Friday, September 24, 2010

ISI Web of Knowledge Alert - Hummer, G

ISI Web of Knowledge Citation Alert

Cited Article: Hummer, G. Water conduction through the hydrophobic channel of a carbon nanotube
Alert Expires: 22 AUG 2011
Number of Citing Articles: 3 new records this week (3 in this e-mail)
Organization ID: 3b97d1bbc1878baed0ab183d8b03130b
========================================================================
Note: Instructions on how to purchase the full text of an article and Help Desk Contact information are at the end of the e-mail.
========================================================================

*Record 1 of 3.
*View Full Record: http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000281624500007
*Order Full Text [ ]

Title:
Removal of disinfection byproducts from water by carbonized electrospun nanofibrous membranes

Authors:
Gurdev, S; Rana, D; Matsuura, T; Ramakrishna, S; Narbaitz, RM; Tabe, S

Author Full Names:
Singh, Gurdev; Rana, Dipak; Matsuura, Takeshi; Ramakrishna, Seeram; Narbaitz, Roberto M.; Tabe, Shahram

Source:
SEPARATION AND PURIFICATION TECHNOLOGY 74 (2): 202-212 AUG 17 2010

Language:
English

Document Type:
Article

Author Keywords:
Disinfection byproducts; Electrospun membrane; Carbonized nanofibrous membrane; Multiwalled carbon nanotubes; Membrane adsorption

KeyWords Plus:
ENVIRONMENTAL APPLICATIONS; NANOTUBE MEMBRANES; MASS-TRANSPORT; ADSORPTION; PURIFICATION; SURFACE; TRIHALOMETHANES; FILTERS; MEDIA; LAYER

Abstract:
Disinfection byproducts (DBPs), trihalomethanes and haloacetic acids present in water are well known carcinogens and their removal is an important priority. Highly porous nanofibrous membrane filters produced by electro-spinning were carbonized and used for the removal of DBPs from water. In the present investigation, chloroform and monochloroacetic acid (MCAA) was used as model DBPs compounds. The DBPs concentration in the range of 1-100 mg/L was used in well controlled adsorption experiments using the prepared membranes. For chloroform an adsorption capacity of 554 mg/g of carbonized nanofibrous membranes (CNMs) was determined based on the filtration of feed solution (100 mg/L). The adsorption capacity of MCAA was between 287 and 504 mg/g for a feed concentration of 4-18 mg/L based on the static adsorption study. The used membranes were regenerated by chemical/physical treatment and removal efficiencies of the regenerated membranes were determined. The DBPs removal from wat
er was also investigated using multiwalled carbon nanotubes (MWCNTs) incorporated in the CNMs and results were compared. Although the initial removal of MCAA was increased with increasing concentration of the MWCNTs, afterwards, the subsequent removals showed no effect of addition of MWCNTs. The possible mechanism was also discussed to better understand the adsorption phenomenon. These results suggest that the CNMs could be used as DBPs removal filter for drinking water purpose. (C) 2010 Elsevier B.V. All rights reserved.

Reprint Address:
Rana, D, Univ Ottawa, Ind Membrane Res Inst, Dept Chem & Biol Engn, 161 Louis Pasteur St, Ottawa, ON K1N 6N5, Canada.

Research Institution addresses:
[Singh, Gurdev; Rana, Dipak; Matsuura, Takeshi] Univ Ottawa, Ind Membrane Res Inst, Dept Chem & Biol Engn, Ottawa, ON K1N 6N5, Canada; [Singh, Gurdev; Ramakrishna, Seeram] Natl Univ Singapore, Fac Engn, Nanosci & Nanotechnol Initiat, Blk Nanobioengn Lab E3 05 12, Singapore 117576, Singapore; [Narbaitz, Roberto M.] Univ Ottawa, Dept Civil Engn, Ottawa, ON K1N 6N5, Canada; [Tabe, Shahram] Ontario Minist Environm, Stand Dev Branch, Water Stand Sect, Toronto, ON M4V 1M2, Canada

E-mail Address:
rana@eng.uottawa.ca; matsuura@eng.uottawa.ca

Cited References:
2005, SPECIAL PUB.
*US EPA, 1994, FED REGISTER, V59, P38668.
*US EPA, 1998, FED REGISTER, V63, P69389.
AJAYAN PM, 1993, NATURE, V361, P333.
AMADOU J, 2006, CARBON, V44, P2587, DOI 10.1016/j.carbon.2006.05.042.
AMMA A, 2003, ADV FUNCT MATER, V13, P365, DOI 10.1002/adfm.200304232.
AUSSAWASATHIEN D, 2008, J MEMBRANE SCI, V315, P11, DOI 10.1016/j.memsci.2008.01.049.
BAKAJIN O, 2009, NANOTECHNOLOGY APPL, P77.
BAOWAN D, 2010, NANOTECHNOLOGY, V21, ARTN 155305.
BARHATE RS, 2007, J MEMBRANE SCI, V296, P1, DOI 10.1016/j.memsci.2007.03.038.
BJORGE D, 2009, DESALINATION, V249, P942, DOI 10.1016/j.desal.2009.06.064.
BURGER C, 2006, ANNU REV MATER RES, V36, P333, DOI 10.1146/annurev.matsci.36.011205.123537.
CAMPBELL P, 2008, NATURE, V452, P269.
CANNON J, 2010, MICROFLUID NANOFLUID, V8, P21, DOI 10.1007/s10404-009-0446-1.
CHAKRAPANI N, 2004, P NATL ACAD SCI USA, V101, P4009, DOI 10.1073/pnas.0400734101.
CHEN W, 2008, ENVIRON SCI TECHNOL, V42, P6862, DOI 10.1021/es8013612.
CHU B, 2009, J POLYM SCI POL PHYS, V47, P2431, DOI 10.1002/polb.21854.
DAELS N, 2010, DESALINATION, V257, P170, DOI 10.1016/j.desal.2010.02.027.
DEEGAN RD, 1997, NATURE, V389, P829.
FITZER E, 1998, CARBON REINFORCEMENT.
HAIDER S, 2009, J MEMBRANE SCI, V328, P90, DOI 10.1016/j.memsci.2008.11.046.
HINDS BJ, 2004, SCIENCE, V303, P62, DOI 10.1126/science.1092048.
HOLT JK, 2006, SCIENCE, V312, P1034, DOI 10.1126/science.1126298.
HUMMER G, 2001, NATURE, V414, P188.
ISMAIL AF, 2009, SEP PURIF TECHNOL, V70, P12, DOI 10.1016/j.seppur.2009.09.002.
KAUR S, 2008, MRS BULL, V33, P21.
KI CS, 2007, J MEMBRANE SCI, V302, P20, DOI 10.1016/j.memsci.2007.06.003.
KIM J, 2010, ENVIRON POLLUT, V158, P2335, DOI 10.1016/j.envpol.2010.03.024.
LI XS, 2007, SMALL, V3, P595, DOI 10.1002/smll.200600652.
LI YH, 2007, J PHYS C SER, V61, P698, DOI 10.1088/1742-6596/61/1/140.
LIAO Q, 2008, COLLOID SURFACE A, V312, P160, DOI 10.1016/j.colsurfa.2007.06.045.
LIDE DR, 1992, HDB CHEM PHYSICS, P16.
LONG RQ, 2001, J AM CHEM SOC, V123, P2058.
LU CS, 2005, WATER RES, V39, P1183, DOI 10.1016/j.watres.2004.12.033.
MA H, 2010, MATER CHEM, V20, P4692.
MAJUMDER M, 2005, NATURE, V438, P44, DOI 10.1038/43844a.
MAJUMDER M, 2008, J MEMBRANE SCI, V316, P89, DOI 10.1016/j.memsci.2007.09.068.
MATSUURA T, 1994, SYNTHETIC MEMBRANES, P62.
MAUTER MS, 2008, ENVIRON SCI TECHNOL, V42, P5843, DOI 10.1021/es8006904.
MCKEE MG, 2006, SCIENCE, V311, P353, DOI 10.1126/science.1119790.
MORRIS RD, 1992, AM J PUBLIC HEALTH, V82, P955.
PARK J, 2010, DESALIN WATER TREAT, V15, P76, DOI 10.5004/dwt.2010.1670.
PARK SW, 2009, J APPL POLYM SCI, V112, P2320, DOI 10.1002/app.29520.
PARSONS S, 2004, ADV OXIDATION PROCES.
PENG XJ, 2003, CHEM PHYS LETT, V376, P154, DOI 10.1016/S0009-2614(03)00960-6.
PRILUTSLCY S, 2008, NANOTECHNOLOGY, V19, UNSP 165603-165612.
RAMAKRISHNA S, 2006, MATER TODAY, V9, P40.
RAMAKRISHNA S, 2009, POLYM MEMBRANES BIOT.
RAVAL HD, 2009, INT J NUCL DESAL, V3, P360.
RIVERA JL, 2010, J PHYS CHEM C, V114, P3737, DOI 10.1021/jp906527c.
ROH S, 2004, J VAC SCI TECHNOL B, V22, P1411, DOI 10.1116/1.1740758.
SALIPIRA KL, 2007, CHEM LETT, V5, P13.
SANG YM, 2008, DESALINATION, V223, P349, DOI 10.1016/j.desal.2007.01.208.
SEARS K, 2010, MATERIALS, V3, P127.
SERVICE RF, 2006, SCIENCE, V313, P1088.
SHANNON MA, 2008, NATURE, V452, P301, DOI 10.1038/nature06599.
SOURIRAJAN BS, 1985, REVERSE OSMOSISULTRA, P979.
SRIVASTAVA A, 2004, NAT MATER, V3, P610, DOI 10.1038/nmat1192.
STEMMAN R, 2009, G4S INT, V2, P34.
SUN L, 2000, J AM CHEM SOC, V122, P12340, DOI 10.1021/ja002429w.
TAN K, 2007, J MEMBRANE SCI, V305, P287, DOI 10.1016/j.memsci.2007.08.015.
THAVASI V, 2008, ENERG ENVIRON SCI, V1, P205, DOI 10.1039/b809074m.
TSAI JH, 2008, J HAZARD MATER, V154, P1183.
TUNG HH, 2006, J AM WATER WORKS ASS, V98, P107.
UYAR T, 2009, J MEMBRANE SCI, V332, P129, DOI 10.1016/j.memsci.2009.01.047.
WALLER K, 1998, EPIDEMIOLOGY, V9, P134.
WANG XF, 2010, J MEMBRANE SCI, V356, P110, DOI 10.1016/j.memsci.2010.03.039.
WHITBY M, 2007, NAT NANOTECHNOL, V2, P87, DOI 10.1038/nnano.2006.175.
XU X, 2010, J MEMBRANE SCI, V348, P231, DOI 10.1016/j.memsci.2009.11.006.
XU Z, 2009, SURFACE ENG POLYM ME, P306.
YANG RT, 2003, ADSORBENTS FUNDAMENT, P79.
YAO C, 2008, J MEMBRANE SCI, V320, P259, DOI 10.1016/j.memsci.2008.04.012.
YE XY, 2009, MATER LETT, V63, P1810, DOI 10.1016/j.matlet.2009.05.054.
YOON K, 2008, J MATER CHEM, V18, P5326, DOI 10.1039/b804128h.
YOON K, 2009, J MEMBRANE SCI, V338, P145.
YOON K, 2009, POLYMER, V50, P2893, DOI 10.1016/j.polymer.2009.04.047.
ZUSSMAN E, 2005, CARBON, V43, P2175, DOI 10.1016/j.carbon.2005.03.031.

Cited Reference Count:
77

Times Cited:
0

Publisher:
ELSEVIER SCIENCE BV; PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS

Subject Category:
Engineering, Chemical

ISSN:
1383-5866

DOI:
10.1016/j.seppur.2010.06.006

IDS Number:
647NF

========================================================================

*Record 2 of 3.
*View Full Record: http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000281693000029
*Order Full Text [ ]

Title:
How Can Hydrophobic Association Be Enthalpy Driven?

Authors:
Setny, P; Baron, R; McCammon, JA

Author Full Names:
Setny, Piotr; Baron, Riccardo; McCammon, J. Andrew

Source:
JOURNAL OF CHEMICAL THEORY AND COMPUTATION 6 (9): 2866-2871 SEP 2010

Language:
English

Document Type:
Article

KeyWords Plus:
MAJOR URINARY PROTEIN; TEMPERATURE-DEPENDENCE; DEWETTING TRANSITION; FREE-ENERGY; COMPUTER-SIMULATION; POTENTIAL FUNCTIONS; MOLECULAR-DYNAMICS; NONPOLAR CAVITIES; LIGAND-BINDING; WATER CLUSTERS

Abstract:
Hydrophobic association is often recognized as being driven by favorable entropic contributions. Here, using explicit solvent molecular dynamics simulations we investigate binding in a model hydrophobic receptor ligand system which appears, instead, to be driven by enthalpy and opposed by entropy. We use the temperature dependence of the potential of mean force to analyze the thermodynamic contributions along the association coordinate. Relating such contributions to the ongoing changes in system hydration allows us to demonstrate that the overall binding thermodynamics is determined by the expulsion of disorganized water from the receptor cavity. Our model study sheds light on the solvent-induced driving forces for receptor ligand association of general, transferable relevance for biological systems with poorly hydrated binding sites.

Reprint Address:
Setny, P, Univ Calif San Diego, Dept Chem & Biochem, Ctr Theoret Biol Phys, Howard Hughes Med Inst,Dept Pharmacol, San Diego, CA 92103 USA.

Research Institution addresses:
[Setny, Piotr; Baron, Riccardo; McCammon, J. Andrew] Univ Calif San Diego, Dept Chem & Biochem, Ctr Theoret Biol Phys, Howard Hughes Med Inst,Dept Pharmacol, San Diego, CA 92103 USA; [Setny, Piotr] Tech Univ Munich, Dept Phys, D-85748 Garching, Germany

E-mail Address:
piotr.setny@tum.de; rbaron@mecammon.ucsd.edu

Cited References:
ASHBAUGH HS, 2006, REV MOD PHYS, V78, P156.
ATHAWALE MV, 2007, P NATL ACAD SCI USA, V104, P733, DOI 10.1073/pnas.0605139104.
BARON R, 2010, J AM CHEM SOC, V132, P12091, DOI 10.1021/ja1050082.
BARRATT E, 2005, J AM CHEM SOC, V127, P11827, DOI 10.1021/ja0527525.
BERNE BJ, 2009, ANNU REV PHYS CHEM, V60, P85, DOI 10.1146/annurev.physchem.58.032806.104445.
BINGHAM RJ, 2004, J AM CHEM SOC, V126, P1675, DOI 10.1021/ja038461i.
BROOKS BR, 1983, J COMPUT CHEM, V4, P187.
BROVCHENKO I, 2000, J CHEM PHYS, V113, P5026.
CAREY C, 2000, CHEM PHYS, V258, P415.
CHANDLER D, 1993, PHYS REV E, V48, P2898.
CHANDLER D, 2005, NATURE, V437, P640, DOI 10.1038/nature04162.
CHOUDHURY N, 2005, J AM CHEM SOC, V127, P3556, DOI 10.1021/ja0441817.
CHOUDHURY N, 2006, J PHYS CHEM B, V110, P8459, DOI 10.1021/jp056909r.
CHOUDHURY N, 2007, J AM CHEM SOC, V129, P4847, DOI 10.1021/ja069242a.
COOPER J, 2007, REVISED RELEASE IAPW.
DENISOV VP, 1997, J PHYS CHEM B, V101, P9380.
DUNITZ JD, 1994, SCIENCE, V264, P670.
ERNST JA, 1995, SCIENCE, V267, P1813.
GIOVAMBATTISTA N, 2008, P NATL ACAD SCI USA, V105, P2274, DOI 10.1073/pnas.0708088105.
HUA L, 2007, J PHYS CHEM B, V111, P9069, DOI 10.1021/jp0707923.
HUANG X, 2003, P NATL ACAD SCI USA, V100, P11953, DOI 10.1073/pnas.1934837100.
HUMMER G, 1996, P NATL ACAD SCI USA, V93, P8951.
HUMMER G, 1998, J PHYS CHEM B, V102, P10469.
HUMMER G, 2001, NATURE, V414, P188.
JENSEN TR, 2003, PHYS REV LETT, V90, P86101, UNSP 086101-1-086101-4.
JORGENSEN WL, 1983, J CHEM PHYS, V79, P926.
JORGENSEN WL, 1984, J AM CHEM SOC, V106, P6638.
KUMAR S, 1992, J COMPUT CHEM, V13, P1011.
LEE CY, 1984, J CHEM PHYS, V80, P4448.
LI Z, 2007, PHYS CHEM CHEM PHYS, V9, P573, DOI 10.1039/b612449f.
LIU P, 2005, NATURE, V437, P159, DOI 10.1038/nature03926.
LUDEMANN S, 1997, J AM CHEM SOC, V119, P4206.
LUM K, 1997, PHYS REV E, V56, R6283.
MEYER EE, 2006, P NATL ACAD SCI USA, V103, P15739, DOI 10.1073/pnas.0606422103.
OLANO LR, 2004, J AM CHEM SOC, V126, P7991, DOI 10.1021/ja049701c.
PREUSSER A, 1989, ACM T MATH SOFTWARE, V15, P79.
QVIST J, 2008, P NATL ACAD SCI USA, V105, P6296, DOI 10.1073/pnas.0709844105.
RAJAMANI S, 2005, P NATL ACAD SCI USA, V102, P9475, DOI 10.1073/pnas.0504089102.
RASAIAH JC, 2008, ANNU REV PHYS CHEM, V59, P713, DOI 10.1146/annurev.physchem.59.032607.093815.
RASCHKE TM, 2001, P NATL ACAD SCI USA, V98, P5965.
SETNY P, 2006, J CHEM PHYS, V125, ARTN 144717.
SETNY P, 2007, J CHEM PHYS, V127, ARTN 054505.
SETNY P, 2009, PHYS REV LETT, V103, ARTN 187801.
SHARROW SD, 2003, BIOCHEMISTRY-US, V42, P6302, DOI 10.1021/bi026423q.
SHIMIZU S, 2000, J CHEM PHYS, V113, P4683.
SMITH DE, 1992, J AM CHEM SOC, V114, P5875.
SMITH DE, 1993, J CHEM PHYS, V98, P6445.
STILLINGER FH, 1973, J SOLUTION CHEM, V2, P141.
TENWOLDE PR, 2002, P NATL ACAD SCI USA, V99, P6539.
TORRIE GM, 1977, J COMPUT PHYS, V23, P187.
VAITHEESWARAN S, 2004, P NATL ACAD SCI USA, V101, P17002, DOI 10.1073/pnas.0407968101.
WALLQVIST A, 1995, J PHYS CHEM-US, V99, P2893.
WALLQVIST A, 2001, J PHYS CHEM B, V105, P6745.
WILLARD AP, 2008, J PHYS CHEM B, V112, P6187, DOI 10.1021/jp077186+.
YIN H, 2007, J AM CHEM SOC, V129, P7369, DOI 10.1021/ja070456h.
YOUNG T, 2007, P NATL ACAD SCI USA, V104, P808, DOI 10.1073/pnas.0610202104.
YOUNG T, 2010, PROTEINS, V78, P1856, DOI 10.1002/prot.22699.
ZANGI R, 2008, J PHYS CHEM B, V112, P8634, DOI 10.1021/jp802135c.

Cited Reference Count:
58

Times Cited:
0

Publisher:
AMER CHEMICAL SOC; 1155 16TH ST, NW, WASHINGTON, DC 20036 USA

Subject Category:
Chemistry, Physical; Physics, Atomic, Molecular & Chemical

ISSN:
1549-9618

DOI:
10.1021/ct1003077

IDS Number:
648KQ

========================================================================

*Record 3 of 3.
*View Full Record: http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000281691100022
*Order Full Text [ ]

Title:
Ion Interactions with the Carbon Nanotube Surface in Aqueous Solutions: Understanding the Molecular Mechanisms

Authors:
Frolov, AI; Rozhin, AG; Fedorov, MV

Author Full Names:
Frolov, Andrey I.; Rozhin, Alex G.; Fedorov, Maxim V.

Source:
CHEMPHYSCHEM 11 (12): 2612-2616 AUG 23 2010

Language:
English

Document Type:
Article

Author Keywords:
molecular simulations; nanotube modeling; nanotubes; photoluminescence; specific salt effects

KeyWords Plus:
DYNAMICS SIMULATIONS; BIOMOLECULAR SIMULATIONS; BIOMEDICAL APPLICATIONS; HYDROPHOBIC SURFACE; WATER-STRUCTURE; SALT-SOLUTIONS; METAL-IONS; HYDRATION; SOLVENT; THERMODYNAMICS

Abstract:
We study the molecular mechanisms of alkali halide ion interactions with the single-wall carbon nanotube surface in water by means of fully atomistic molecular dynamics simulations. We focus on the basic physical-chemical principles of ion-nanotube interactions in aqueous solutions and discuss them in light of recent experimental findings on selective ion effects on carbon nanotubes.

Reprint Address:
Fedorov, MV, Max Planck Inst Math Sci, D-04103 Leipzig, Germany.

Research Institution addresses:
[Frolov, Andrey I.; Fedorov, Maxim V.] Max Planck Inst Math Sci, D-04103 Leipzig, Germany; [Rozhin, Alex G.] Aston Univ, Sch Engn & Appl Sci, Birmingham B4 7ET, W Midlands, England

E-mail Address:
fedorov@mis.mpg.de

Cited References:
AHMAD A, 2009, CHEMPHYSCHEM, V10, P905, DOI 10.1002/cphc.200800796.
AUSMAN KD, 2000, J PHYS CHEM B, V104, P8911.
BAUGHMAN RH, 2002, SCIENCE, V297, P787.
BEECHER P, 2007, J APPL PHYS, V102, ARTN 043710.
BENNAIM A, 2006, MOL THEORY SOLUTIONS, P56.
BERTHIER J, 2006, MICROFLUIDICS BIOTEC, P374.
BIANCO A, 2005, CHEM COMMUN, P571, DOI 10.1039/b410943k.
BREGE JJ, 2007, J PHYS CHEM C, V111, P17812, DOI 10.1021/jp0712856.
BREGE JJ, 2009, J PHYS CHEM C, V113, P4270, DOI 10.1021/jp808667b.
CATHCART H, 2007, J PHYS CHEM C, V111, P66, DOI 10.1021/jp065503r.
CHEN RJ, 2003, P NATL ACAD SCI USA, V100, P4984, DOI 10.1073/pnas.0837064100.
COLLINS KD, 2007, BIOPHYS CHEM, V128, P95, DOI 10.1016/j.bpc.2007.03.009.
COUSINS BG, 2009, SMALL, V5, P587, DOI 10.1002/smll.200801184.
EGOROV AV, 2003, J PHYS CHEM B, V107, P3234, DOI 10.1021/jp026677l.
FEDOROV MV, 2007, MOL PHYS, V105, P1, DOI 10.1080/00268970601110316.
FEDOROV MV, 2007, PHYS CHEM CHEM PHYS, V9, P5423, DOI 10.1039/b706564g.
FEDOROV MV, 2009, J AM CHEM SOC, V131, P10854, DOI 10.1021/ja9030374.
HARSANYI I, 2005, J CHEM PHYS, V122, ARTN 124512.
HASAN T, 2009, ADV MATER, V27, P3874.
HAYAKAWA C, 2009, LANGMUIR, V25, P1795, DOI 10.1021/la803395a.
HIRSCH A, 2002, ANGEW CHEM INT EDIT, V41, P1853.
HIRSCH A, 2002, ANGEW CHEM, V114, P1933.
HORN HW, 2004, J CHEM PHYS, V120, P9665, DOI 10.1063/1.1683075.
HOWELL I, 1996, J PHYS-CONDENS MAT, V8, P4455.
HUMMER G, 2001, NATURE, V414, P188.
HUMPHREY W, 1996, J MOL GRAPHICS, V14, P33.
IBUKI K, 2009, J MOL LIQ, V147, P56, DOI 10.1016/j.molliq.2008.08.005.
JOUNG IS, 2008, J PHYS CHEM B, V112, P9020, DOI 10.1021/jp8001614.
JUNGWIRTH P, 2001, J PHYS CHEM B, V105, P10468.
KATZ E, 2004, CHEMPHYSCHEM, V5, P1084, DOI 10.1002/CPHC.200400193.
KIM Y, 2003, JPN J APPL PHYS 1, V42, P7629, DOI 10.1143/JJAP.42.7629.
KINOSHITA M, 2005, B CHEM SOC JPN, V78, P1431, DOI 10.1246/bcsj.78.1431.
KINOSHITA M, 2007, CONDENS MATTER PHYS, V10, P387.
KUNZ W, 2006, PURE APPL CHEM, V78, P1611, DOI 10.1351/pac200678081611.
LIANG F, 2010, CURR MED CHEM, V17, P10.
LMPEY RW, 1983, J PHYS CHEM-US, V87, P5071.
LUND M, 2008, PHYS REV LETT, V100, ARTN 258105.
MACKERNAN D, 2008, EPL-EUROPHYS LETT, V83, ARTN 66009.
MANCINELLI R, 2007, PHYS CHEM CHEM PHYS, V9, P2959, DOI 10.1039/b701855j.
MARCUS Y, 1987, J CHEM SOC FARAD T 1, V83, P339.
MARCUS Y, 1988, CHEM REV, V88, P1475.
MATUBAYASI N, 1994, J PHYS CHEM-US, V98, P10640.
MATUBAYASI N, 1998, J CHEM PHYS, V109, P4864.
MILE V, 2009, J PHYS CHEM B, V113, P10760, DOI 10.1021/jp900092g.
MOORE VC, 2003, NANO LETT, V3, P1379.
NIYOGI S, 2007, J AM CHEM SOC, V129, P1898, DOI 10.1021/ja068321j.
NIYOGI S, 2009, J AM CHEM SOC, V131, P1144, DOI 10.1021/ja807785e.
OCONNELL MJ, 2002, SCIENCE, V297, P593.
PAL S, 2005, J PHYS CHEM B, V109, P6405, DOI 10.1021/jp045601h.
PEASE LF, 2009, SMALL, V5, P2894, DOI 10.1002/smll.200900928.
PERERA L, 1993, J PHYS CHEM-US, V97, P13803.
SAMOILOV OY, 1957, DISCUSS FARADAY SOC, P141.
SAMOILOV OY, 1965, STRUCTURE AQUEOUS EL.
SHEN JW, 2009, CHEMPHYSCHEM, V10, P1260, DOI 10.1002/cphc.200800836.
SOPER AK, 2006, BIOPHYS CHEM, V124, P180, DOI 10.1016/j.bpc.2006.04.009.
SPOHR E, 1996, ELECTROCHIM ACTA, V41, P2131.
SPOHR E, 2002, SOLID STATE IONICS, V150, P1.
SPOHR E, 2003, ELECTROCHIM ACTA, V49, P23, DOI 10.1016/j.electacta.2003.04.002.
TAN PH, 2007, PHYS REV LETT, V99, ARTN 137402.
TASIS D, 2006, CHEM REV, V106, P1105, DOI 10.1021/cr050569o.
VAISMAN L, 2006, ADV COLLOID INTERFAC, V128, P37, DOI 10.1016/j.cis.2006.11.007.
VANDERSPOEL D, 2005, J COMPUT CHEM, V26, P1701, DOI 10.1002/jcc.20291.
VRBKA L, 2006, J PHYS CHEM B, V110, P7036, DOI 10.1021/jp0567624.
WALTHER JH, 2001, J PHYS CHEM B, V105, P9980.
ZELADAGUILLEN GA, 2009, ANGEW CHEM INT EDIT, V48, P7334, DOI 10.1002/anie.200902090.
ZELADAGUILLEN GA, 2009, ANGEW CHEM, V121, P7470.

Cited Reference Count:
66

Times Cited:
0

Publisher:
WILEY-V C H VERLAG GMBH; PO BOX 10 11 61, D-69451 WEINHEIM, GERMANY

Subject Category:
Chemistry, Physical; Physics, Atomic, Molecular & Chemical

ISSN:
1439-4235

DOI:
10.1002/cphc.201000231

IDS Number:
648JZ

========================================================================
*Order Full Text*
All Customers
--------------
Please contact your library administrator, or person(s) responsible for
document delivery, to find out more about your organization's policy for
obtaining the full text of the above articles. If your organization does
not have a current document delivery provider, your administrator can
contact ISI Document Solution at service@isidoc.com, or call 800-603-4367
or 734-459-8565.

IDS Customers
--------------
IDS customers can purchase the full text of an article (having page number,
volume, and issue information) by returning this ENTIRE message as a Reply
to Sender or Forward to orders@isidoc.com. Mark your choices with an X in
the "Order Full Text: []" brackets for each item. For example, [X].

Please enter your account number here:

========================================================================
*Help Desk Contact Information*
If you have any questions, please visit the Thomson Scientific Technical Support Contact Information Web page:
http://www.thomsonscientific.com/support/techsupport
========================================================================

No comments: