Friday, December 11, 2009

ISI Web of Knowledge Alert - Holt JK

ISI Web of Knowledge Citation Alert

Cited Article: Holt JK. Fast mass transport through sub-2-nanometer carbon nanotubes
Alert Expires: 09 NOV 2010
Number of Citing Articles: 3 new records this week (3 in this e-mail)
Organization ID: 3b97d1bbc1878baed0ab183d8b03130b
========================================================================
Note: Instructions on how to purchase the full text of an article, import the records into an
ISI ResearchSoft product, and Help Desk Contact information are at the end of the e-mail.
========================================================================

FN ISI Export Format
VR 1.0

PT J
*Record 1 of 3.
L5 <http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;UT=000272175100003>
*Order Full Text [ ]
AU Cannon, J
Hess, O
AF Cannon, James
Hess, Ortwin
TI Fundamental dynamics of flow through carbon nanotube membranes
SO MICROFLUIDICS AND NANOFLUIDICS
LA English
DT Article
DE Non-equilibrium molecular dynamics; Carbon nanotube; Membrane flow
ID MOLECULAR-DYNAMICS; TRANSPORT DIFFUSION; MASS-TRANSPORT; WATER;
NONEQUILIBRIUM; FLUIDS; SIMULATION; MODEL
AB The flow of a model non-polar liquid through small carbon nanotubes is
studied using non-equilibrium molecular dynamics simulation. We explain
how a membrane of small-diameter nanotubes can transport this liquid
faster than a membrane consisting of larger-diameter nanotubes. This
effect is shown to be back-pressure dependent, and the reasons for this
are explored. The flow through the very smallest nanotubes is shown to
depend strongly on the depth of the potential inside, suggesting atomic
separation can be based on carbon interaction strength as well as
physical size. Finally, we demonstrate how increasing the back-pressure
can counter-intuitively result in lower exit velocities from a
nanotube. Such studies are crucial for optimisation of nanotube
membranes.
C1 [Cannon, James; Hess, Ortwin] Univ Surrey, Adv Technol Inst, Dept Phys, Fac Engn & Phys Sci, Guildford GU2 7XH, Surrey, England.
RP Cannon, J, Univ Surrey, Adv Technol Inst, Dept Phys, Fac Engn & Phys
Sci, Guildford GU2 7XH, Surrey, England.
EM j.cannon@surrey.ac.uk
CR ACKERMAN DM, 2003, MOL SIMULAT, V29, P677, DOI
10.1080/0892702031000103239
ALLEN MP, 1987, COMPUTER SIMULATION
ARORA G, 2005, J CHEM PHYS, V123, UNSP 044,705
ARYA G, 2001, J CHEM PHYS, V115, P8112
CHEN HB, 2006, J MEMBRANE SCI, V269, P152, DOI
10.1016/j.memsci.2005.06.030
DUREN T, 2002, CHEM ENG SCI, V57, P1343
DUREN T, 2002, MOL PHYS, V100, P3741, DOI 10.1080/0026897021000028429
DZUBIELLA J, 2004, J CHEM PHYS, V120, P5001, DOI 10.1063/1.1665656
FANG HP, 2008, J PHYS D, V41, P103
HINDS BJ, 2004, SCIENCE, V303, P62, DOI 10.1126/science.1092048
HOLT JK, 2006, SCIENCE, V312, P1034, DOI 10.1126/science.1126298
HUMMER G, 2001, NATURE, V414, P188
JAKOBTORWEIHEN S, 2005, PHYS REV LETT, V95, UNSP 044,501
JAKOBTORWEIHEN S, 2006, J PHYS CHEM B, V110, P16332, DOI
10.1021/jp063424+
JOSEPH S, 2008, NANO LETT, V8, P452, DOI 10.1021/nl072385q
KOSTOV MK, 2002, PHYS REV LETT, V89, P146
LEE KH, 2004, J PHYS CHEM B, V108, P9861, DOI 10.1021/jp036791j
MAO ZG, 2000, J PHYS CHEM B, V104, P4618
MILLER SA, 2001, J AM CHEM SOC, V123, P12335
NAGAYAMA G, 2004, INT J HEAT MASS TRAN, V47, P501, DOI
10.1016/j.ijheatmasstransfer.2003.07.013
SHIOMI J, 2009, NANOTECHNOLOGY, V20, UNSP 055,708
SKOULIDAS AI, 2002, PHYS REV LETT, V89, UNSP 185,901
SUN L, 2000, J AM CHEM SOC, V122, P12340, DOI 10.1021/ja002429w
SUPPLE S, 2003, PHYS REV LETT, V90, UNSP 214,501
TRAVIS KP, 2000, J CHEM PHYS, V112, P1984
VERLET L, 1967, PHYS REV, V159, P98
ZHANG Q, 2008, MOL BIOL REP, V35, P439, DOI 10.1007/s11033-007-9104-4
ZHU FQ, 2002, BIOPHYS J, V83, P154
NR 28
TC 0
PU SPRINGER HEIDELBERG; TIERGARTENSTRASSE 17, D-69121 HEIDELBERG, GERMANY
SN 1613-4982
DI 10.1007/s10404-009-0446-1
PD JAN
VL 8
IS 1
BP 21
EP 31
SC Nanoscience & Nanotechnology; Instruments & Instrumentation; Physics,
Fluids & Plasmas
GA 524WM
UT ISI:000272175100003
ER

PT J
*Record 2 of 3.
L5 <http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;UT=000271428200002>
*Order Full Text [ ]
AU Rodriguez, J
Elola, MD
Laria, D
AF Rodriguez, Javier
Dolores Elola, M.
Laria, Daniel
TI Coaxial Cross-Diffusion through Carbon Nantoubes
SO JOURNAL OF PHYSICAL CHEMISTRY B
LA English
DT Article
ID MOLECULAR-DYNAMICS SIMULATIONS; NANOTUBE MEMBRANES; LIQUID WATER;
TRANSPORT; MIXTURES; PORES; MODEL
AB We present results from nonequilibrium molecular dynamics experiments
describing the relaxation of local concentrations at two reservoirs,
initially filled with water (W) and acetonitrile (ACN), as they become
connected through a membrane composed of (16,16) carbon nanotubes.
Within the hydrophobic nanotube cavities, the equilibrium
concentrations contrast sharply to those observed at the reservoirs,
with a clear enhancement of ACN, in detriment of W. From the dynamical
side, the relaxation involves three well-differentiated stages; the
first one corresponds to the equilibration of individual concentrations
within the nanotubes. An intermediate interval with Fickian
characteristics follows, during which the overall transport can be cast
in terms of coaxial opposite fluxes, with a central water domain
segregated from an external ACN shell, in close contact with the tube
walls. We also found evidence of a third, much slower, mechanism to
reach equilibration, which involves structural modifications of tightly
bound solvation shells, in close contact with the nanotube rims.
C1 [Rodriguez, Javier; Dolores Elola, M.; Laria, Daniel] Comis Nacl Energia Atom, Dept Fis, RA-1429 Buenos Aires, DF, Argentina.
[Rodriguez, Javier] UNSAM, ECyT, RA-1650 San Martin, Buenos Aires, Argentina.
[Laria, Daniel] Univ Buenos Aires, Dept Quim Inorgan Analit & Quim Fis & INQUIMAE, Fac Ciencias Exactas & Nat, RA-1428 Buenos Aires, DF, Argentina.
RP Laria, D, Comis Nacl Energia Atom, Dept Fis, Ave Libertador 8250,
RA-1429 Buenos Aires, DF, Argentina.
EM dhlaria@cnea.gov.ar
CR ALEXIADIS A, 2008, CHEM REV, V108, P5104
BERENDSEN HJC, 1987, J PHYS CHEM-US, V91, P6269
CHANDLER D, 1987, INTRO MODERN STAT ME, CH8
CHEN HB, 2004, J AM CHEM SOC, V126, P7778, DOI 10.1021/ja039462d
CHEN X, 2008, NANO LETT, V8, P2988, DOI 10.1021/nl802046b
FORNASIERO F, 2008, P NATL ACAD SCI USA, V105, P17250, DOI
10.1073/pnas.0710437105
GRABULEDA X, 2000, J COMPUT CHEM, V21, P901
HEFTER G, 2005, PURE APPL CHEM, V77, P605, DOI 10.1351/pac200577030605
HINDS BJ, 2004, SCIENCE, V303, P62, DOI 10.1126/science.1092048
HOHMANN S, 2001, CURRENT TOPICS MEMBR, P51
HOLT JK, 2006, SCIENCE, V312, P1034, DOI 10.1126/science.1126298
HUANG LL, 2006, J PHYS CHEM B, V110, P25761, DOI 10.1021/jp064676d
HUMMER G, 2001, NATURE, V414, P188
HUNG L, 2007, J PHYS CHEM C, V111, P11912
HWANG HJ, 2004, PHYSICA E, V23, P208, DOI 10.1016/j.physe.2004.03.006
IIJIMA S, 1993, NATURE, V363, P603
JIRAGE KB, 1997, SCIENCE, V278, P655
KAGULIN ON, 2008, NANO LETT, V8, P2126
KAMALA CR, 2002, PHYS REV E 1, V65, ARTN 061202
KAMALA CR, 2004, J PHYS CHEM B, V108, P4411, DOI 10.1021/jp036291q
KARLA A, 2003, P NATL ACAD SCI USA, V100, P1017
KIM P, 1999, SCIENCE, V286, P2148
KRISHNA R, 2006, IND ENG CHEM RES, V45, P2084, DOI 10.1021/ie051126d
LEE KH, 2005, NANO LETT, V5, P793, DOI 10.1021/nl0502219
LIU C, 1999, SCIENCE, V286, P1127
LIU YC, 2005, PHYS REV B, V72, ARTN 085420
LOPEZ CF, 2004, P NATL ACAD SCI USA, V101, P4431, DOI
10.1073/pnas.0400352101
LUI Y, 2005, PHYS REV B, V72, UNSP 085420
MACKERELL AD, 1998, J PHYS CHEM B, V102, P3586
MAIBAUM L, 2003, J PHYS CHEM B, V107, P1189, DOI 10.1021/jp0267196
MAJUMDER M, 2007, LANGMUIR, V23, P8624, DOI 10.1021/la700686k
MAO Z, 2002, PHYS REV LETT, V27, UNSP 278301
MAO ZG, 2001, J PHYS CHEM B, V105, P6916, DOI 10.1021/jp0103272
MARTI J, 2003, J CHEM PHYS, V119, P12540, DOI 10.1063/1.1625912
MURIS M, 2000, LANGMUIR, V16, P7019
RODRIGUEZ J, IN PRESS
RODRIGUEZ J, 2009, J PHYS CHEM B, V113, P12744, DOI 10.1021/jp905920m
SAZONOVA V, 2004, NATURE, V287, P622
SINGH R, 2006, P NATL ACAD SCI USA, V103, P3357, DOI
10.1073/pnas.0509009103
SKOULIDAS AI, 2002, PHYS REV LETT, V89, ARTN 185901
SKOULIDAS AI, 2003, J MEMBRANE SCI, V227, P123, DOI
10.1016/j.memsci.2003.08.021
STRIOLO A, 2006, NANO LETT, V6, P633, DOI 10.1021/nl052254u
TAYLOR R, 1993, MULTICOMPONENT MASS
THOMAS JA, 2009, PHYS REV LETT, V102, ARTN 184502
VONGOLDAMMER E, 1970, J PHYS CHEM-US, V74, P3734
WAGHE A, 2002, J CHEM PHYS, V117, P10789, DOI 10.1063/1.1519861
ZHENG J, 2005, J CHEM PHYS, V122, ARTN 214702
NR 47
TC 0
PU AMER CHEMICAL SOC; 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 1520-6106
DI 10.1021/jp908791b
PD NOV 12
VL 113
IS 45
BP 14844
EP 14848
SC Chemistry, Physical
GA 514WY
UT ISI:000271428200002
ER

PT J
*Record 3 of 3.
L5 <http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;UT=000272191200003>
*Order Full Text [ ]
AU Cao, BY
Sun, J
Chen, M
Guo, ZY
AF Cao, Bing-Yang
Sun, Jun
Chen, Min
Guo, Zeng-Yuan
TI Molecular Momentum Transport at Fluid-Solid Interfaces in MEMS/NEMS: A
Review
SO INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES
LA English
DT Review
DE fluid-solid interfaces; molecular momentum transport; velocity slip;
boundary conditions; momentum accommodation coefficient;
micro/nanofluidics; molecular dynamics
ID SPINNING ROTOR GAUGE; HYDRODYNAMIC BOUNDARY-CONDITIONS; VELOCITY SLIP
COEFFICIENTS; GAS-SURFACE INTERACTION; LATTICE BOLTZMANN METHOD;
SIMULATION MONTE-CARLO; THIN LIQUID-FILMS; HYDROPHOBIC MICROCHANNEL
WALLS; ATOMIC-FORCE MICROSCOPE; FAST MASS-TRANSPORT
AB This review is focused on molecular momentum transport at fluid-solid
interfaces mainly related to microfluidics and nanofluidics in
micro-/nano-electromechanical systems (MEMS/NEMS). This broad subject
covers molecular dynamics behaviors, boundary conditions, molecular
momentum accommodations, theoretical and phenomenological models in
terms of gas-solid and liquid-solid interfaces affected by various
physical factors, such as fluid and solid species, surface roughness,
surface patterns, wettability, temperature, pressure, fluid viscosity
and polarity. This review offers an overview of the major achievements,
including experiments, theories and molecular dynamics simulations, in
the field with particular emphasis on the effects on microfluidics and
nanofluidics in nanoscience and nanotechnology. In Section 1 we present
a brief introduction on the backgrounds, history and concepts. Sections
2 and 3 are focused on molecular momentum transport at gas-solid and
liquid-solid interfaces, respectively. Summary and conclusions are
finally presented in Section 4.
C1 [Cao, Bing-Yang; Sun, Jun; Chen, Min; Guo, Zeng-Yuan] Tsinghua Univ, Dept Engn Mech, Key Lab Thermal Sci & Power Engn, Minist Educ, Beijing 100084, Peoples R China.
[Sun, Jun] Tsinghua Univ, Inst Nucl & New Energy Technol, Beijing 100084, Peoples R China.
RP Cao, BY, Tsinghua Univ, Dept Engn Mech, Key Lab Thermal Sci & Power
Engn, Minist Educ, Beijing 100084, Peoples R China.
EM caoby@tsinghua.edu.cn
sunjun@tsinghua.edu.cn
mchen@tsinghua.edu.cn
demgzy@tsinghua.edu.cn
CR AGRAWAL A, 2005, NANO LETT, V5, P1751, DOI 10.1021/nl051103o
AGRAWAL A, 2008, EXP THERM FLUID SCI, V32, P991, DOI
10.1016/j.expthermflusci.2007.11.010
AGRAWAL A, 2008, J VAC SCI TECHNOL A, V26, P634, DOI 10.1116/1.2943641
ALBERTONI S, 1963, PHYS FLUIDS, V6, P993
ALLEN JJ, 2005, MICROELECTROMECHANIC
ALLEN MP, 1987, COMPUTER SIMULATION
AMBAYE H, 2006, PHYS REV E 1, V73, ARTN 031202
ANDRIENKO D, 2003, J CHEM PHYS, V119, P13106, DOI 10.1063/1.1627751
ARKILIC EB, 2001, J FLUID MECH, V437, P29
ARLEMARK EJ, 2008, P 6 INT C NAN MICR, P95
ARLEMARK EJ, 2009, J HEAT TRAN IN PRESS
ARYA G, 2003, MOL SIMULAT, V29, P697, DOI 10.1080/0892702031000103257
ATWOOD BT, 1989, RHEOL ACTA, V28, P134
BALAKRISHNAN R, 2004, J FLUID MECH, V503, P201, DOI
10.1017/S0022112004007876
BARBER RW, 2006, HEAT TRANSFER ENG, V27, P3, DOI
10.1080/01457630500522271
BARRAT JL, 1999, FARADAY DISCUSS, V112, P119
BARRAT JL, 1999, PHYS REV LETT, V82, P4671
BARTHLOTT W, 1997, PLANTA, V202, P1
BARTHLOTT W, 2001, TEKSTIL, V50, P461
BATCHELOR GK, 1967, INTRO FLUID DYNAMICS
BAUDRY J, 2001, LANGMUIR, V17, P5232
BAUGHMAN RH, 2002, SCIENCE, V297, P787
BEAMS JW, 1946, J APPL PHYS, V17, P886
BECHER T, 2005, MOL SIMULAT, V31, P489
BENTZ JA, 1997, VACUUM, V48, P817
BENTZ JA, 1999, J VAC SCI TECHNOL A, V17, P235
BENTZ JA, 2001, J VAC SCI TECHNOL A, V19, P317
BHATNAGAR PL, 1954, PHYS REV, V94, P511
BIBEN T, 2008, PHYS REV LETT, V100, ARTN 186103
BINDER K, 2004, J PHYS-CONDENS MAT, V16, S429
BIRD GA, 1994, MOL GAS DYNAMICS DIR
BLAKE TD, 1990, COLLOID SURFACE, V47, P135
BLANCHARD D, 2007, PHYS FLUIDS, V19, UNSP 063602-063612
BOCQUET L, 1993, PHYS REV LETT, V70, P2726
BOCQUET L, 1994, PHYS REV E A, V49, P3079
BOCQUET L, 2007, SOFT MATTER, V3, P685, DOI 10.1039/b616490k
BOEHNKE UC, 1999, J COLLOID INTERF SCI, V211, P243
BONACCURSO E, 2002, PHYS REV LETT, V88, UNSP 076103
BONACCURSO E, 2003, PHYS REV LETT, V90, ARTN 144501
BORKENT BM, 2007, PHYS REV LETT, V98, ARTN 204502
BOUZIGUES CI, 2008, PHYS REV LETT, V101, ARTN 114503
BREMNER JGM, 1950, P ROY SOC LOND A MAT, V201, P305
BURNETT D, 1935, P LOND MATH SOC, V39, P385
BUSCHNELL DM, 1991, ANNU REV FLUID MECH, V23, P65
BYUN D, 2008, PHYS FLUIDS, V20, ARTN 113601
CAO BY, 2004, CHINESE PHYS LETT, V21, P1777
CAO BY, 2005, APPL PHYS LETT, V86, UNSP 091905
CAO BY, 2006, ACTA PHYS SIN-CH ED, V55, P5305
CAO BY, 2006, INT J ENG SCI, V44, P927, DOI
10.1016/j.ijengsci.2006.06.005
CAO BY, 2006, PHYS REV E 2, V74, ARTN 066311
CAO BY, 2007, MOL PHYS, V105, P1403, DOI 10.1080/00268970701361322
CAO BY, 2009, MEMS TECHNOLOGY FABR
CASSIE ABD, 1944, T FARADAY SOC, V40, P546
CELESTINI F, 2008, PHYS REV E 1, V77, ARTN 021202
CERCIGNANI C, 1966, PHYS FLUIDS, V9, P1167
CERCIGNANI C, 1971, TRANSPORT THEOR STAT, V1, P101
CERCIGNANI C, 1988, BOLTZMANN EQUATION I
CERCIGNANI C, 2000, RAREFIED GAS DYNAMIC
CHAI ZH, 2008, J APPL PHYS, V104, ARTN 014902
CHAN DYC, 1985, J CHEM PHYS, V83, P5311
CHANG RF, 2007, J VAC SCI TECHNOL A, V25, P1567, DOI 10.1116/1.2790910
CHAPMAN S, 1970, MATH THEORY NONUNIFO
CHEIKH C, 2003, PHYS REV LETT, V91, ARTN 156102
CHEN S, 1998, ANNU REV FLUID MECH, V30, P329
CHEN X, 2008, NANO LETT, V8, P2988, DOI 10.1021/nl802046b
CHENG JT, 2002, PHYS REV E 1, V65, ARTN 031206
CHIANG SF, 1952, DRAG FORCES ROTATING
CHIRITA V, 1993, J PHYS D APPL PHYS, V26, P133
CHIRITA V, 1997, NUCL INSTRUM METH B, V129, P465
CHO JHJ, 2004, PHYS REV LETT, V92, ARTN 166102
CHOI CH, 2003, PHYS FLUIDS, V15, P2897, DOI 10.1063/1.1605425
CHOI CH, 2006, PHYS FLUIDS, V18, ARTN 087105
CHOI CH, 2006, PHYS REV LETT, V96, ARTN 066001
CHRISTENSON HK, 2001, ADV COLLOID INTERFAC, V91, P391
CHURAEV NV, 1984, J COLLOID INTERF SCI, V97, P574
CHURAEV NV, 2002, ADV COLLOID INTERFAC, V96, P265
CICCOTTI G, 1986, MOL DYNAMICS SIMULAT
CIEPLAK M, 2001, PHYS REV LETT, V86, P803
CIEPLAK M, 2006, PHYS REV LETT, V96, ARTN 114502
COLIN S, 2004, HEAT TRANSFER ENG, V25, P23, DOI
10.1080/01457630490280047
COLLINS FG, 1994, AIAA J, V32, P765
COLLINS FG, 1994, AIAA940036
COLLINS FG, 1994, J SPACECRAFT ROCKETS, V31, P965
COMSA G, 1980, J VAC SCI TECHNOL, V17, P642
COOK SR, 1994, AIAA942637
COOK SR, 1997, PHYS REV E, V55, R3828
COOK SR, 1998, PHYS REV E, V58, P504
COOPER SM, 2004, NANO LETT, V4, P377, DOI 10.1021/nl0350682
COTTINBIZONNE C, 2002, EUR PHYS J E, V9, P47, DOI
10.1140/epje/i2002-10112-9
COTTINBIZONNE C, 2003, NAT MATER, V2, P237, DOI 10.1038/nmat857
COTTINBIZONNE C, 2004, EUR PHYS J E, V15, P427, DOI
10.1140/epje/i2004-10061-9
COTTINBIZONNE C, 2005, PHYS REV LETT, V94, ARTN 056102
COUETTE MM, 1890, ANN CHIM PHYS 6, V21, P433
CRAIG VSJ, 2001, PHYS REV LETT, V87, ARTN 054504
CRAIGHEAD HG, 2000, SCIENCE, V290, P1535
DADZIE SK, 2008, PHYSICA A, V387, P6079
DAMMER SM, 2006, PHYS REV LETT, V96, ARTN 206101
DARCY H, 1857, RECHERCHES EXPT RELA
DEGENNES PG, 1985, REV MOD PHYS, V57, P827
DEGENNES PG, 2002, LANGMUIR, V18, P3413
DONGARI N, 2007, INT J HEAT MASS TRAN, V50, P3411, DOI
10.1016/j.ijheatmasstransfer.2007.01.048
DOUGHTY RO, 1969, RAREFIED GAS DYN, P1035
DRESSELHAUS MS, 2000, CARBON NANOTUBES SYN
ECKERT ER, 1987, ANAL HEAT MASS TRANS
EINZEL D, 1990, PHYS REV LETT, V64, P2269
ELLIS JS, 2003, J APPL PHYS, V94, P6201, DOI 10.1063/1.1619195
EPSTEIN PS, 1950, J CHEM PHYS, V18, P1505
EWART T, 2007, J FLUID MECH, V584, P337, DOI 10.1017/S0022112007006374
EWART T, 2007, MICROFLUID NANOFLUID, V3, P689, DOI
10.1007/s10404-007-0158-3
EWART T, 2008, P 6 INT C NAN MICR, P65
FAN XJ, 2002, PHYS FLUIDS, V14, P1146
FEUILLEBOIS F, 2009, PHYS REV LETT, V102, ARTN 026001
FEYNMAN RP, 1961, MINIATURIZATION, P282
FINGER GW, 2007, T ASME, V129, P31
FLEKKOY EG, 2000, EUROPHYS LETT, V52, P271
FRENKEL J, 1955, KINETIC THEORY LIQUI
GABIS DH, 1996, J VAC SCI TECHNOL A, V14, P2592
GADELHAK M, 1999, J FLUID ENG-T ASME, V121, P5
GADELHAK M, 2005, PHYS FLUIDS, V17, ARTN 100612
GADELHAK M, 2006, HEAT TRANSFER ENG, V27, P13, DOI
10.1080/01457630500522305
GALEA TM, 2004, LANGMUIR, V20, P3477, DOI 10.1021/la035880k
GAO LC, 2006, LANGMUIR, V22, P2966, DOI 10.1021/la0532149
GAO XF, 2004, NATURE, V432, P36, DOI 10.1038/432036a
GEORGES JM, 1993, J CHEM PHYS, V98, P7345
GIORDANO N, 2001, J PHYS-CONDENS MAT, V13, R271
GOGTE S, 2005, PHYS FLUIDS, V17, ARTN 051701
GOLDSTEIN S, 1938, MODERN DEV FLUID MEC, V2
GOLDSTEIN S, 1969, ANNU REV FLUID MECH, V1, P1
GOOD RJ, 1992, J ADHES SCI TECHNOL, V6, P1269
GOODMAN FO, 1976, DYNAMICS GAS SURFACE
GOVARDHAN RN, 2009, PHYS FLUIDS, V21, ARTN 052001
GRANICK S, 2003, NAT MATER, V2, P221
GRAVESEN P, 1993, J MICROMECH MICROENG, V3, P168
GRONYCH T, 2004, VACUUM, V73, P275, DOI 10.1016/j.vacuum.2003.12.017
GUO ZL, 2005, PHYS REV E 2, V72, ARTN 036301
GUO ZL, 2007, EPL-EUROPHYS LETT, V80, ARTN 24001
GUO ZL, 2008, P NAT HEAT MASS TRAN
GUO ZY, 2003, INT J HEAT FLUID FL, V24, P284, DOI
10.1016/S0142-727X(03)00019-5
GUO ZY, 2003, INT J HEAT MASS TRAN, V46, P149
HADJICONSTANTINOU NG, 2003, PHYS FLUIDS, V15, P2352, DOI
10.1063/1.1587155
HAILE JM, 1993, MOL DYNAMICS SIMULAT
HAMPTON MA, 2009, J COLLOID INTERF SCI, V329, P202, DOI
10.1016/j.jcis.2008.09.040
HASEGAWA T, 1997, PHYS FLUIDS, V9, P1
HEINBUCH U, 1989, PHYS REV A, V40, P1144
HENDY SC, 2009, J PHYS-CONDENS MAT, V21, ARTN 144202
HENRY CL, 2004, PHYSICA A, V339, P60, DOI 10.1016/j.physa.2004.03.044
HO CM, 1996, J FLUID ENG-T ASME, V118, P437
HO CM, 1998, ANNU REV FLUID MECH, V30, P579
HOLT JK, 2006, SCIENCE, V312, P1034, DOI 10.1126/science.1126298
HOLT JK, 2008, MICROFLUID NANOFLUID, V5, P425, DOI
10.1007/s10404-008-0301-9
HOOK JR, 1991, SOLID STATE PHYS
HORN RG, 1989, CHEM PHYS LETT, V162, P404
HSIEH SS, 2004, INT J HEAT MASS TRAN, V47, P3877, DOI
10.1016/j.ijheatmasstransfer.2004.03.027
HSU TR, 2002, MEMS MICROSYSTEMS DE
HU YD, 2003, ASME, V125, P871
HU YH, 2006, REP PROG PHYS, V69, P1847, DOI 10.1088/0034-4885/69/6/R05
HUANG C, 2007, J MICROELECTROMECH S, V16, P777, DOI
10.1109/JMEMS.2007.892914
HUANG DM, 2008, PHYS REV LETT, V101, ARTN 226101
HUANG P, 2006, J FLUID MECH, V566, P447, DOI 10.1017/S0022112006002229
HUANG P, 2007, PHYS FLUIDS, V19, ARTN 028104
HURLBUT F, 1968, PHYS FLUIDS, V11, P486
HURLBUT FC, 1997, RAREFIED GAS DYN, P355
HYAKUTAKE T, 2005, AIP CONF PROC, V762, P780
HYVALUOMA J, 2008, PHYS REV LETT, V100, ARTN 246001
INSEPOV Z, 2006, NANO LETT, V6, P1893, DOI 10.1021/nl060932m
ISHIDA N, 2000, LANGMUIR, V16, P6377
ISRAELACHVILI JN, 1972, P ROY SOC LOND A MAT, V331, P19
ISRAELACHVILI JN, 1986, J COLLOID INTERF SCI, V110, P263
ISRAELACHVILI JN, 1988, SCIENCE, V240, P189
JABBARZADEH A, 2000, PHYS REV E, V61, P690
JANG J, 2007, J MICROMECH MICROENG, V17, P229, DOI
10.1088/0960-1317/17/2/007
JANG JS, 2003, PROC IEEE MICR ELECT, P287
JANG JS, 2006, J MICROMECH MICROENG, V16, P493, DOI
10.1088/0960-1317/16/3/004
JANSONS KM, 1988, PHYS FLUIDS, V31, P15
JIN S, 2001, J STAT PHYS, V103, P1009
JIN S, 2004, EXP FLUIDS, V37, P825, DOI 10.1007/s00348-004-0870-7
JOLY L, 2006, PHYS REV LETT, V96, ARTN 046101
JOSEPH P, 2005, PHYS REV E 2, V71, ARTN 035303
JOSEPH P, 2006, PHYS REV LETT, V97, ARTN 156104
JOSEPH S, 2008, NANO LETT, V8, P452, DOI 10.1021/nl072385q
JOUSTEN K, 2003, J VAC SCI TECHNOL A, V21, P318, DOI 10.1116/1.1531649
KARNIADAKIS GE, 2002, MICROFLOWS FUNDAMENT
KAUZMANN W, 1976, KINETIC THEORY GASES
KENNARD EH, 1938, KINETIC THEORY GASES
KISELEVA OA, 1999, COLLOID J+, V61, P263
KLEIN J, 1998, J CHEM PHYS, V108, P6996
KNECHTEL ED, 1969, RAREFIED GAS DYN, P1257
KNUDSEN M, 1909, ANN PHYS, V28, P75
KNUTH EL, 1979, AIAA J, V18, P602
KOISHI T, 2005, J CHEM PHYS, V123, ARTN 204707
KONG J, 2009, J PHYS CHEM C, V113, P624, DOI 10.1021/jp809164k
KOPLIK J, 1988, PHYS REV LETT, V60, P1282
KOPLIK J, 1989, PHYS FLUIDS A-FLUID, V1, P781
KOPLIK J, 1995, ANNU REV FLUID MECH, V27, P257
KUHLTHAU AR, 1949, J APPL PHYS, V20, P217
KUO LS, 2009, COMPUT FLUIDS, V38, P883, DOI
10.1016/j.compfluid.2008.09.008
KUSCER I, 1974, RAREFIED GAS DYNAMIC
LADENBURG R, 1907, ANN PHYS-BERLIN, V23, P447
LAMB H, 1932, HYDRODYNAMICS
LAN XD, 2008, J COMPUT PHYS, V227, P4763, DOI 10.1016/j.jcp.2008.01.012
LASNE D, 2008, PHYS REV LETT, V100, ARTN 214502
LAUGA E, 2003, J FLUID MECH, V489, P55, DOI 10.1017/S0022112003004695
LAUGA E, 2004, PHYS REV E 2, V70, ARTN 026311
LAUGA E, 2007, HDB EXPT FLUID DYNAM, P1219
LEE HJ, 2006, J TEXT I, V97, P455, DOI 10.1533/joti.2006.0271
LEONDES CT, 2006, MEMS NEMS HDB TECHNI
LI Q, 2009, BIOMICROFLUIDICS, V3, ARTN 022409
LI YX, 2006, NANOSC MICROSC THERM, V10, P109, DOI
10.1080/10893950600643089
LIANG XG, 2007, CHINESE SCI BULL, V52, P2457, DOI
10.1007/s11434-007-0376-9
LICHTER S, 2007, PHYS REV LETT, V98, ARTN 226001
LIOU WW, 2006, MICROFLUID MECH PRIN
LIU CF, 2009, INT J ENG SCI, V47, P660, DOI
10.1016/j.ijengsci.2009.01.002
LIU CF, 2009, INT J MOD PHYS C, V20, P953
LIU J, 2007, J COMPUT PHYS, V227, P279
LIVI R, 2003, NATURE, V421, P327, DOI 10.1038/421327a
LJUNGGREN S, 1997, COLLOID SURFACE A, V129, P151
LOCKERBY DA, 2004, PHYS REV E 2, V70, ARTN 017303
LOCKERBY DA, 2005, AIAA J, V43, P1391
LOCKERBY DA, 2005, PHYS FLUIDS, V17, ARTN 100609
LOCKERBY DA, 2008, J FLUID MECH, V604, P235, DOI
10.1017/S0022112008001158
LONGHURST MJ, 2007, NANO LETT, V7, P3324, DOI 10.1021/nl071537e
LORD RG, 1991, PHYS FLUIDS A-FLUID, V3, P706
LORD RG, 1995, PHYS FLUIDS, V7, P1159
LOYALKA SK, 1971, PHYS FLUIDS, V14, P2291
LOYALKA SK, 1975, PHYS FLUIDS, V18, P1094
LOYALKA SK, 1996, J VAC SCI TECHNOL A, V14, P2940
LUM K, 1999, J PHYS CHEM B, V103, P4570
LUMMA D, 2003, PHYS REV E 2, V67, ARTN 056313
LYSHEVSKI SE, 2002, MEMS NEMS SYSTEMS DE
MAALI A, 2008, PHYS REV E, V4, UNSP 027302.1-027302.4
MAHULIKAR SP, 2007, J MICROELECTROMECH S, V16, P1542
MAJUMDER M, 2005, NATURE, V438, P44, DOI 10.1038/43844a
MARINO L, 2009, MICROFLUID NANOFLUID, V6, P109, DOI
10.1007/s10404-008-0311-7
MARMUR A, 2004, LANGMUIR, V20, P3517, DOI 10.1021/la036369u
MARTINI A, 2008, J FLUID MECH, V600, P257, DOI 10.1017/S0022112008000475
MARTINI A, 2008, PHYS REV LETT, V100, ARTN 206001
MARUYAMA S, 2000, ADV NUMERICAL HEAT T, V2, P189
MATTIA D, 2008, MICROFLUID NANOFLUID, V5, P289, DOI
10.1007/s10404-008-0293-5
MAURER J, 2003, PHYS FLUIDS, V15, P2613, DOI 10.1063/1.1599355
MAXWELL JC, 1879, PHILOS T R SOC LONDO, V170, P231
MAXWELL JC, 1890, SCI PAPERS JC MAXWEL, V2, P1
MEYYAPPAN M, 2004, CARBON NANOTUBES SCI
MILLIKAN RA, 1923, PHYS REV, V21, P217
MITSUYA Y, 1993, J TRIBOL-T ASME, V115, P289
MO G, 1990, PHYS REV A, V42, P4688
MORANEY RM, 1991, APPL PHYS LETT, V59, P774
MUNTZ EP, 1989, ANNU REV FLUID MECH, V21, P287
NAGAYAMA G, 2004, INT J HEAT MASS TRAN, V47, P501, DOI
10.1016/j.ijheatmasstransfer.2003.07.013
NAMAVAR F, 2008, NANO LETT, V8, P988, DOI 10.1021/nl072147v
NATSUKI T, 2008, J APPL PHYS, V103, ARTN 094312
NAVIER CLM, 1823, MEMOIRES ACAD ROYALE, V6, P389
NEDEA SV, 2007, ICNMM2007, P755
NEDEA SV, 2008, 6 INT C NAN MICR MIN, P929
NEDEA SV, 2009, J HEAT TRAN, V131, UNSP 033104-033108
NETO C, 2003, EUR PHYS J E S1, V12, S71, DOI
10.1140/epjed/e2003-01-018-0
NETO C, 2005, REP PROG PHYS, V68, P2859, DOI 10.1088/0034-4885/68/12/R05
NICHOLSON D, 2009, MOL SIMULAT, V35, P109, DOI 10.1080/08927020802301912
NIE XB, 2004, J FLUID MECH, V500, P55, DOI 10.1017/S0022112003007225
NOCILLA S, 1962, RAREFIED GAS DYN, V1, P327
NOTTER RH, 1971, AIAA J, V9, P965
NOY A, 2007, NANO TODAY, V2, P22
NUN E, 2002, MACROMOL SYMP, V187, P677
NYE JF, 1969, P ROY SOC LOND A MAT, V311, P445
NYE JF, 1970, P ROY SOC LOND A MAT, V315, P381
OCONNELL MJ, 2006, CARBON NANOTUBES PRO
OCONNELL ST, 1995, PHYS REV E, V52, P5792
OHARE L, 2007, INT J HEAT FLUID FL, V28, P37, DOI
10.1016/j.ijheatfluidflow.2006.04.012
OHWADA T, 1989, PHYS FLUIDS A-FLUID, V1, P2042
OHWADA T, 1990, PHYS FLUIDS A-FLUID, V2, P639
PAN LS, 1999, J MICROMECH MICROENG, V9, P89
PARK JH, 2004, INT J HEAT MASS TRAN, V47, P1313, DOI
10.1016/j.ijheatmasstransfer.2003.08.028
PATANKAR NA, 2004, LANGMUIR, V20, P8209, DOI 10.1021/la048629t
PERKIN S, 2009, FARADAY DISCUSS, V141, P399, DOI 10.1039/b805244a
PFAHLER J, 1990, SENSOR ACTUAT A-PHYS, V21, P431
PIT R, 1999, TRIBOL LETT, V7, P147
PIT R, 2000, PHYS REV LETT, V85, P980
POISEUILLE JLM, 1841, CR HEBD ACAD SCI, V12, P112
POLIKARPOV PJ, 2003, J APPL MECH TECH PHY, V44, P298
PONOMAREV IV, 2003, PHYS REV E 2, V67, ARTN 026302
POPOV VN, 2004, MAT SCI ENG R, V43, P61, DOI 10.1016/j.mser.2003.10.001
PORODNOV BT, 1974, J FLUID MECH, V64, P417
PRIEZJEV NV, 2004, PHYS REV LETT, V92, ARTN 018302
PRIEZJEV NV, 2009, PHYS REV E 1, V80, ARTN 031608
QU J, 2004, PHYS FLUIDS, V16, P4635
RAVIV U, 2002, J PHYS-CONDENS MAT, V14, P9275
RAWOOL AS, 2006, MICROFLUID NANOFLUID, V2, P215, DOI
10.1007/s10404-005-0064-5
REDDY KC, 1968, PHYS FLUIDS, V11, P1308
REESE JM, 2007, J COMPUT THEOR NANOS, V4, P807, DOI
10.1166/jctn.2007.015
RETTNER CT, 1998, IEEE T MAGN 2, V34, P2387
RICHARDSON S, 1973, J FLUID MECHANICS 4, V59, P707
ROGERS B, 2007, NANOTECHNOLOGY UNDER
ROSTAMI AA, 2002, HEAT MASS TRANSFER, V38, P339
ROWLINSON J, 1982, MOL THEORY CAPILLARI
RUCKENSTEIN E, 1983, J COLLOID INTERF SCI, V96, P488
RUCKENSTEIN E, 1991, J COLLOID INTERF SCI, V147, P535
SARKAR K, 1996, J FLUID MECH, V316, P223
SAZHIN OV, 2001, J VAC SCI TECHNOL A, V19, P2499
SAZHIN OV, 2002, J VAC SCI TECHNOL A, V20, P957
SBRAGAGLIA M, 2005, PHYS FLUIDS, V17, ARTN 093602
SBRAGAGLIA M, 2007, PHYS FLUIDS, V19, ARTN 043603
SCHAAF SA, 1961, FLOW RAREFIED GASES
SCHMATKO T, 2005, PHYS REV LETT, V94, ARTN 244501
SCHNELL E, 1956, J APPL PHYS, V27, P1149
SCHRAM PPJ, 1991, KINETIC THEORY GASES
SEIDL M, 1974, RAREFIED GAS DYNAMIC
SHAVALIYEV MS, 1993, PMM-J APPL MATH MEC+, V57, P573
SHIELDS FD, 1975, J CHEM PHYS, V62, P1248
SHIELDS FD, 1980, J CHEM PHYS, V72, P3767
SHIELDS FD, 1983, J CHEM PHYS, V78, P3329
SHIOMI J, 2009, NANOTECHNOLOGY, V20, ARTN 055708
SOFOS FD, 2009, PHYS REV E 2, V79, ARTN 026305
SOKHAN VP, 2001, J CHEM PHYS, V115, P3878
SOKHAN VP, 2002, J CHEM PHYS, V117, P8531, DOI 10.1063/1.1512643
SOKHAN VP, 2008, PHYS REV E 2, V78, ARTN 015301
SOONG CY, 2004, PHYS FLUIDS, V16, P2814, DOI 10.1063/1.1751402
SOONG CY, 2007, PHYS REV E 2, V76, ARTN 036303
SPIJKER P, 2008, 6 INT C NAN MICR MIN, P959
SPIKES H, 2003, LANGMUIR, V19, P5065, DOI 10.1021/la034123j
SPIKES HA, 2003, P I MECH ENG J-J ENG, V217, P1
SPORI DM, 2008, LANGMUIR, V24, P5411, DOI 10.1021/la800215r
SQUIRES TM, 2005, REV MOD PHYS, V77, P977
STACY LJ, 1923, PHYS REV, V21, P239
STANISLAS M, 2000, PARTICLE IMAGE VELOC
STEINBERGER A, 2007, NAT MATER, V6, P665, DOI 10.1038/nmat1962
STEITZ R, 2003, LANGMUIR, V19, P2409, DOI 10.1021/la026731p
STOKES GG, 1966, MATH PHYSICAL PAPERS, V1, P75
STONE HA, 2004, ANNU REV FLUID MECH, V36, P381, DOI
10.1146/annurev.fluid.36.050802.122124
STOPS DW, 1970, J PHYS D, V3, P685
STRUCHTRUP H, 2003, PHYS FLUIDS, V15, P2668, DOI 10.1063/1.1597472
SU CH, 2008, CHINESE J INORG CHEM, V24, P298
SUCCI S, 2001, LATTICE BOLTZMANN EQ
SUETIN PE, 1973, J FLUID MECH, V60, P581
SUN GX, 2002, J CHEM PHYS, V117, P10311, DOI 10.1063/1.1515970
SUN J, 2008, MOL PHYS, V106, P2325, DOI 10.1080/00268970802452020
SUN J, 2009, MICROFLUID NANOFLUID, V7, P407, DOI
10.1007/s10404-008-0394-1
SUN J, 2009, P 7 INT C NAN MICR M
SUN M, 1992, PHYS REV LETT, V69, P3491
SUN Y, 2005, PHYS FLUIDS, V17, UNSP 047102-047107
SUPPLE S, 2003, PHYS REV LETT, V90, ARTN 214501
TABOR D, 1969, P ROY SOC LOND A MAT, V312, P435
TAKEUCHI H, 2005, AIP CONF PROC, V762, P987
TANG GH, 2005, PHYS FLUIDS, V17, ARTN 058101
TANG GH, 2007, INT J MOD PHYS C, V18, P203
TEHVER R, 1998, PHYS REV E, V57, R17
TEKASAKUL P, 1996, J VAC SCI TECHNOL A, V14, P2946
THOMAS JA, 2008, NANO LETT, V8, P2788, DOI 10.1021/nl8013617
THOMAS LB, 1974, P 8 INT S RAR GAS DY, P405
THOMPSON PA, 1989, PHYS REV LETT, V63, P766
THOMPSON PA, 1990, PHYS REV A, V41, P6830
THOMPSON PA, 1997, NATURE, V389, P360
TOENNIES JP, 1974, APPL PHYS, V3, P91
TOLSTOI DM, 1952, DOKL AKAD NAUK SSSR, V85, P1089
TORRILHON M, 2004, J FLUID MECH, V513, P171, DOI
10.1017/S0022112004009917
TRETHEWAY DC, 2002, PHYS FLUIDS, V14, L9
TRETHEWAY DC, 2004, B AM PHYS SOC, V49, P215
TRETHEWAY DC, 2004, PHYS FLUIDS, V16, P1509, DOI 10.1063/1.1669400
TRUESDELL R, 2006, PHYS REV LETT, V97, ARTN 044504
TYRRELL JWG, 2001, PHYS REV LETT, V87, ARTN 176104
TYRRELL JWG, 2002, LANGMUIR, V18, P160
ULMANELLA U, 2008, PHYS FLUIDS, V20, ARTN 101512
VANDYKE KS, 1923, PHYS REV, V21, P250
VEIJOLA T, 1998, SENSOR ACTUAT A-PHYS, V66, P83
VERWEIJ H, 2007, SMALL, V3, P1996, DOI 10.1002/smll.200700368
VINOGRADOVA OI, 1995, LANGMUIR, V11, P2213
VINOGRADOVA OI, 1999, INT J MINER PROCESS, V56, P31
VINOGRADOVA OI, 2003, LANGMUIR, V19, P1227, DOI 10.1021/la026419f
VINOGRADOVA OI, 2006, PHYS REV E 2, V73, ARTN 045302
VONBAEYER HC, 2000, SCIENCES, V40, P12
VONHELMHOLZ H, 1882, WISSENSCAHFTLICHE AB, V1, P196
VORONOV RS, 2006, J CHEM PHYS, V124, ARTN 204701
VORONOV RS, 2008, IND ENG CHEM RES, V47, P2455, DOI 10.1021/ie0712941
WADSWORTH DC, 2003, RAREFIED GAS DYN, V663, P965
WALTHER JH, 2004, PHYS REV E 1, V69, ARTN 062201
WANG CY, 2003, PHYS FLUIDS, V15, P1114, DOI 10.1063/1.1560925
WANG H, 2007, J MICROMECH MICROENG, V17, P586
WANG JK, 2007, INT J THERM SCI, V46, P228, DOI
10.1016/j.ijthermalsci.2006.04.012
WANG M, 2003, PHYS REV E 2, V68, ARTN 046704
WANG M, 2008, INT J HEAT MASS TRAN, V51, P3630, DOI
10.1016/j.ijheatmasstransfer.2007.10.011
WANG YC, 2007, CHEM ENG SCI, V62, P3574
WATANABE K, 1998, JSME INT J B-FLUID T, V41, P525
WATANABE K, 1998, JSME INT J B-FLUID T, V44, P556
WATANABE K, 1999, J FLUID MECH, V381, P225
WHETHAM WCD, 1890, PHILOS T R SOC LON A, V181, P559
WHITBY M, 2007, NAT NANOTECHNOL, V2, P87, DOI 10.1038/nnano.2006.175
WHITBY M, 2008, NANO LETT, V8, P2632, DOI 10.1021/nl080705f
WHITE FM, 2003, FLUID MECH
WHITESIDES GM, 2006, NATURE, V442, P368, DOI 10.1038/nature05058
WILLIS DR, 1962, PHYS FLUIDS, V5, P127
WOLF FG, 2009, J STAT MECH-THEO JUN, ARTN P06008
WU L, 2008, APPL PHYS LETT, V93, ARTN 253103
YAMAMOTO K, 2001, AIP CONF PROC, V585, P339
YAMAMOTO K, 2003, AIP CONF PROC, V663, P1008
YAMAMOTO K, 2006, PHYS FLUIDS, V18, ARTN 046103
YAMANISHI N, 1999, PHYS FLUIDS, V11, P3540
YANG SC, 2005, MOL SIMULAT, V31, P971, DOI 10.1080/08927020500423778
YANG SC, 2006, MICROFLUID NANOFLUID, V2, P501, DOI
10.1007/s10404-006-0096-5
YANG SJ, 2007, LANGMUIR, V23, P7072, DOI 10.1021/1a070004i
YBERT C, 2007, PHYS FLUIDS, V19, ARTN 123601
YEN TH, 2007, MICROFLUID NANOFLUID, V3, P665, DOI
10.1007/s10404-007-0154-7
YOUNG T, 1805, PHILOS T R SOC LONDO, V95, P65
YU YS, 2006, CHINESE PHYS LETT, V23, P1634
ZAMBRANO HA, 2009, NANO LETT, V9, P66, DOI 10.1021/nl802429s
ZHANG HW, 2006, INT J MULTISCALE COM, V4, P3
ZHANG XH, 2006, LANGMUIR, V22, P5025, DOI 10.1021/la0601814
ZHANG XH, 2008, LANGMUIR, V24, P4756, DOI 10.1021/la703475q
ZHONG XL, 1993, AIAA J, V31, P1036
ZHU LD, 2005, J COMPUT PHYS, V202, P181, DOI 10.1016/j.jcp.2004.07.004
ZHU YX, 2001, PHYS REV LETT, V87, ARTN 096105
ZHU YX, 2002, LANGMUIR, V18, P10058, DOI 10.1021/la026016f
ZHU YX, 2002, MACROMOLECULES, V35, P4658
ZHU YX, 2002, PHYS REV LETT, V88, ARTN 106102
ZIARANI AS, 2008, NANOSC MICROSC THERM, V12, P154, DOI
10.1080/15567260802171929
NR 412
TC 0
PU MOLECULAR DIVERSITY PRESERVATION INTERNATIONAL-MDPI; KANDERERSTRASSE
25, CH-4057 BASEL, SWITZERLAND
SN 1422-0067
DI 10.3390/ijms10114638
PD NOV
VL 10
IS 11
BP 4638
EP 4706
SC Chemistry, Multidisciplinary
GA 525CR
UT ISI:000272191200003
ER

EF

========================================================================
*Order Full Text*
All Customers
--------------
Please contact your library administrator, or person(s) responsible for
document delivery, to find out more about your organization's policy for
obtaining the full text of the above articles. If your organization does
not have a current document delivery provider, your administrator can
contact ISI Document Solution at service@isidoc.com, or call 800-603-4367
or 734-459-8565.

IDS Customers
--------------
IDS customers can purchase the full text of an article (having page number,
volume, and issue information) by returning this ENTIRE message as a Reply
to Sender or Forward to orders@isidoc.com. Mark your choices with an X in
the "Order Full Text: []" brackets for each item. For example, [X].

Please enter your account number here:

========================================================================
*Import Records into an ISI ResearchSoft product*
1) Save the email as a text file. If your e-mail software removed extra line breaks, restore them before saving.
2) From within an ISI ResearchSoft product, import the text file using the ISI-CE filter.
========================================================================
*Help Desk Contact Information*
If you have any questions, please visit the Thomson Scientific Technical Support Contact Information Web page:
http://www.thomsonscientific.com/support/techsupport
========================================================================

No comments: