Cited Article:    Holt JK. Fast mass transport through sub-2-nanometer carbon nanotubes
 Alert Expires:    09 NOV 2010
 Number of Citing Articles:    4 new records this week (4 in this e-mail)
 Organization ID:  3b97d1bbc1878baed0ab183d8b03130b
========================================================================
 Note:  Instructions on how to purchase the full text of an article, import the records into an 
 ISI ResearchSoft product, and Help Desk Contact information are at the end of the e-mail.
========================================================================
FN ISI Export Format
VR 1.0
PT J
*Record 1 of 4. 
L5 <http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;UT=000281624500007>
*Order Full Text [ ]
AU Gurdev, S
   Rana, D
   Matsuura, T
   Ramakrishna, S
   Narbaitz, RM
   Tabe, S
AF Singh, Gurdev
   Rana, Dipak
   Matsuura, Takeshi
   Ramakrishna, Seeram
   Narbaitz, Roberto M.
   Tabe, Shahram
TI Removal of disinfection byproducts from water by carbonized electrospun
   nanofibrous membranes
SO SEPARATION AND PURIFICATION TECHNOLOGY
LA English
DT Article
DE Disinfection byproducts; Electrospun membrane; Carbonized nanofibrous
   membrane; Multiwalled carbon nanotubes; Membrane adsorption
ID ENVIRONMENTAL APPLICATIONS; NANOTUBE MEMBRANES; MASS-TRANSPORT;
   ADSORPTION; PURIFICATION; SURFACE; TRIHALOMETHANES; FILTERS; MEDIA;
   LAYER
AB Disinfection byproducts (DBPs), trihalomethanes and haloacetic acids
   present in water are well known carcinogens and their removal is an
   important priority. Highly porous nanofibrous membrane filters produced
   by electro-spinning were carbonized and used for the removal of DBPs
   from water. In the present investigation, chloroform and
   monochloroacetic acid (MCAA) was used as model DBPs compounds. The DBPs
   concentration in the range of 1-100 mg/L was used in well controlled
   adsorption experiments using the prepared membranes. For chloroform an
   adsorption capacity of 554 mg/g of carbonized nanofibrous membranes
   (CNMs) was determined based on the filtration of feed solution (100
   mg/L). The adsorption capacity of MCAA was between 287 and 504 mg/g for
   a feed concentration of 4-18 mg/L based on the static adsorption study.
   The used membranes were regenerated by chemical/physical treatment and
   removal efficiencies of the regenerated membranes were determined. The
   DBPs removal from water was also investigated using multiwalled carbon
   nanotubes (MWCNTs) incorporated in the CNMs and results were compared.
   Although the initial removal of MCAA was increased with increasing
   concentration of the MWCNTs, afterwards, the subsequent removals showed
   no effect of addition of MWCNTs. The possible mechanism was also
   discussed to better understand the adsorption phenomenon. These results
   suggest that the CNMs could be used as DBPs removal filter for drinking
   water purpose. (C) 2010 Elsevier B.V. All rights reserved.
C1 [Singh, Gurdev; Rana, Dipak; Matsuura, Takeshi] Univ Ottawa, Ind Membrane Res Inst, Dept Chem & Biol Engn, Ottawa, ON K1N 6N5, Canada.
   [Singh, Gurdev; Ramakrishna, Seeram] Natl Univ Singapore, Fac Engn, Nanosci & Nanotechnol Initiat, Blk Nanobioengn Lab E3 05 12, Singapore 117576, Singapore.
   [Narbaitz, Roberto M.] Univ Ottawa, Dept Civil Engn, Ottawa, ON K1N 6N5, Canada.
   [Tabe, Shahram] Ontario Minist Environm, Stand Dev Branch, Water Stand Sect, Toronto, ON M4V 1M2, Canada.
RP Rana, D, Univ Ottawa, Ind Membrane Res Inst, Dept Chem & Biol Engn, 161
   Louis Pasteur St, Ottawa, ON K1N 6N5, Canada.
EM rana@eng.uottawa.ca
   matsuura@eng.uottawa.ca
CR 2005, SPECIAL PUB
   *US EPA, 1994, FED REGISTER, V59, P38668
   *US EPA, 1998, FED REGISTER, V63, P69389
   AJAYAN PM, 1993, NATURE, V361, P333
   AMADOU J, 2006, CARBON, V44, P2587, DOI 10.1016/j.carbon.2006.05.042
   AMMA A, 2003, ADV FUNCT MATER, V13, P365, DOI 10.1002/adfm.200304232
   AUSSAWASATHIEN D, 2008, J MEMBRANE SCI, V315, P11, DOI
   10.1016/j.memsci.2008.01.049
   BAKAJIN O, 2009, NANOTECHNOLOGY APPL, P77
   BAOWAN D, 2010, NANOTECHNOLOGY, V21, ARTN 155305
   BARHATE RS, 2007, J MEMBRANE SCI, V296, P1, DOI
   10.1016/j.memsci.2007.03.038
   BJORGE D, 2009, DESALINATION, V249, P942, DOI
   10.1016/j.desal.2009.06.064
   BURGER C, 2006, ANNU REV MATER RES, V36, P333, DOI
   10.1146/annurev.matsci.36.011205.123537
   CAMPBELL P, 2008, NATURE, V452, P269
   CANNON J, 2010, MICROFLUID NANOFLUID, V8, P21, DOI
   10.1007/s10404-009-0446-1
   CHAKRAPANI N, 2004, P NATL ACAD SCI USA, V101, P4009, DOI
   10.1073/pnas.0400734101
   CHEN W, 2008, ENVIRON SCI TECHNOL, V42, P6862, DOI 10.1021/es8013612
   CHU B, 2009, J POLYM SCI POL PHYS, V47, P2431, DOI 10.1002/polb.21854
   DAELS N, 2010, DESALINATION, V257, P170, DOI 10.1016/j.desal.2010.02.027
   DEEGAN RD, 1997, NATURE, V389, P829
   FITZER E, 1998, CARBON REINFORCEMENT
   HAIDER S, 2009, J MEMBRANE SCI, V328, P90, DOI
   10.1016/j.memsci.2008.11.046
   HINDS BJ, 2004, SCIENCE, V303, P62, DOI 10.1126/science.1092048
   HOLT JK, 2006, SCIENCE, V312, P1034, DOI 10.1126/science.1126298
   HUMMER G, 2001, NATURE, V414, P188
   ISMAIL AF, 2009, SEP PURIF TECHNOL, V70, P12, DOI
   10.1016/j.seppur.2009.09.002
   KAUR S, 2008, MRS BULL, V33, P21
   KI CS, 2007, J MEMBRANE SCI, V302, P20, DOI 10.1016/j.memsci.2007.06.003
   KIM J, 2010, ENVIRON POLLUT, V158, P2335, DOI
   10.1016/j.envpol.2010.03.024
   LI XS, 2007, SMALL, V3, P595, DOI 10.1002/smll.200600652
   LI YH, 2007, J PHYS C SER, V61, P698, DOI 10.1088/1742-6596/61/1/140
   LIAO Q, 2008, COLLOID SURFACE A, V312, P160, DOI
   10.1016/j.colsurfa.2007.06.045
   LIDE DR, 1992, HDB CHEM PHYSICS, P16
   LONG RQ, 2001, J AM CHEM SOC, V123, P2058
   LU CS, 2005, WATER RES, V39, P1183, DOI 10.1016/j.watres.2004.12.033
   MA H, 2010, MATER CHEM, V20, P4692
   MAJUMDER M, 2005, NATURE, V438, P44, DOI 10.1038/43844a
   MAJUMDER M, 2008, J MEMBRANE SCI, V316, P89, DOI
   10.1016/j.memsci.2007.09.068
   MATSUURA T, 1994, SYNTHETIC MEMBRANES, P62
   MAUTER MS, 2008, ENVIRON SCI TECHNOL, V42, P5843, DOI 10.1021/es8006904
   MCKEE MG, 2006, SCIENCE, V311, P353, DOI 10.1126/science.1119790
   MORRIS RD, 1992, AM J PUBLIC HEALTH, V82, P955
   PARK J, 2010, DESALIN WATER TREAT, V15, P76, DOI 10.5004/dwt.2010.1670
   PARK SW, 2009, J APPL POLYM SCI, V112, P2320, DOI 10.1002/app.29520
   PARSONS S, 2004, ADV OXIDATION PROCES
   PENG XJ, 2003, CHEM PHYS LETT, V376, P154, DOI
   10.1016/S0009-2614(03)00960-6
   PRILUTSLCY S, 2008, NANOTECHNOLOGY, V19, UNSP 165603-165612
   RAMAKRISHNA S, 2006, MATER TODAY, V9, P40
   RAMAKRISHNA S, 2009, POLYM MEMBRANES BIOT
   RAVAL HD, 2009, INT J NUCL DESAL, V3, P360
   RIVERA JL, 2010, J PHYS CHEM C, V114, P3737, DOI 10.1021/jp906527c
   ROH S, 2004, J VAC SCI TECHNOL B, V22, P1411, DOI 10.1116/1.1740758
   SALIPIRA KL, 2007, CHEM LETT, V5, P13
   SANG YM, 2008, DESALINATION, V223, P349, DOI 10.1016/j.desal.2007.01.208
   SEARS K, 2010, MATERIALS, V3, P127
   SERVICE RF, 2006, SCIENCE, V313, P1088
   SHANNON MA, 2008, NATURE, V452, P301, DOI 10.1038/nature06599
   SOURIRAJAN BS, 1985, REVERSE OSMOSISULTRA, P979
   SRIVASTAVA A, 2004, NAT MATER, V3, P610, DOI 10.1038/nmat1192
   STEMMAN R, 2009, G4S INT, V2, P34
   SUN L, 2000, J AM CHEM SOC, V122, P12340, DOI 10.1021/ja002429w
   TAN K, 2007, J MEMBRANE SCI, V305, P287, DOI
   10.1016/j.memsci.2007.08.015
   THAVASI V, 2008, ENERG ENVIRON SCI, V1, P205, DOI 10.1039/b809074m
   TSAI JH, 2008, J HAZARD MATER, V154, P1183
   TUNG HH, 2006, J AM WATER WORKS ASS, V98, P107
   UYAR T, 2009, J MEMBRANE SCI, V332, P129, DOI
   10.1016/j.memsci.2009.01.047
   WALLER K, 1998, EPIDEMIOLOGY, V9, P134
   WANG XF, 2010, J MEMBRANE SCI, V356, P110, DOI
   10.1016/j.memsci.2010.03.039
   WHITBY M, 2007, NAT NANOTECHNOL, V2, P87, DOI 10.1038/nnano.2006.175
   XU X, 2010, J MEMBRANE SCI, V348, P231, DOI 10.1016/j.memsci.2009.11.006
   XU Z, 2009, SURFACE ENG POLYM ME, P306
   YANG RT, 2003, ADSORBENTS FUNDAMENT, P79
   YAO C, 2008, J MEMBRANE SCI, V320, P259, DOI
   10.1016/j.memsci.2008.04.012
   YE XY, 2009, MATER LETT, V63, P1810, DOI 10.1016/j.matlet.2009.05.054
   YOON K, 2008, J MATER CHEM, V18, P5326, DOI 10.1039/b804128h
   YOON K, 2009, J MEMBRANE SCI, V338, P145
   YOON K, 2009, POLYMER, V50, P2893, DOI 10.1016/j.polymer.2009.04.047
   ZUSSMAN E, 2005, CARBON, V43, P2175, DOI 10.1016/j.carbon.2005.03.031
NR 77
TC 0
PU ELSEVIER SCIENCE BV; PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 1383-5866
DI 10.1016/j.seppur.2010.06.006
PD AUG 17
VL 74
IS 2
BP 202
EP 212
SC Engineering, Chemical
GA 647NF
UT ISI:000281624500007
ER
PT J
*Record 2 of 4. 
L5 <http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;UT=000281657300032>
*Order Full Text [ ]
AU Lee, CY
   Choi, W
   Han, JH
   Strano, MS
AF Lee, Chang Young
   Choi, Wonjoon
   Han, Jae-Hee
   Strano, Michael S.
TI Coherence Resonance in a Single-Walled Carbon Nanotube Ion Channel
SO SCIENCE
LA English
DT Article
ID STOCHASTIC RESONANCE; MEMBRANE PATCHES; SURFACE-CHARGE; K+ CHANNEL;
   NOISE; TRANSPORT; WATER; TRANSLOCATION; COORDINATION; ENHANCEMENT
AB Biological ion channels are able to generate coherent and oscillatory
   signals from intrinsically noisy and stochastic components for
   ultrasensitive discrimination with the use of stochastic resonance, a
   concept not yet demonstrated in human-made analogs. We show that a
   single-walled carbon nanotube demonstrates oscillations in
   electroosmotic current through its interior at specific ranges of
   electric field that are the signatures of coherence resonance.
   Stochastic pore blocking is observed when individual cations partition
   into the nanotube obstructing an otherwise stable proton current. The
   observed oscillations occur because of coupling between pore blocking
   and a proton-diffusion limitation at the pore mouth. The result
   illustrates how simple ionic transport can generate coherent waveforms
   within an inherently noisy environment and points to new types of
   nanoreactors, sensors, and nanofluidic channels based on this platform.
C1 [Lee, Chang Young; Choi, Wonjoon; Han, Jae-Hee; Strano, Michael S.] MIT, Dept Chem Engn, Cambridge, MA 02139 USA.
   [Choi, Wonjoon] MIT, Dept Mech Engn, Cambridge, MA 02139 USA.
RP Strano, MS, MIT, Dept Chem Engn, Cambridge, MA 02139 USA.
EM strano@mit.edu
CR AGMON N, 1995, CHEM PHYS LETT, V244, P456
   ALEXIADIS A, 2008, CHEM REV, V108, P5014, DOI 10.1021/cr078140f
   BECKSTEIN O, 2004, J AM CHEM SOC, V126, P14694, DOI 10.1021/ja045271e
   BENZI R, 1981, J PHYS A, V14, P453
   BERNECHE S, 2001, NATURE, V414, P73
   BEZRUKOV SM, 1995, NATURE, V378, P362
   CARRILLOTRIPP M, 2003, J CHEM PHYS, V118, P7062, DOI 10.1063/1.1559673
   CARRILLOTRIPP M, 2004, PHYS REV LETT, V93, ARTN 168104
   CHEN YF, 2008, NANO LETT, V8, P42, DOI 10.1021/nI0718566
   CORRY B, 2008, J PHYS CHEM B, V112, P1427, DOI 10.1021/jp709845u
   DECOURSEY TE, 2003, PHYSIOL REV, V83, P475, DOI
   10.1152/physrev.00028.2002
   DELLAGO C, 2003, PHYS REV LETT, V90, ARTN 105902
   DOUGLASS JK, 1993, NATURE, V365, P337
   FORNASIERO F, 2008, P NATL ACAD SCI USA, V105, P17250, DOI
   10.1073/pnas.0710437105
   GAMMAITONI L, 1998, REV MOD PHYS, V70, P223
   GEORGALIS Y, 2000, J PHYS CHEM B, V104, P3405
   GILLESPIE DT, 1977, J PHYS CHEM-US, V81, P2340, DOI 10.1021/J100540A008
   HAMILL OP, 1981, PFLUG ARCH EUR J PHY, V391, P85
   HANGGI P, 2002, CHEMPHYSCHEM, V3, P285
   HOLT JK, 2006, SCIENCE, V312, P1034, DOI 10.1126/science.1126298
   HUANG SM, 2003, J AM CHEM SOC, V125, P5636, DOI 10.1021/ja034475c
   KARNIK R, 2005, NANO LETT, V5, P943, DOI 10.1021/nl050493b
   KOGA K, 2001, NATURE, V412, P802
   LEVIN JE, 1996, NATURE, V380, P165
   LI J, 2001, NATURE, V412, P166
   LIU HT, 2010, SCIENCE, V327, P64, DOI 10.1126/science.1181799
   PIKOVSKY AS, 1997, PHYS REV LETT, V78, P775
   POWELL MR, 2008, NAT NANOTECHNOL, V3, P51, DOI 10.1038/nnano.2007.420
   PRIPLATA AA, 2003, LANCET, V362, P1123
   RUSSELL DF, 1999, NATURE, V402, P291
   SAKMANN B, 1995, SINGLE CHANNEL RECOR
   SCHMID G, 2007, MATH BIOSCI, V207, P235, DOI 10.1016/j.mbs.2006.08.024
   SIMONOTTO E, 1997, PHYS REV LETT, V78, P1186
   SIWY Z, 2004, J AM CHEM SOC, V126, P10850, DOI 10.1021/ja047675c
   SMEETS RMM, 2006, NANO LETT, V6, P89, DOI 10.1021/nl052107w
   SMEETS RMM, 2006, PHYS REV LETT, V97, ARTN 088101
   VARMA S, 2006, BIOPHYS CHEM, V124, P192, DOI 10.1016/j.bpc.2006.07.002
   WONG SS, 1998, NATURE, V394, P52
   ZHOU YF, 2001, NATURE, V414, P43
NR 39
TC 0
PU AMER ASSOC ADVANCEMENT SCIENCE; 1200 NEW YORK AVE, NW, WASHINGTON, DC
   20005 USA
SN 0036-8075
DI 10.1126/science.1193383
PD SEP 10
VL 329
IS 5997
BP 1320
EP 1324
SC Multidisciplinary Sciences
GA 647YR
UT ISI:000281657300032
ER
PT J
*Record 3 of 4. 
L5 <http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;UT=000281571100008>
*Order Full Text [ ]
AU Kong, CL
   Kanezashi, M
   Yamomoto, T
   Shintani, T
   Tsuru, T
AF Kong, Chunlong
   Kanezashi, Masakoto
   Yamomoto, Tetsuya
   Shintani, Takuji
   Tsuru, Toshinori
TI Controlled synthesis of high performance polyamide membrane with thin
   dense layer for water desalination
SO JOURNAL OF MEMBRANE SCIENCE
LA English
DT Article
DE Polyamide; Co-solvent; Interfacial polymerization; Nanofiltration;
   Desalination
ID REVERSE-OSMOSIS MEMBRANES; NANOFILTRATION MEMBRANES; INTERFACIAL
   POLYMERIZATION; RO MEMBRANES; SEPARATION; ELECTROLYTES; TRANSPORT
AB A new concept for the synthesis of thin polyamide nanofiltration
   membranes on ultrafiltration polysulfone supports is reported.
   Polyamide membranes with controllable thin dense layer and effective
   "nanopores" were fabricated by adding co-solvent (acetone) to nonpolar
   organic phase (hexane), referred to as co-solvent assisted interfacial
   polymerization (CAIP), which exhibited a high water flux with no
   considerable salt rejection loss Higher co-solvent addition into the
   hexane solution resulted in relatively larger pore sizes as well as
   higher water fluxes, which were determined by the analysis of membrane
   permeation data using aqueous solutions of sodium chloride. The best
   nanocomposite membrane that was prepared with 2 wt% of acetone showed
   approximate 4 times higher water flux with no considerable rejection
   loss than polyamide membranes fabricated with no acetone co-solvent The
   CAIP method will offer new degrees of freedom in modifying polymer
   membrane with high separation performance (C) 2010 Elsevier B V All
   rights reserved
C1 [Kong, Chunlong; Kanezashi, Masakoto; Yamomoto, Tetsuya; Tsuru, Toshinori] Hiroshima Univ, Dept Chem Engn, Higashihiroshima 7398527, Japan.
   [Shintani, Takuji] Nitto Denko Corp, Osaka 5678860, Japan.
RP Tsuru, T, Hiroshima Univ, Dept Chem Engn, Higashihiroshima 7398527,
   Japan.
CR BENAMAR N, 2007, LANGMUIR, V27, P2952
   BHATTACHARYA A, 2004, REV CHEM ENG, V20, P111
   FREEMAN BD, 1999, MACROMOLECULES, V32, P375
   FREGER V, 2005, LANGMUIR, V21, P1884, DOI 10.1021/la048085v
   GHOSH AK, 2009, J MEMBRANE SCI, V336, P140, DOI
   10.1016/j.memsci.2009.03.024
   HIROSE M, 1997, 5614099, US
   HOLT JK, 2006, SCIENCE, V312, P1034, DOI 10.1126/science.1126298
   JADAV GL, 2009, J MEMBRANE SCI, V328, P257, DOI
   10.1016/j.memsci.2008.12.014
   JEONG BH, 2007, J MEMBRANE SCI, V294, P1, DOI
   10.1016/j.memsci.2007.02.025
   JHOANY AE, 2006, THERMOCHIM ACTA, V443, P93
   KIM SH, 2005, ENVIRON SCI TECHNOL, V39, P1764, DOI 10.1021/es049453k
   LI L, 2009, J MEMBRANE SCI, V335, P133, DOI 10.1016/j.memsci.2009.03.011
   NIGHTINGALE ER, 1959, J PHYS CHEM-US, V63, P1381, DOI
   10.1021/J150579A011
   PENG XS, 2009, NAT NANOTECHNOL, V4, P353, DOI 10.1038/NNANO.2009.90
   PETERSEN RJ, 1993, J MEMBRANE SCI, V83, P81
   RAO AP, 1997, J MEMBRANE SCI, V124, P263
   SUK ME, 2008, APPL PHYS LETT, V92, ARTN 133120
   TARBOUSH BJA, 2008, J MEMBRANE SCI, V325, P166
   TSURU T, 1991, J CHEM ENG JPN, V24, P518
   TSURU T, 2001, SEPAR PURIF METHOD, V30, P191
   VANVOORTHUIZEN EM, 2005, WATER RES, V39, P3657, DOI
   10.1016/j.watres.2005.06.005
   WANG XL, 1997, J MEMBRANE SCI, V135, P19
   YOON K, 2009, J MEMBRANE SCI, V326, P484, DOI
   10.1016/j.memsci.2008.10.023
   ZHOU MJ, 2007, J AM CHEM SOC, V129, P9574, DOI 10.1021/ja073067w
NR 24
TC 0
PU ELSEVIER SCIENCE BV; PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0376-7388
DI 10.1016/j.memsci.2010.06.022
PD OCT 15
VL 362
IS 1-2
BP 76
EP 80
SC Engineering, Chemical; Polymer Science
GA 646VK
UT ISI:000281571100008
ER
PT J
*Record 4 of 4. 
L5 <http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;UT=000281571100042>
*Order Full Text [ ]
AU Wu, HQ
   Tang, BB
   Wu, PY
AF Wu, Huiqing
   Tang, Beibei
   Wu, Peiyi
TI Novel ultrafiltration membranes prepared from a multi-walled carbon
   nanotubes/polymer composite
SO JOURNAL OF MEMBRANE SCIENCE
LA English
DT Article
DE Multi-walled carbon nanotubes (MWNTs); Brominated polyphenylene oxide
   (BPPO); Dry-wet phase inversion; Hydrophilicity
ID GAS SEPARATION; INTERFACIAL POLYMERIZATION; NANOTUBE MEMBRANES; PHASE
   INVERSION; MASS-TRANSPORT; POLYSULFONE; FABRICATION; PERMEATION;
   MIXTURES; TRADEOFF
AB Novel ultrafiltration membranes were prepared by incorporating
   multi-walled carbon nanotubes (MWNTs) Into a matrix of brominated
   polyphenylene oxide (BPPO) and using triethanolamine (TEOA) as the
   crosslinking agent The membranes exhibited not only high permeability
   and hydrophilicity but also excellent separation performance and
   chemical stability Furthermore, the water permeability increased as the
   weight fraction of MWNTs Increased, reaching a maximum of 487 L/m(2) h
   at 5 wt% of MWNTs, while maintaining a 94% membrane rejection rate to
   egg albumin The addition of TEOA into the BPPO/MWNTs casting solution
   might result in an increase in water permeation rate of membrane if the
   amount of TEOA exceeded a threshold value, however, the membrane
   rejection rate was essentially constant despite increasing the molar
   fraction of TEOA in the casting solution. Using an adequate amount of
   MWNTs and a proper TEOA/BPPO ratio, it is feasible to make
   MWNTs/polymer ultrafiltration membranes with both high permeation flux
   and excellent selectivity (C) 2010 Elsevier B.V. All rights reserved.
C1 [Tang, Beibei] Fudan Univ, Dept Macromol Sci, Key Lab Mol Engn Polymers, Minist Educ, Shanghai 200433, Peoples R China.
   Fudan Univ, Adv Mat Lab, Shanghai 200433, Peoples R China.
RP Tang, BB, Fudan Univ, Dept Macromol Sci, Key Lab Mol Engn Polymers,
   Minist Educ, Shanghai 200433, Peoples R China.
CR CHOI JH, 2006, J MEMBRANE SCI, V284, P406, DOI
   10.1016/j.memsei.2006.08.013
   CHOI JH, 2007, MACROMOL SYMP, V249, P610, DOI 10.1002/masy.200750444
   COLEMAN JN, 2006, ADV MATER, V18, P689, DOI 10.1002/adma.200501851
   CONG HL, 2007, J MEMBRANE SCI, V294, P178, DOI
   10.1016/j.memsci.2007.02.035
   FREEMAN BD, 1999, MACROMOLECULES, V32, P375
   FU JF, 1986, CHEM ENG SCI, V41, P2673
   GAO L, 2009, J MEMBRANE SCI, V326, P168, DOI
   10.1016/j.memsci.2008.09.048
   HINDS BJ, 2004, SCIENCE, V303, P62, DOI 10.1126/science.1092048
   HOLT JK, 2004, NANO LETT, V4, P2245, DOI 10.1021/nl048876h
   HOLT JK, 2006, SCIENCE, V312, P1034, DOI 10.1126/science.1126298
   JEONG BH, 2007, J MEMBRANE SCI, V294, P1, DOI
   10.1016/j.memsci.2007.02.025
   KIM JH, 1998, J MEMBRANE SCI, V138, P153
   KIM S, 2007, J MEMBRANE SCI, V294, P147, DOI
   10.1016/j.memsci.2007.02.028
   LU LY, 2006, J MEMBRANE SCI, V281, P245, DOI
   10.1016/j.memsci.2006.03.041
   LUO JXM, 1996, WATER TREAT TECHNOL, V22, P254
   MAJUMDER M, 2005, J AM CHEM SOC, V127, P9062, DOI 10.1021/ja043013b
   MALAISAMY R, 2002, J APPL POLYM SCI, V86, P1749, DOI 10.1002/app.11087
   MANCHADO MAL, 2005, CARBON, V43, P1499, DOI 10.1016/j.carbon.2005.01.031
   MCGUIRE KS, 1995, J MEMBRANE SCI, V99, P127
   PENG FB, 2005, CHEM MATER, V17, P6790, DOI 10.1021/cm051890q
   QIU S, 2009, J MEMBRANE SCI, V342, P165, DOI
   10.1016/j.memsci.2009.06.041
   SPINKS GM, 2006, ADV MATER, V18, P637, DOI 10.1002/adma.200502366
   TANG BB, 2006, J MEMBRANE SCI, V268, P123, DOI
   10.1016/j.memsci.2005.05.029
   TANG BB, 2008, J MEMBRANE SCI, V320, P198, DOI
   10.1016/j.memsci.2008.04.002
   URAGAMI T, 2002, MACROMOLECULES, V35, P9156, DOI 10.1021/ma020850u
   WALCARIUS A, 2001, CHEM MATER, V13, P3351
NR 26
TC 0
PU ELSEVIER SCIENCE BV; PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0376-7388
DI 10.1016/j.memsci.2010.06.064
PD OCT 15
VL 362
IS 1-2
BP 374
EP 383
SC Engineering, Chemical; Polymer Science
GA 646VK
UT ISI:000281571100042
ER
EF
========================================================================
 *Order Full Text* 
 All Customers
--------------
    Please contact your library administrator, or person(s) responsible for 
    document delivery, to find out more about your organization's policy for 
    obtaining the full text of the above articles. If your organization does 
    not have a current document delivery provider, your administrator can 
    contact ISI Document Solution at service@isidoc.com, or call 800-603-4367 
    or 734-459-8565.
 IDS Customers
--------------
    IDS customers can purchase the full text of an article (having page number, 
    volume, and issue information) by returning this ENTIRE message as a Reply 
    to Sender or Forward to orders@isidoc.com. Mark your choices with an X in 
    the "Order Full Text: []" brackets for each item. For example, [X].
Please enter your account number here:
========================================================================
 *Import Records into an ISI ResearchSoft product*
 1) Save the email as a text file. If your e-mail software removed extra line breaks, restore them before saving.
 2) From within an ISI ResearchSoft product, import the text file using the ISI-CE filter.
========================================================================
 *Help Desk Contact Information*
 If you have any questions, please visit the Thomson Scientific Technical Support Contact Information Web page:
http://www.thomsonscientific.com/support/techsupport
========================================================================
 
No comments:
Post a Comment