CARBON, V43, P2175, DOI 10.1016/j.carbon.2005.03.031
NR 77
TC 0
PU ELSEVIER SCIENCE BV; PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 1383-5866
DI 10.1016/j.seppur.2010.06.006
PD AUG 17
VL 74
IS 2
BP 202
EP 212
SC Engineering, Chemical
GA 647NF
UT ISI:000281624500007
ER

PT J
*Record 2 of 4.
L5 <http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;UT=000281657300032>
*Order Full Text [ ]
AU Lee, CY
Choi, W
Han, JH
Strano, MS
AF Lee, Chang Young
Choi, Wonjoon
Han, Jae-Hee
Strano, Michael S.
TI Coherence Resonance in a Single-Walled Carbon Nanotube Ion Channel
SO SCIENCE
LA English
DT Article
ID STOCHASTIC RESONANCE; MEMBRANE PATCHES; SURFACE-CHARGE; K+ CHANNEL;
NOISE; TRANSPORT; WATER; TRANSLOCATION; COORDINATION; ENHANCEMENT
AB Biological ion channels are able to generate coherent and oscillatory
signals from intrinsically noisy and stochastic components for
ultrasensitive discrimination with the use of stochastic resonance, a
concept not yet demonstrated in human-made analogs. We show that a
single-walled carbon nanotube demonstrates oscillations in
electroosmotic current through its interior at specific ranges of
electric field that are the signatures of coherence resonance.
Stochastic pore blocking is observed when individual cations partition
into the nanotube obstructing an otherwise stable proton current. The
observed oscillations occur because of coupling between pore blocking
and a proton-diffusion limitation at the pore mouth. The result
illustrates how simple ionic transport can generate coherent waveforms
within an inherently noisy environment and points to new types of
nanoreactors, sensors, and nanofluidic channels based on this platform.
C1 [Lee, Chang Young; Choi, Wonjoon; Han, Jae-Hee; Strano, Michael S.] MIT, Dept Chem Engn, Cambridge, MA 02139 USA.
[Choi, Wonjoon] MIT, Dept Mech Engn, Cambridge, MA 02139 USA.
RP Strano, MS, MIT, Dept Chem Engn, Cambridge, MA 02139 USA.
EM strano@mit.edu
CR AGMON N, 1995, CHEM PHYS LETT, V244, P456
ALEXIADIS A, 2008, CHEM REV, V108, P5014, DOI 10.1021/cr078140f
BECKSTEIN O, 2004, J AM CHEM SOC, V126, P14694, DOI 10.1021/ja045271e
BENZI R, 1981, J PHYS A, V14, P453
BERNECHE S, 2001, NATURE, V414, P73
BEZRUKOV SM, 1995, NATURE, V378, P362
CARRILLOTRIPP M, 2003, J CHEM PHYS, V118, P7062, DOI 10.1063/1.1559673
CARRILLOTRIPP M, 2004, PHYS REV LETT, V93, ARTN 168104
CHEN YF, 2008, NANO LETT, V8, P42, DOI 10.1021/nI0718566
CORRY B, 2008, J PHYS CHEM B, V112, P1427, DOI 10.1021/jp709845u
DECOURSEY TE, 2003, PHYSIOL REV, V83, P475, DOI
10.1152/physrev.00028.2002
DELLAGO C, 2003, PHYS REV LETT, V90, ARTN 105902
DOUGLASS JK, 1993, NATURE, V365, P337
FORNASIERO F, 2008, P NATL ACAD SCI USA, V105, P17250, DOI
10.1073/pnas.0710437105
GAMMAITONI L, 1998, REV MOD PHYS, V70, P223
GEORGALIS Y, 2000, J PHYS CHEM B, V104, P3405
GILLESPIE DT, 1977, J PHYS CHEM-US, V81, P2340, DOI 10.1021/J100540A008
HAMILL OP, 1981, PFLUG ARCH EUR J PHY, V391, P85
HANGGI P, 2002, CHEMPHYSCHEM, V3, P285
HOLT JK, 2006, SCIENCE, V312, P1034, DOI 10.1126/science.1126298
HUANG SM, 2003, J AM CHEM SOC, V125, P5636, DOI 10.1021/ja034475c
KARNIK R, 2005, NANO LETT, V5, P943, DOI 10.1021/nl050493b
KOGA K, 2001, NATURE, V412, P802
LEVIN JE, 1996, NATURE, V380, P165
LI J, 2001, NATURE, V412, P166
LIU HT, 2010, SCIENCE, V327, P64, DOI 10.1126/science.1181799
PIKOVSKY AS, 1997, PHYS REV LETT, V78, P775
POWELL MR, 2008, NAT NANOTECHNOL, V3, P51, DOI 10.1038/nnano.2007.420
PRIPLATA AA, 2003, LANCET, V362, P1123
RUSSELL DF, 1999, NATURE, V402, P291
SAKMANN B, 1995, SINGLE CHANNEL RECOR
SCHMID G, 2007, MATH BIOSCI, V207, P235, DOI 10.1016/j.mbs.2006.08.024
SIMONOTTO E, 1997, PHYS REV LETT, V78, P1186
SIWY Z, 2004, J AM CHEM SOC, V126, P10850, DOI 10.1021/ja047675c
SMEETS RMM, 2006, NANO LETT, V6, P89, DOI 10.1021/nl052107w
SMEETS RMM, 2006, PHYS REV LETT, V97, ARTN 088101
VARMA S, 2006, BIOPHYS CHEM, V124, P192, DOI 10.1016/j.bpc.2006.07.002
WONG SS, 1998, NATURE, V394, P52
ZHOU YF, 2001, NATURE, V414, P43
NR 39
TC 0
PU AMER ASSOC ADVANCEMENT SCIENCE; 1200 NEW YORK AVE, NW, WASHINGTON, DC
20005 USA
SN 0036-8075
DI 10.1126/science.1193383
PD SEP 10
VL 329
IS 5997
BP 1320
EP 1324
SC Multidisciplinary Sciences
GA 647YR
UT ISI:000281657300032
ER

PT J
*Record 3 of 4.
L5 <http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;UT=000281571100008>
*Order Full Text [ ]
AU Kong, CL
Kanezashi, M
Yamomoto, T
Shintani, T
Tsuru, T
AF Kong, Chunlong
Kanezashi, Masakoto
Yamomoto, Tetsuya
Shintani, Takuji
Tsuru, Toshinori
TI Controlled synthesis of high performance polyamide membrane with thin
dense layer for water desalination
SO JOURNAL OF MEMBRANE SCIENCE
LA English
DT Article
DE Polyamide; Co-solvent; Interfacial polymerization; Nanofiltration;
Desalination
ID REVERSE-OSMOSIS MEMBRANES; NANOFILTRATION MEMBRANES; INTERFACIAL
POLYMERIZATION; RO MEMBRANES; SEPARATION; ELECTROLYTES; TRANSPORT
AB A new concept for the synthesis of thin polyamide nanofiltration
membranes on ultrafiltration polysulfone supports is reported.
Polyamide membranes with controllable thin dense layer and effective
"nanopores" were fabricated by adding co-solvent (acetone) to nonpolar
organic phase (hexane), referred to as co-solvent assisted interfacial
polymerization (CAIP), which exhibited a high water flux with no
considerable salt rejection loss Higher co-solvent addition into the
hexane solution resulted in relatively larger pore sizes as well as
higher water fluxes, which were determined by the analysis of membrane
permeation data using aqueous solutions of sodium chloride. The best
nanocomposite membrane that was prepared with 2 wt% of acetone showed
approximate 4 times higher water flux with no considerable rejection
loss than polyamide membranes fabricated with no acetone co-solvent The
CAIP method will offer new degrees of freedom in modifying polymer
membrane with high separation performance (C) 2010 Elsevier B V All
rights reserved
C1 [Kong, Chunlong; Kanezashi, Masakoto; Yamomoto, Tetsuya; Tsuru, Toshinori] Hiroshima Univ, Dept Chem Engn, Higashihiroshima 7398527, Japan.
[Shintani, Takuji] Nitto Denko Corp, Osaka 5678860, Japan.
RP Tsuru, T, Hiroshima Univ, Dept Chem Engn, Higashihiroshima 7398527,
Japan.
CR BENAMAR N, 2007, LANGMUIR, V27, P2952
BHATTACHARYA A, 2004, REV CHEM ENG, V20, P111
FREEMAN BD, 1999, MACROMOLECULES, V32, P375
FREGER V, 2005, LANGMUIR, V21, P1884, DOI 10.1021/la048085v
GHOSH AK, 2009, J MEMBRANE SCI, V336, P140, DOI
10.1016/j.memsci.2009.03.024
HIROSE M, 1997, 5614099, US
HOLT JK, 2006, SCIENCE, V312, P1034, DOI 10.1126/science.1126298
JADAV GL, 2009, J MEMBRANE SCI, V328, P257, DOI
10.1016/j.memsci.2008.12.014
JEONG BH, 2007, J MEMBRANE SCI, V294, P1, DOI
10.1016/j.memsci.2007.02.025
JHOANY AE, 2006, THERMOCHIM ACTA, V443, P93
KIM SH, 2005, ENVIRON SCI TECHNOL, V39, P1764, DOI 10.1021/es049453k
LI L, 2009, J MEMBRANE SCI, V335, P133, DOI 10.1016/j.memsci.2009.03.011
NIGHTINGALE ER, 1959, J PHYS CHEM-US, V63, P1381, DOI
10.1021/J150579A011
PENG XS, 2009, NAT NANOTECHNOL, V4, P353, DOI 10.1038/NNANO.2009.90
PETERSEN RJ, 1993, J MEMBRANE SCI, V83, P81
RAO AP, 1997, J MEMBRANE SCI, V124, P263
SUK ME, 2008, APPL PHYS LETT, V92, ARTN 133120
TARBOUSH BJA, 2008, J MEMBRANE SCI, V325, P166
TSURU T, 1991, J CHEM ENG JPN, V24, P518
TSURU T, 2001, SEPAR PURIF METHOD, V30, P191
VANVOORTHUIZEN EM, 2005, WATER RES, V39, P3657, DOI
10.1016/j.watres.2005.06.005
WANG XL, 1997, J MEMBRANE SCI, V135, P19
YOON K, 2009, J MEMBRANE SCI, V326, P484, DOI
10.1016/j.memsci.2008.10.023
ZHOU MJ, 2007, J AM CHEM SOC, V129, P9574, DOI 10.1021/ja073067w
NR 24
TC 0
PU ELSEVIER SCIENCE BV; PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0376-7388
DI 10.1016/j.memsci.2010.06.022
PD OCT 15
VL 362
IS 1-2
BP 76
EP 80
SC Engineering, Chemical; Polymer Science
GA 646VK
UT ISI:000281571100008
ER

PT J
*Record 4 of 4.
L5 <http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;UT=000281571100042>
*Order Full Text [ ]
AU Wu, HQ
Tang, BB
Wu, PY
AF Wu, Huiqing
Tang, Beibei
Wu, Peiyi
TI Novel ultrafiltration membranes prepared from a multi-walled carbon
nanotubes/polymer composite
SO JOURNAL OF MEMBRANE SCIENCE
LA English
DT Article
DE Multi-walled carbon nanotubes (MWNTs); Brominated polyphenylene oxide
(BPPO); Dry-wet phase inversion; Hydrophilicity
ID GAS SEPARATION; INTERFACIAL POLYMERIZATION; NANOTUBE MEMBRANES; PHASE
INVERSION; MASS-TRANSPORT; POLYSULFONE; FABRICATION; PERMEATION;
MIXTURES; TRADEOFF
AB Novel ultrafiltration membranes were prepared by incorporating
multi-walled carbon nanotubes (MWNTs) Into a matrix of brominated
polyphenylene oxide (BPPO) and using triethanolamine (TEOA) as the
crosslinking agent The membranes exhibited not only high permeability
and hydrophilicity but also excellent separation performance and
chemical stability Furthermore, the water permeability increased as the
weight fraction of MWNTs Increased, reaching a maximum of 487 L/m(2) h
at 5 wt% of MWNTs, while maintaining a 94% membrane rejection rate to
egg albumin The addition of TEOA into the BPPO/MWNTs casting solution
might result in an increase in water permeation rate of membrane if the
amount of TEOA exceeded a threshold value, however, the membrane
rejection rate was essentially constant despite increasing the molar
fraction of TEOA in the casting solution. Using an adequate amount of
MWNTs and a proper TEOA/BPPO ratio, it is feasible to make
MWNTs/polymer ultrafiltration membranes with both high permeation flux
and excellent selectivity (C) 2010 Elsevier B.V. All rights reserved.
C1 [Tang, Beibei] Fudan Univ, Dept Macromol Sci, Key Lab Mol Engn Polymers, Minist Educ, Shanghai 200433, Peoples R China.
Fudan Univ, Adv Mat Lab, Shanghai 200433, Peoples R China.
RP Tang, BB, Fudan Univ, Dept Macromol Sci, Key Lab Mol Engn Polymers,
Minist Educ, Shanghai 200433, Peoples R China.
CR CHOI JH, 2006, J MEMBRANE SCI, V284, P406, DOI
10.1016/j.memsei.2006.08.013
CHOI JH, 2007, MACROMOL SYMP, V249, P610, DOI 10.1002/masy.200750444
COLEMAN JN, 2006, ADV MATER, V18, P689, DOI 10.1002/adma.200501851
CONG HL, 2007, J MEMBRANE SCI, V294, P178, DOI
10.1016/j.memsci.2007.02.035
FREEMAN BD, 1999, MACROMOLECULES, V32, P375
FU JF, 1986, CHEM ENG SCI, V41, P2673
GAO L, 2009, J MEMBRANE SCI, V326, P168, DOI
10.1016/j.memsci.2008.09.048
HINDS BJ, 2004, SCIENCE, V303, P62, DOI 10.1126/science.1092048
HOLT JK, 2004, NANO LETT, V4, P2245, DOI 10.1021/nl048876h
HOLT JK, 2006, SCIENCE, V312, P1034, DOI 10.1126/science.1126298
JEONG BH, 2007, J MEMBRANE SCI, V294, P1, DOI
10.1016/j.memsci.2007.02.025
KIM JH, 1998, J MEMBRANE SCI, V138, P153
KIM S, 2007, J MEMBRANE SCI, V294, P147, DOI
10.1016/j.memsci.2007.02.028
LU LY, 2006, J MEMBRANE SCI, V281, P245, DOI
10.1016/j.memsci.2006.03.041
LUO JXM, 1996, WATER TREAT TECHNOL, V22, P254
MAJUMDER M, 2005, J AM CHEM SOC, V127, P9062, DOI 10.1021/ja043013b
MALAISAMY R, 2002, J APPL POLYM SCI, V86, P1749, DOI 10.1002/app.11087
MANCHADO MAL, 2005, CARBON, V43, P1499, DOI 10.1016/j.carbon.2005.01.031
MCGUIRE KS, 1995, J MEMBRANE SCI, V99, P127
PENG FB, 2005, CHEM MATER, V17, P6790, DOI 10.1021/cm051890q
QIU S, 2009, J MEMBRANE SCI, V342, P165, DOI
10.1016/j.memsci.2009.06.041
SPINKS GM, 2006, ADV MATER, V18, P637, DOI 10.1002/adma.200502366
TANG BB, 2006, J MEMBRANE SCI, V268, P123, DOI
10.1016/j.memsci.2005.05.029
TANG BB, 2008, J MEMBRANE SCI, V320, P198, DOI
10.1016/j.memsci.2008.04.002
URAGAMI T, 2002, MACROMOLECULES, V35, P9156, DOI 10.1021/ma020850u
WALCARIUS A, 2001, CHEM MATER, V13, P3351
NR 26
TC 0
PU ELSEVIER SCIENCE BV; PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0376-7388
DI 10.1016/j.memsci.2010.06.064
PD OCT 15
VL 362
IS 1-2
BP 374
EP 383
SC Engineering, Chemical; Polymer Science
GA 646VK
UT ISI:000281571100042
ER

EF

========================================================================
*Order Full Text*
All Customers
--------------
Please contact your library administrator, or person(s) responsible for
document delivery, to find out more about your organization's policy for
obtaining the full text of the above articles. If your organization does
not have a current document delivery provider, your administrator can
contact ISI Document Solution at service@isidoc.com, or call 800-603-4367
or 734-459-8565.

IDS Customers
--------------
IDS customers can purchase the full text of an article (having page number,
volume, and issue information) by returning this ENTIRE message as a Reply
to Sender or Forward to orders@isidoc.com. Mark your choices with an X in
the "Order Full Text: []" brackets for each item. For example, [X].

Please enter your account number here:

========================================================================
*Import Records into an ISI ResearchSoft product*
1) Save the email as a text file. If your e-mail software removed extra line breaks, restore them before saving.
2) From within an ISI ResearchSoft product, import the text file using the ISI-CE filter.
========================================================================
*Help Desk Contact Information*
If you have any questions, please visit the Thomson Scientific Technical Support Contact Information Web page:
http://www.thomsonscientific.com/support/techsupport
========================================================================

No comments: