Cited Article:    Holt JK. Fast mass transport through sub-2-nanometer carbon nanotubes
 Alert Expires:    09 NOV 2010
 Number of Citing Articles:    3 new records this week (3 in this e-mail)
 Organization ID:  3b97d1bbc1878baed0ab183d8b03130b
========================================================================
 Note:  Instructions on how to purchase the full text of an article, import the records into an 
 ISI ResearchSoft product, and Help Desk Contact information are at the end of the e-mail.
========================================================================
FN ISI Export Format
VR 1.0
PT J
*Record 1 of 3. 
L5 <http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;UT=000272175100003>
*Order Full Text [ ]
AU Cannon, J
   Hess, O
AF Cannon, James
   Hess, Ortwin
TI Fundamental dynamics of flow through carbon nanotube membranes
SO MICROFLUIDICS AND NANOFLUIDICS
LA English
DT Article
DE Non-equilibrium molecular dynamics; Carbon nanotube; Membrane flow
ID MOLECULAR-DYNAMICS; TRANSPORT DIFFUSION; MASS-TRANSPORT; WATER;
   NONEQUILIBRIUM; FLUIDS; SIMULATION; MODEL
AB The flow of a model non-polar liquid through small carbon nanotubes is
   studied using non-equilibrium molecular dynamics simulation. We explain
   how a membrane of small-diameter nanotubes can transport this liquid
   faster than a membrane consisting of larger-diameter nanotubes. This
   effect is shown to be back-pressure dependent, and the reasons for this
   are explored. The flow through the very smallest nanotubes is shown to
   depend strongly on the depth of the potential inside, suggesting atomic
   separation can be based on carbon interaction strength as well as
   physical size. Finally, we demonstrate how increasing the back-pressure
   can counter-intuitively result in lower exit velocities from a
   nanotube. Such studies are crucial for optimisation of nanotube
   membranes.
C1 [Cannon, James; Hess, Ortwin] Univ Surrey, Adv Technol Inst, Dept Phys, Fac Engn & Phys Sci, Guildford GU2 7XH, Surrey, England.
RP Cannon, J, Univ Surrey, Adv Technol Inst, Dept Phys, Fac Engn & Phys
   Sci, Guildford GU2 7XH, Surrey, England.
EM j.cannon@surrey.ac.uk
CR ACKERMAN DM, 2003, MOL SIMULAT, V29, P677, DOI
   10.1080/0892702031000103239
   ALLEN MP, 1987, COMPUTER SIMULATION
   ARORA G, 2005, J CHEM PHYS, V123, UNSP 044,705
   ARYA G, 2001, J CHEM PHYS, V115, P8112
   CHEN HB, 2006, J MEMBRANE SCI, V269, P152, DOI
   10.1016/j.memsci.2005.06.030
   DUREN T, 2002, CHEM ENG SCI, V57, P1343
   DUREN T, 2002, MOL PHYS, V100, P3741, DOI 10.1080/0026897021000028429
   DZUBIELLA J, 2004, J CHEM PHYS, V120, P5001, DOI 10.1063/1.1665656
   FANG HP, 2008, J PHYS D, V41, P103
   HINDS BJ, 2004, SCIENCE, V303, P62, DOI 10.1126/science.1092048
   HOLT JK, 2006, SCIENCE, V312, P1034, DOI 10.1126/science.1126298
   HUMMER G, 2001, NATURE, V414, P188
   JAKOBTORWEIHEN S, 2005, PHYS REV LETT, V95, UNSP 044,501
   JAKOBTORWEIHEN S, 2006, J PHYS CHEM B, V110, P16332, DOI
   10.1021/jp063424+
   JOSEPH S, 2008, NANO LETT, V8, P452, DOI 10.1021/nl072385q
   KOSTOV MK, 2002, PHYS REV LETT, V89, P146
   LEE KH, 2004, J PHYS CHEM B, V108, P9861, DOI 10.1021/jp036791j
   MAO ZG, 2000, J PHYS CHEM B, V104, P4618
   MILLER SA, 2001, J AM CHEM SOC, V123, P12335
   NAGAYAMA G, 2004, INT J HEAT MASS TRAN, V47, P501, DOI
   10.1016/j.ijheatmasstransfer.2003.07.013
   SHIOMI J, 2009, NANOTECHNOLOGY, V20, UNSP 055,708
   SKOULIDAS AI, 2002, PHYS REV LETT, V89, UNSP 185,901
   SUN L, 2000, J AM CHEM SOC, V122, P12340, DOI 10.1021/ja002429w
   SUPPLE S, 2003, PHYS REV LETT, V90, UNSP 214,501
   TRAVIS KP, 2000, J CHEM PHYS, V112, P1984
   VERLET L, 1967, PHYS REV, V159, P98
   ZHANG Q, 2008, MOL BIOL REP, V35, P439, DOI 10.1007/s11033-007-9104-4
   ZHU FQ, 2002, BIOPHYS J, V83, P154
NR 28
TC 0
PU SPRINGER HEIDELBERG; TIERGARTENSTRASSE 17, D-69121 HEIDELBERG, GERMANY
SN 1613-4982
DI 10.1007/s10404-009-0446-1
PD JAN
VL 8
IS 1
BP 21
EP 31
SC Nanoscience & Nanotechnology; Instruments & Instrumentation; Physics,
   Fluids & Plasmas
GA 524WM
UT ISI:000272175100003
ER
PT J
*Record 2 of 3. 
L5 <http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;UT=000271428200002>
*Order Full Text [ ]
AU Rodriguez, J
   Elola, MD
   Laria, D
AF Rodriguez, Javier
   Dolores Elola, M.
   Laria, Daniel
TI Coaxial Cross-Diffusion through Carbon Nantoubes
SO JOURNAL OF PHYSICAL CHEMISTRY B
LA English
DT Article
ID MOLECULAR-DYNAMICS SIMULATIONS; NANOTUBE MEMBRANES; LIQUID WATER;
   TRANSPORT; MIXTURES; PORES; MODEL
AB We present results from nonequilibrium molecular dynamics experiments
   describing the relaxation of local concentrations at two reservoirs,
   initially filled with water (W) and acetonitrile (ACN), as they become
   connected through a membrane composed of (16,16) carbon nanotubes.
   Within the hydrophobic nanotube cavities, the equilibrium
   concentrations contrast sharply to those observed at the reservoirs,
   with a clear enhancement of ACN, in detriment of W. From the dynamical
   side, the relaxation involves three well-differentiated stages; the
   first one corresponds to the equilibration of individual concentrations
   within the nanotubes. An intermediate interval with Fickian
   characteristics follows, during which the overall transport can be cast
   in terms of coaxial opposite fluxes, with a central water domain
   segregated from an external ACN shell, in close contact with the tube
   walls. We also found evidence of a third, much slower, mechanism to
   reach equilibration, which involves structural modifications of tightly
   bound solvation shells, in close contact with the nanotube rims.
C1 [Rodriguez, Javier; Dolores Elola, M.; Laria, Daniel] Comis Nacl Energia Atom, Dept Fis, RA-1429 Buenos Aires, DF, Argentina.
   [Rodriguez, Javier] UNSAM, ECyT, RA-1650 San Martin, Buenos Aires, Argentina.
   [Laria, Daniel] Univ Buenos Aires, Dept Quim Inorgan Analit & Quim Fis & INQUIMAE, Fac Ciencias Exactas & Nat, RA-1428 Buenos Aires, DF, Argentina.
RP Laria, D, Comis Nacl Energia Atom, Dept Fis, Ave Libertador 8250,
   RA-1429 Buenos Aires, DF, Argentina.
EM dhlaria@cnea.gov.ar
CR ALEXIADIS A, 2008, CHEM REV, V108, P5104
   BERENDSEN HJC, 1987, J PHYS CHEM-US, V91, P6269
   CHANDLER D, 1987, INTRO MODERN STAT ME, CH8
   CHEN HB, 2004, J AM CHEM SOC, V126, P7778, DOI 10.1021/ja039462d
   CHEN X, 2008, NANO LETT, V8, P2988, DOI 10.1021/nl802046b
   FORNASIERO F, 2008, P NATL ACAD SCI USA, V105, P17250, DOI
   10.1073/pnas.0710437105
   GRABULEDA X, 2000, J COMPUT CHEM, V21, P901
   HEFTER G, 2005, PURE APPL CHEM, V77, P605, DOI 10.1351/pac200577030605
   HINDS BJ, 2004, SCIENCE, V303, P62, DOI 10.1126/science.1092048
   HOHMANN S, 2001, CURRENT TOPICS MEMBR, P51
   HOLT JK, 2006, SCIENCE, V312, P1034, DOI 10.1126/science.1126298
   HUANG LL, 2006, J PHYS CHEM B, V110, P25761, DOI 10.1021/jp064676d
   HUMMER G, 2001, NATURE, V414, P188
   HUNG L, 2007, J PHYS CHEM C, V111, P11912
   HWANG HJ, 2004, PHYSICA E, V23, P208, DOI 10.1016/j.physe.2004.03.006
   IIJIMA S, 1993, NATURE, V363, P603
   JIRAGE KB, 1997, SCIENCE, V278, P655
   KAGULIN ON, 2008, NANO LETT, V8, P2126
   KAMALA CR, 2002, PHYS REV E 1, V65, ARTN 061202
   KAMALA CR, 2004, J PHYS CHEM B, V108, P4411, DOI 10.1021/jp036291q
   KARLA A, 2003, P NATL ACAD SCI USA, V100, P1017
   KIM P, 1999, SCIENCE, V286, P2148
   KRISHNA R, 2006, IND ENG CHEM RES, V45, P2084, DOI 10.1021/ie051126d
   LEE KH, 2005, NANO LETT, V5, P793, DOI 10.1021/nl0502219
   LIU C, 1999, SCIENCE, V286, P1127
   LIU YC, 2005, PHYS REV B, V72, ARTN 085420
   LOPEZ CF, 2004, P NATL ACAD SCI USA, V101, P4431, DOI
   10.1073/pnas.0400352101
   LUI Y, 2005, PHYS REV B, V72, UNSP 085420
   MACKERELL AD, 1998, J PHYS CHEM B, V102, P3586
   MAIBAUM L, 2003, J PHYS CHEM B, V107, P1189, DOI 10.1021/jp0267196
   MAJUMDER M, 2007, LANGMUIR, V23, P8624, DOI 10.1021/la700686k
   MAO Z, 2002, PHYS REV LETT, V27, UNSP 278301
   MAO ZG, 2001, J PHYS CHEM B, V105, P6916, DOI 10.1021/jp0103272
   MARTI J, 2003, J CHEM PHYS, V119, P12540, DOI 10.1063/1.1625912
   MURIS M, 2000, LANGMUIR, V16, P7019
   RODRIGUEZ J, IN PRESS
   RODRIGUEZ J, 2009, J PHYS CHEM B, V113, P12744, DOI 10.1021/jp905920m
   SAZONOVA V, 2004, NATURE, V287, P622
   SINGH R, 2006, P NATL ACAD SCI USA, V103, P3357, DOI
   10.1073/pnas.0509009103
   SKOULIDAS AI, 2002, PHYS REV LETT, V89, ARTN 185901
   SKOULIDAS AI, 2003, J MEMBRANE SCI, V227, P123, DOI
   10.1016/j.memsci.2003.08.021
   STRIOLO A, 2006, NANO LETT, V6, P633, DOI 10.1021/nl052254u
   TAYLOR R, 1993, MULTICOMPONENT MASS
   THOMAS JA, 2009, PHYS REV LETT, V102, ARTN 184502
   VONGOLDAMMER E, 1970, J PHYS CHEM-US, V74, P3734
   WAGHE A, 2002, J CHEM PHYS, V117, P10789, DOI 10.1063/1.1519861
   ZHENG J, 2005, J CHEM PHYS, V122, ARTN 214702
NR 47
TC 0
PU AMER CHEMICAL SOC; 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 1520-6106
DI 10.1021/jp908791b
PD NOV 12
VL 113
IS 45
BP 14844
EP 14848
SC Chemistry, Physical
GA 514WY
UT ISI:000271428200002
ER
PT J
*Record 3 of 3. 
L5 <http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;UT=000272191200003>
*Order Full Text [ ]
AU Cao, BY
   Sun, J
   Chen, M
   Guo, ZY
AF Cao, Bing-Yang
   Sun, Jun
   Chen, Min
   Guo, Zeng-Yuan
TI Molecular Momentum Transport at Fluid-Solid Interfaces in MEMS/NEMS: A
   Review
SO INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES
LA English
DT Review
DE fluid-solid interfaces; molecular momentum transport; velocity slip;
   boundary conditions; momentum accommodation coefficient;
   micro/nanofluidics; molecular dynamics
ID SPINNING ROTOR GAUGE; HYDRODYNAMIC BOUNDARY-CONDITIONS; VELOCITY SLIP
   COEFFICIENTS; GAS-SURFACE INTERACTION; LATTICE BOLTZMANN METHOD;
   SIMULATION MONTE-CARLO; THIN LIQUID-FILMS; HYDROPHOBIC MICROCHANNEL
   WALLS; ATOMIC-FORCE MICROSCOPE; FAST MASS-TRANSPORT
AB This review is focused on molecular momentum transport at fluid-solid
   interfaces mainly related to microfluidics and nanofluidics in
   micro-/nano-electromechanical systems (MEMS/NEMS). This broad subject
   covers molecular dynamics behaviors, boundary conditions, molecular
   momentum accommodations, theoretical and phenomenological models in
   terms of gas-solid and liquid-solid interfaces affected by various
   physical factors, such as fluid and solid species, surface roughness,
   surface patterns, wettability, temperature, pressure, fluid viscosity
   and polarity. This review offers an overview of the major achievements,
   including experiments, theories and molecular dynamics simulations, in
   the field with particular emphasis on the effects on microfluidics and
   nanofluidics in nanoscience and nanotechnology. In Section 1 we present
   a brief introduction on the backgrounds, history and concepts. Sections
   2 and 3 are focused on molecular momentum transport at gas-solid and
   liquid-solid interfaces, respectively. Summary and conclusions are
   finally presented in Section 4.
C1 [Cao, Bing-Yang; Sun, Jun; Chen, Min; Guo, Zeng-Yuan] Tsinghua Univ, Dept Engn Mech, Key Lab Thermal Sci & Power Engn, Minist Educ, Beijing 100084, Peoples R China.
   [Sun, Jun] Tsinghua Univ, Inst Nucl & New Energy Technol, Beijing 100084, Peoples R China.
RP Cao, BY, Tsinghua Univ, Dept Engn Mech, Key Lab Thermal Sci & Power
   Engn, Minist Educ, Beijing 100084, Peoples R China.
EM caoby@tsinghua.edu.cn
   sunjun@tsinghua.edu.cn
   mchen@tsinghua.edu.cn
   demgzy@tsinghua.edu.cn
CR AGRAWAL A, 2005, NANO LETT, V5, P1751, DOI 10.1021/nl051103o
   AGRAWAL A, 2008, EXP THERM FLUID SCI, V32, P991, DOI
   10.1016/j.expthermflusci.2007.11.010
   AGRAWAL A, 2008, J VAC SCI TECHNOL A, V26, P634, DOI 10.1116/1.2943641
   ALBERTONI S, 1963, PHYS FLUIDS, V6, P993
   ALLEN JJ, 2005, MICROELECTROMECHANIC
   ALLEN MP, 1987, COMPUTER SIMULATION
   AMBAYE H, 2006, PHYS REV E 1, V73, ARTN 031202
   ANDRIENKO D, 2003, J CHEM PHYS, V119, P13106, DOI 10.1063/1.1627751
   ARKILIC EB, 2001, J FLUID MECH, V437, P29
   ARLEMARK EJ, 2008, P 6 INT C NAN MICR, P95
   ARLEMARK EJ, 2009, J HEAT TRAN IN PRESS
   ARYA G, 2003, MOL SIMULAT, V29, P697, DOI 10.1080/0892702031000103257
   ATWOOD BT, 1989, RHEOL ACTA, V28, P134
   BALAKRISHNAN R, 2004, J FLUID MECH, V503, P201, DOI
   10.1017/S0022112004007876
   BARBER RW, 2006, HEAT TRANSFER ENG, V27, P3, DOI
   10.1080/01457630500522271
   BARRAT JL, 1999, FARADAY DISCUSS, V112, P119
   BARRAT JL, 1999, PHYS REV LETT, V82, P4671
   BARTHLOTT W, 1997, PLANTA, V202, P1
   BARTHLOTT W, 2001, TEKSTIL, V50, P461
   BATCHELOR GK, 1967, INTRO FLUID DYNAMICS
   BAUDRY J, 2001, LANGMUIR, V17, P5232
   BAUGHMAN RH, 2002, SCIENCE, V297, P787
   BEAMS JW, 1946, J APPL PHYS, V17, P886
   BECHER T, 2005, MOL SIMULAT, V31, P489
   BENTZ JA, 1997, VACUUM, V48, P817
   BENTZ JA, 1999, J VAC SCI TECHNOL A, V17, P235
   BENTZ JA, 2001, J VAC SCI TECHNOL A, V19, P317
   BHATNAGAR PL, 1954, PHYS REV, V94, P511
   BIBEN T, 2008, PHYS REV LETT, V100, ARTN 186103
   BINDER K, 2004, J PHYS-CONDENS MAT, V16, S429
   BIRD GA, 1994, MOL GAS DYNAMICS DIR
   BLAKE TD, 1990, COLLOID SURFACE, V47, P135
   BLANCHARD D, 2007, PHYS FLUIDS, V19, UNSP 063602-063612
   BOCQUET L, 1993, PHYS REV LETT, V70, P2726
   BOCQUET L, 1994, PHYS REV E A, V49, P3079
   BOCQUET L, 2007, SOFT MATTER, V3, P685, DOI 10.1039/b616490k
   BOEHNKE UC, 1999, J COLLOID INTERF SCI, V211, P243
   BONACCURSO E, 2002, PHYS REV LETT, V88, UNSP 076103
   BONACCURSO E, 2003, PHYS REV LETT, V90, ARTN 144501
   BORKENT BM, 2007, PHYS REV LETT, V98, ARTN 204502
   BOUZIGUES CI, 2008, PHYS REV LETT, V101, ARTN 114503
   BREMNER JGM, 1950, P ROY SOC LOND A MAT, V201, P305
   BURNETT D, 1935, P LOND MATH SOC, V39, P385
   BUSCHNELL DM, 1991, ANNU REV FLUID MECH, V23, P65
   BYUN D, 2008, PHYS FLUIDS, V20, ARTN 113601
   CAO BY, 2004, CHINESE PHYS LETT, V21, P1777
   CAO BY, 2005, APPL PHYS LETT, V86, UNSP 091905
   CAO BY, 2006, ACTA PHYS SIN-CH ED, V55, P5305
   CAO BY, 2006, INT J ENG SCI, V44, P927, DOI
   10.1016/j.ijengsci.2006.06.005
   CAO BY, 2006, PHYS REV E 2, V74, ARTN 066311
   CAO BY, 2007, MOL PHYS, V105, P1403, DOI 10.1080/00268970701361322
   CAO BY, 2009, MEMS TECHNOLOGY FABR
   CASSIE ABD, 1944, T FARADAY SOC, V40, P546
   CELESTINI F, 2008, PHYS REV E 1, V77, ARTN 021202
   CERCIGNANI C, 1966, PHYS FLUIDS, V9, P1167
   CERCIGNANI C, 1971, TRANSPORT THEOR STAT, V1, P101
   CERCIGNANI C, 1988, BOLTZMANN EQUATION I
   CERCIGNANI C, 2000, RAREFIED GAS DYNAMIC
   CHAI ZH, 2008, J APPL PHYS, V104, ARTN 014902
   CHAN DYC, 1985, J CHEM PHYS, V83, P5311
   CHANG RF, 2007, J VAC SCI TECHNOL A, V25, P1567, DOI 10.1116/1.2790910
   CHAPMAN S, 1970, MATH THEORY NONUNIFO
   CHEIKH C, 2003, PHYS REV LETT, V91, ARTN 156102
   CHEN S, 1998, ANNU REV FLUID MECH, V30, P329
   CHEN X, 2008, NANO LETT, V8, P2988, DOI 10.1021/nl802046b
   CHENG JT, 2002, PHYS REV E 1, V65, ARTN 031206
   CHIANG SF, 1952, DRAG FORCES ROTATING
   CHIRITA V, 1993, J PHYS D APPL PHYS, V26, P133
   CHIRITA V, 1997, NUCL INSTRUM METH B, V129, P465
   CHO JHJ, 2004, PHYS REV LETT, V92, ARTN 166102
   CHOI CH, 2003, PHYS FLUIDS, V15, P2897, DOI 10.1063/1.1605425
   CHOI CH, 2006, PHYS FLUIDS, V18, ARTN 087105
   CHOI CH, 2006, PHYS REV LETT, V96, ARTN 066001
   CHRISTENSON HK, 2001, ADV COLLOID INTERFAC, V91, P391
   CHURAEV NV, 1984, J COLLOID INTERF SCI, V97, P574
   CHURAEV NV, 2002, ADV COLLOID INTERFAC, V96, P265
   CICCOTTI G, 1986, MOL DYNAMICS SIMULAT
   CIEPLAK M, 2001, PHYS REV LETT, V86, P803
   CIEPLAK M, 2006, PHYS REV LETT, V96, ARTN 114502
   COLIN S, 2004, HEAT TRANSFER ENG, V25, P23, DOI
   10.1080/01457630490280047
   COLLINS FG, 1994, AIAA J, V32, P765
   COLLINS FG, 1994, AIAA940036
   COLLINS FG, 1994, J SPACECRAFT ROCKETS, V31, P965
   COMSA G, 1980, J VAC SCI TECHNOL, V17, P642
   COOK SR, 1994, AIAA942637
   COOK SR, 1997, PHYS REV E, V55, R3828
   COOK SR, 1998, PHYS REV E, V58, P504
   COOPER SM, 2004, NANO LETT, V4, P377, DOI 10.1021/nl0350682
   COTTINBIZONNE C, 2002, EUR PHYS J E, V9, P47, DOI
   10.1140/epje/i2002-10112-9
   COTTINBIZONNE C, 2003, NAT MATER, V2, P237, DOI 10.1038/nmat857
   COTTINBIZONNE C, 2004, EUR PHYS J E, V15, P427, DOI
   10.1140/epje/i2004-10061-9
   COTTINBIZONNE C, 2005, PHYS REV LETT, V94, ARTN 056102
   COUETTE MM, 1890, ANN CHIM PHYS 6, V21, P433
   CRAIG VSJ, 2001, PHYS REV LETT, V87, ARTN 054504
   CRAIGHEAD HG, 2000, SCIENCE, V290, P1535
   DADZIE SK, 2008, PHYSICA A, V387, P6079
   DAMMER SM, 2006, PHYS REV LETT, V96, ARTN 206101
   DARCY H, 1857, RECHERCHES EXPT RELA
   DEGENNES PG, 1985, REV MOD PHYS, V57, P827
   DEGENNES PG, 2002, LANGMUIR, V18, P3413
   DONGARI N, 2007, INT J HEAT MASS TRAN, V50, P3411, DOI
   10.1016/j.ijheatmasstransfer.2007.01.048
   DOUGHTY RO, 1969, RAREFIED GAS DYN, P1035
   DRESSELHAUS MS, 2000, CARBON NANOTUBES SYN
   ECKERT ER, 1987, ANAL HEAT MASS TRANS
   EINZEL D, 1990, PHYS REV LETT, V64, P2269
   ELLIS JS, 2003, J APPL PHYS, V94, P6201, DOI 10.1063/1.1619195
   EPSTEIN PS, 1950, J CHEM PHYS, V18, P1505
   EWART T, 2007, J FLUID MECH, V584, P337, DOI 10.1017/S0022112007006374
   EWART T, 2007, MICROFLUID NANOFLUID, V3, P689, DOI
   10.1007/s10404-007-0158-3
   EWART T, 2008, P 6 INT C NAN MICR, P65
   FAN XJ, 2002, PHYS FLUIDS, V14, P1146
   FEUILLEBOIS F, 2009, PHYS REV LETT, V102, ARTN 026001
   FEYNMAN RP, 1961, MINIATURIZATION, P282
   FINGER GW, 2007, T ASME, V129, P31
   FLEKKOY EG, 2000, EUROPHYS LETT, V52, P271
   FRENKEL J, 1955, KINETIC THEORY LIQUI
   GABIS DH, 1996, J VAC SCI TECHNOL A, V14, P2592
   GADELHAK M, 1999, J FLUID ENG-T ASME, V121, P5
   GADELHAK M, 2005, PHYS FLUIDS, V17, ARTN 100612
   GADELHAK M, 2006, HEAT TRANSFER ENG, V27, P13, DOI
   10.1080/01457630500522305
   GALEA TM, 2004, LANGMUIR, V20, P3477, DOI 10.1021/la035880k
   GAO LC, 2006, LANGMUIR, V22, P2966, DOI 10.1021/la0532149
   GAO XF, 2004, NATURE, V432, P36, DOI 10.1038/432036a
   GEORGES JM, 1993, J CHEM PHYS, V98, P7345
   GIORDANO N, 2001, J PHYS-CONDENS MAT, V13, R271
   GOGTE S, 2005, PHYS FLUIDS, V17, ARTN 051701
   GOLDSTEIN S, 1938, MODERN DEV FLUID MEC, V2
   GOLDSTEIN S, 1969, ANNU REV FLUID MECH, V1, P1
   GOOD RJ, 1992, J ADHES SCI TECHNOL, V6, P1269
   GOODMAN FO, 1976, DYNAMICS GAS SURFACE
   GOVARDHAN RN, 2009, PHYS FLUIDS, V21, ARTN 052001
   GRANICK S, 2003, NAT MATER, V2, P221
   GRAVESEN P, 1993, J MICROMECH MICROENG, V3, P168
   GRONYCH T, 2004, VACUUM, V73, P275, DOI 10.1016/j.vacuum.2003.12.017
   GUO ZL, 2005, PHYS REV E 2, V72, ARTN 036301
   GUO ZL, 2007, EPL-EUROPHYS LETT, V80, ARTN 24001
   GUO ZL, 2008, P NAT HEAT MASS TRAN
   GUO ZY, 2003, INT J HEAT FLUID FL, V24, P284, DOI
   10.1016/S0142-727X(03)00019-5
   GUO ZY, 2003, INT J HEAT MASS TRAN, V46, P149
   HADJICONSTANTINOU NG, 2003, PHYS FLUIDS, V15, P2352, DOI
   10.1063/1.1587155
   HAILE JM, 1993, MOL DYNAMICS SIMULAT
   HAMPTON MA, 2009, J COLLOID INTERF SCI, V329, P202, DOI
   10.1016/j.jcis.2008.09.040
   HASEGAWA T, 1997, PHYS FLUIDS, V9, P1
   HEINBUCH U, 1989, PHYS REV A, V40, P1144
   HENDY SC, 2009, J PHYS-CONDENS MAT, V21, ARTN 144202
   HENRY CL, 2004, PHYSICA A, V339, P60, DOI 10.1016/j.physa.2004.03.044
   HO CM, 1996, J FLUID ENG-T ASME, V118, P437
   HO CM, 1998, ANNU REV FLUID MECH, V30, P579
   HOLT JK, 2006, SCIENCE, V312, P1034, DOI 10.1126/science.1126298
   HOLT JK, 2008, MICROFLUID NANOFLUID, V5, P425, DOI
   10.1007/s10404-008-0301-9
   HOOK JR, 1991, SOLID STATE PHYS
   HORN RG, 1989, CHEM PHYS LETT, V162, P404
   HSIEH SS, 2004, INT J HEAT MASS TRAN, V47, P3877, DOI
   10.1016/j.ijheatmasstransfer.2004.03.027
   HSU TR, 2002, MEMS MICROSYSTEMS DE
   HU YD, 2003, ASME, V125, P871
   HU YH, 2006, REP PROG PHYS, V69, P1847, DOI 10.1088/0034-4885/69/6/R05
   HUANG C, 2007, J MICROELECTROMECH S, V16, P777, DOI
   10.1109/JMEMS.2007.892914
   HUANG DM, 2008, PHYS REV LETT, V101, ARTN 226101
   HUANG P, 2006, J FLUID MECH, V566, P447, DOI 10.1017/S0022112006002229
   HUANG P, 2007, PHYS FLUIDS, V19, ARTN 028104
   HURLBUT F, 1968, PHYS FLUIDS, V11, P486
   HURLBUT FC, 1997, RAREFIED GAS DYN, P355
   HYAKUTAKE T, 2005, AIP CONF PROC, V762, P780
   HYVALUOMA J, 2008, PHYS REV LETT, V100, ARTN 246001
   INSEPOV Z, 2006, NANO LETT, V6, P1893, DOI 10.1021/nl060932m
   ISHIDA N, 2000, LANGMUIR, V16, P6377
   ISRAELACHVILI JN, 1972, P ROY SOC LOND A MAT, V331, P19
   ISRAELACHVILI JN, 1986, J COLLOID INTERF SCI, V110, P263
   ISRAELACHVILI JN, 1988, SCIENCE, V240, P189
   JABBARZADEH A, 2000, PHYS REV E, V61, P690
   JANG J, 2007, J MICROMECH MICROENG, V17, P229, DOI
   10.1088/0960-1317/17/2/007
   JANG JS, 2003, PROC IEEE MICR ELECT, P287
   JANG JS, 2006, J MICROMECH MICROENG, V16, P493, DOI
   10.1088/0960-1317/16/3/004
   JANSONS KM, 1988, PHYS FLUIDS, V31, P15
   JIN S, 2001, J STAT PHYS, V103, P1009
   JIN S, 2004, EXP FLUIDS, V37, P825, DOI 10.1007/s00348-004-0870-7
   JOLY L, 2006, PHYS REV LETT, V96, ARTN 046101
   JOSEPH P, 2005, PHYS REV E 2, V71, ARTN 035303
   JOSEPH P, 2006, PHYS REV LETT, V97, ARTN 156104
   JOSEPH S, 2008, NANO LETT, V8, P452, DOI 10.1021/nl072385q
   JOUSTEN K, 2003, J VAC SCI TECHNOL A, V21, P318, DOI 10.1116/1.1531649
   KARNIADAKIS GE, 2002, MICROFLOWS FUNDAMENT
   KAUZMANN W, 1976, KINETIC THEORY GASES
   KENNARD EH, 1938, KINETIC THEORY GASES
   KISELEVA OA, 1999, COLLOID J+, V61, P263
   KLEIN J, 1998, J CHEM PHYS, V108, P6996
   KNECHTEL ED, 1969, RAREFIED GAS DYN, P1257
   KNUDSEN M, 1909, ANN PHYS, V28, P75
   KNUTH EL, 1979, AIAA J, V18, P602
   KOISHI T, 2005, J CHEM PHYS, V123, ARTN 204707
   KONG J, 2009, J PHYS CHEM C, V113, P624, DOI 10.1021/jp809164k
   KOPLIK J, 1988, PHYS REV LETT, V60, P1282
   KOPLIK J, 1989, PHYS FLUIDS A-FLUID, V1, P781
   KOPLIK J, 1995, ANNU REV FLUID MECH, V27, P257
   KUHLTHAU AR, 1949, J APPL PHYS, V20, P217
   KUO LS, 2009, COMPUT FLUIDS, V38, P883, DOI
   10.1016/j.compfluid.2008.09.008
   KUSCER I, 1974, RAREFIED GAS DYNAMIC
   LADENBURG R, 1907, ANN PHYS-BERLIN, V23, P447
   LAMB H, 1932, HYDRODYNAMICS
   LAN XD, 2008, J COMPUT PHYS, V227, P4763, DOI 10.1016/j.jcp.2008.01.012
   LASNE D, 2008, PHYS REV LETT, V100, ARTN 214502
   LAUGA E, 2003, J FLUID MECH, V489, P55, DOI 10.1017/S0022112003004695
   LAUGA E, 2004, PHYS REV E 2, V70, ARTN 026311
   LAUGA E, 2007, HDB EXPT FLUID DYNAM, P1219
   LEE HJ, 2006, J TEXT I, V97, P455, DOI 10.1533/joti.2006.0271
   LEONDES CT, 2006, MEMS NEMS HDB TECHNI
   LI Q, 2009, BIOMICROFLUIDICS, V3, ARTN 022409
   LI YX, 2006, NANOSC MICROSC THERM, V10, P109, DOI
   10.1080/10893950600643089
   LIANG XG, 2007, CHINESE SCI BULL, V52, P2457, DOI
   10.1007/s11434-007-0376-9
   LICHTER S, 2007, PHYS REV LETT, V98, ARTN 226001
   LIOU WW, 2006, MICROFLUID MECH PRIN
   LIU CF, 2009, INT J ENG SCI, V47, P660, DOI
   10.1016/j.ijengsci.2009.01.002
   LIU CF, 2009, INT J MOD PHYS C, V20, P953
   LIU J, 2007, J COMPUT PHYS, V227, P279
   LIVI R, 2003, NATURE, V421, P327, DOI 10.1038/421327a
   LJUNGGREN S, 1997, COLLOID SURFACE A, V129, P151
   LOCKERBY DA, 2004, PHYS REV E 2, V70, ARTN 017303
   LOCKERBY DA, 2005, AIAA J, V43, P1391
   LOCKERBY DA, 2005, PHYS FLUIDS, V17, ARTN 100609
   LOCKERBY DA, 2008, J FLUID MECH, V604, P235, DOI
   10.1017/S0022112008001158
   LONGHURST MJ, 2007, NANO LETT, V7, P3324, DOI 10.1021/nl071537e
   LORD RG, 1991, PHYS FLUIDS A-FLUID, V3, P706
   LORD RG, 1995, PHYS FLUIDS, V7, P1159
   LOYALKA SK, 1971, PHYS FLUIDS, V14, P2291
   LOYALKA SK, 1975, PHYS FLUIDS, V18, P1094
   LOYALKA SK, 1996, J VAC SCI TECHNOL A, V14, P2940
   LUM K, 1999, J PHYS CHEM B, V103, P4570
   LUMMA D, 2003, PHYS REV E 2, V67, ARTN 056313
   LYSHEVSKI SE, 2002, MEMS NEMS SYSTEMS DE
   MAALI A, 2008, PHYS REV E, V4, UNSP 027302.1-027302.4
   MAHULIKAR SP, 2007, J MICROELECTROMECH S, V16, P1542
   MAJUMDER M, 2005, NATURE, V438, P44, DOI 10.1038/43844a
   MARINO L, 2009, MICROFLUID NANOFLUID, V6, P109, DOI
   10.1007/s10404-008-0311-7
   MARMUR A, 2004, LANGMUIR, V20, P3517, DOI 10.1021/la036369u
   MARTINI A, 2008, J FLUID MECH, V600, P257, DOI 10.1017/S0022112008000475
   MARTINI A, 2008, PHYS REV LETT, V100, ARTN 206001
   MARUYAMA S, 2000, ADV NUMERICAL HEAT T, V2, P189
   MATTIA D, 2008, MICROFLUID NANOFLUID, V5, P289, DOI
   10.1007/s10404-008-0293-5
   MAURER J, 2003, PHYS FLUIDS, V15, P2613, DOI 10.1063/1.1599355
   MAXWELL JC, 1879, PHILOS T R SOC LONDO, V170, P231
   MAXWELL JC, 1890, SCI PAPERS JC MAXWEL, V2, P1
   MEYYAPPAN M, 2004, CARBON NANOTUBES SCI
   MILLIKAN RA, 1923, PHYS REV, V21, P217
   MITSUYA Y, 1993, J TRIBOL-T ASME, V115, P289
   MO G, 1990, PHYS REV A, V42, P4688
   MORANEY RM, 1991, APPL PHYS LETT, V59, P774
   MUNTZ EP, 1989, ANNU REV FLUID MECH, V21, P287
   NAGAYAMA G, 2004, INT J HEAT MASS TRAN, V47, P501, DOI
   10.1016/j.ijheatmasstransfer.2003.07.013
   NAMAVAR F, 2008, NANO LETT, V8, P988, DOI 10.1021/nl072147v
   NATSUKI T, 2008, J APPL PHYS, V103, ARTN 094312
   NAVIER CLM, 1823, MEMOIRES ACAD ROYALE, V6, P389
   NEDEA SV, 2007, ICNMM2007, P755
   NEDEA SV, 2008, 6 INT C NAN MICR MIN, P929
   NEDEA SV, 2009, J HEAT TRAN, V131, UNSP 033104-033108
   NETO C, 2003, EUR PHYS J E S1, V12, S71, DOI
   10.1140/epjed/e2003-01-018-0
   NETO C, 2005, REP PROG PHYS, V68, P2859, DOI 10.1088/0034-4885/68/12/R05
   NICHOLSON D, 2009, MOL SIMULAT, V35, P109, DOI 10.1080/08927020802301912
   NIE XB, 2004, J FLUID MECH, V500, P55, DOI 10.1017/S0022112003007225
   NOCILLA S, 1962, RAREFIED GAS DYN, V1, P327
   NOTTER RH, 1971, AIAA J, V9, P965
   NOY A, 2007, NANO TODAY, V2, P22
   NUN E, 2002, MACROMOL SYMP, V187, P677
   NYE JF, 1969, P ROY SOC LOND A MAT, V311, P445
   NYE JF, 1970, P ROY SOC LOND A MAT, V315, P381
   OCONNELL MJ, 2006, CARBON NANOTUBES PRO
   OCONNELL ST, 1995, PHYS REV E, V52, P5792
   OHARE L, 2007, INT J HEAT FLUID FL, V28, P37, DOI
   10.1016/j.ijheatfluidflow.2006.04.012
   OHWADA T, 1989, PHYS FLUIDS A-FLUID, V1, P2042
   OHWADA T, 1990, PHYS FLUIDS A-FLUID, V2, P639
   PAN LS, 1999, J MICROMECH MICROENG, V9, P89
   PARK JH, 2004, INT J HEAT MASS TRAN, V47, P1313, DOI
   10.1016/j.ijheatmasstransfer.2003.08.028
   PATANKAR NA, 2004, LANGMUIR, V20, P8209, DOI 10.1021/la048629t
   PERKIN S, 2009, FARADAY DISCUSS, V141, P399, DOI 10.1039/b805244a
   PFAHLER J, 1990, SENSOR ACTUAT A-PHYS, V21, P431
   PIT R, 1999, TRIBOL LETT, V7, P147
   PIT R, 2000, PHYS REV LETT, V85, P980
   POISEUILLE JLM, 1841, CR HEBD ACAD SCI, V12, P112
   POLIKARPOV PJ, 2003, J APPL MECH TECH PHY, V44, P298
   PONOMAREV IV, 2003, PHYS REV E 2, V67, ARTN 026302
   POPOV VN, 2004, MAT SCI ENG R, V43, P61, DOI 10.1016/j.mser.2003.10.001
   PORODNOV BT, 1974, J FLUID MECH, V64, P417
   PRIEZJEV NV, 2004, PHYS REV LETT, V92, ARTN 018302
   PRIEZJEV NV, 2009, PHYS REV E 1, V80, ARTN 031608
   QU J, 2004, PHYS FLUIDS, V16, P4635
   RAVIV U, 2002, J PHYS-CONDENS MAT, V14, P9275
   RAWOOL AS, 2006, MICROFLUID NANOFLUID, V2, P215, DOI
   10.1007/s10404-005-0064-5
   REDDY KC, 1968, PHYS FLUIDS, V11, P1308
   REESE JM, 2007, J COMPUT THEOR NANOS, V4, P807, DOI
   10.1166/jctn.2007.015
   RETTNER CT, 1998, IEEE T MAGN 2, V34, P2387
   RICHARDSON S, 1973, J FLUID MECHANICS  4, V59, P707
   ROGERS B, 2007, NANOTECHNOLOGY UNDER
   ROSTAMI AA, 2002, HEAT MASS TRANSFER, V38, P339
   ROWLINSON J, 1982, MOL THEORY CAPILLARI
   RUCKENSTEIN E, 1983, J COLLOID INTERF SCI, V96, P488
   RUCKENSTEIN E, 1991, J COLLOID INTERF SCI, V147, P535
   SARKAR K, 1996, J FLUID MECH, V316, P223
   SAZHIN OV, 2001, J VAC SCI TECHNOL A, V19, P2499
   SAZHIN OV, 2002, J VAC SCI TECHNOL A, V20, P957
   SBRAGAGLIA M, 2005, PHYS FLUIDS, V17, ARTN 093602
   SBRAGAGLIA M, 2007, PHYS FLUIDS, V19, ARTN 043603
   SCHAAF SA, 1961, FLOW RAREFIED GASES
   SCHMATKO T, 2005, PHYS REV LETT, V94, ARTN 244501
   SCHNELL E, 1956, J APPL PHYS, V27, P1149
   SCHRAM PPJ, 1991, KINETIC THEORY GASES
   SEIDL M, 1974, RAREFIED GAS DYNAMIC
   SHAVALIYEV MS, 1993, PMM-J APPL MATH MEC+, V57, P573
   SHIELDS FD, 1975, J CHEM PHYS, V62, P1248
   SHIELDS FD, 1980, J CHEM PHYS, V72, P3767
   SHIELDS FD, 1983, J CHEM PHYS, V78, P3329
   SHIOMI J, 2009, NANOTECHNOLOGY, V20, ARTN 055708
   SOFOS FD, 2009, PHYS REV E 2, V79, ARTN 026305
   SOKHAN VP, 2001, J CHEM PHYS, V115, P3878
   SOKHAN VP, 2002, J CHEM PHYS, V117, P8531, DOI 10.1063/1.1512643
   SOKHAN VP, 2008, PHYS REV E 2, V78, ARTN 015301
   SOONG CY, 2004, PHYS FLUIDS, V16, P2814, DOI 10.1063/1.1751402
   SOONG CY, 2007, PHYS REV E 2, V76, ARTN 036303
   SPIJKER P, 2008, 6 INT C NAN MICR MIN, P959
   SPIKES H, 2003, LANGMUIR, V19, P5065, DOI 10.1021/la034123j
   SPIKES HA, 2003, P I MECH ENG J-J ENG, V217, P1
   SPORI DM, 2008, LANGMUIR, V24, P5411, DOI 10.1021/la800215r
   SQUIRES TM, 2005, REV MOD PHYS, V77, P977
   STACY LJ, 1923, PHYS REV, V21, P239
   STANISLAS M, 2000, PARTICLE IMAGE VELOC
   STEINBERGER A, 2007, NAT MATER, V6, P665, DOI 10.1038/nmat1962
   STEITZ R, 2003, LANGMUIR, V19, P2409, DOI 10.1021/la026731p
   STOKES GG, 1966, MATH PHYSICAL PAPERS, V1, P75
   STONE HA, 2004, ANNU REV FLUID MECH, V36, P381, DOI
   10.1146/annurev.fluid.36.050802.122124
   STOPS DW, 1970, J PHYS D, V3, P685
   STRUCHTRUP H, 2003, PHYS FLUIDS, V15, P2668, DOI 10.1063/1.1597472
   SU CH, 2008, CHINESE J INORG CHEM, V24, P298
   SUCCI S, 2001, LATTICE BOLTZMANN EQ
   SUETIN PE, 1973, J FLUID MECH, V60, P581
   SUN GX, 2002, J CHEM PHYS, V117, P10311, DOI 10.1063/1.1515970
   SUN J, 2008, MOL PHYS, V106, P2325, DOI 10.1080/00268970802452020
   SUN J, 2009, MICROFLUID NANOFLUID, V7, P407, DOI
   10.1007/s10404-008-0394-1
   SUN J, 2009, P 7 INT C NAN MICR M
   SUN M, 1992, PHYS REV LETT, V69, P3491
   SUN Y, 2005, PHYS FLUIDS, V17, UNSP 047102-047107
   SUPPLE S, 2003, PHYS REV LETT, V90, ARTN 214501
   TABOR D, 1969, P ROY SOC LOND A MAT, V312, P435
   TAKEUCHI H, 2005, AIP CONF PROC, V762, P987
   TANG GH, 2005, PHYS FLUIDS, V17, ARTN 058101
   TANG GH, 2007, INT J MOD PHYS C, V18, P203
   TEHVER R, 1998, PHYS REV E, V57, R17
   TEKASAKUL P, 1996, J VAC SCI TECHNOL A, V14, P2946
   THOMAS JA, 2008, NANO LETT, V8, P2788, DOI 10.1021/nl8013617
   THOMAS LB, 1974, P 8 INT S RAR GAS DY, P405
   THOMPSON PA, 1989, PHYS REV LETT, V63, P766
   THOMPSON PA, 1990, PHYS REV A, V41, P6830
   THOMPSON PA, 1997, NATURE, V389, P360
   TOENNIES JP, 1974, APPL PHYS, V3, P91
   TOLSTOI DM, 1952, DOKL AKAD NAUK SSSR, V85, P1089
   TORRILHON M, 2004, J FLUID MECH, V513, P171, DOI
   10.1017/S0022112004009917
   TRETHEWAY DC, 2002, PHYS FLUIDS, V14, L9
   TRETHEWAY DC, 2004, B AM PHYS SOC, V49, P215
   TRETHEWAY DC, 2004, PHYS FLUIDS, V16, P1509, DOI 10.1063/1.1669400
   TRUESDELL R, 2006, PHYS REV LETT, V97, ARTN 044504
   TYRRELL JWG, 2001, PHYS REV LETT, V87, ARTN 176104
   TYRRELL JWG, 2002, LANGMUIR, V18, P160
   ULMANELLA U, 2008, PHYS FLUIDS, V20, ARTN 101512
   VANDYKE KS, 1923, PHYS REV, V21, P250
   VEIJOLA T, 1998, SENSOR ACTUAT A-PHYS, V66, P83
   VERWEIJ H, 2007, SMALL, V3, P1996, DOI 10.1002/smll.200700368
   VINOGRADOVA OI, 1995, LANGMUIR, V11, P2213
   VINOGRADOVA OI, 1999, INT J MINER PROCESS, V56, P31
   VINOGRADOVA OI, 2003, LANGMUIR, V19, P1227, DOI 10.1021/la026419f
   VINOGRADOVA OI, 2006, PHYS REV E 2, V73, ARTN 045302
   VONBAEYER HC, 2000, SCIENCES, V40, P12
   VONHELMHOLZ H, 1882, WISSENSCAHFTLICHE AB, V1, P196
   VORONOV RS, 2006, J CHEM PHYS, V124, ARTN 204701
   VORONOV RS, 2008, IND ENG CHEM RES, V47, P2455, DOI 10.1021/ie0712941
   WADSWORTH DC, 2003, RAREFIED GAS DYN, V663, P965
   WALTHER JH, 2004, PHYS REV E 1, V69, ARTN 062201
   WANG CY, 2003, PHYS FLUIDS, V15, P1114, DOI 10.1063/1.1560925
   WANG H, 2007, J MICROMECH MICROENG, V17, P586
   WANG JK, 2007, INT J THERM SCI, V46, P228, DOI
   10.1016/j.ijthermalsci.2006.04.012
   WANG M, 2003, PHYS REV E 2, V68, ARTN 046704
   WANG M, 2008, INT J HEAT MASS TRAN, V51, P3630, DOI
   10.1016/j.ijheatmasstransfer.2007.10.011
   WANG YC, 2007, CHEM ENG SCI, V62, P3574
   WATANABE K, 1998, JSME INT J B-FLUID T, V41, P525
   WATANABE K, 1998, JSME INT J B-FLUID T, V44, P556
   WATANABE K, 1999, J FLUID MECH, V381, P225
   WHETHAM WCD, 1890, PHILOS T R SOC LON A, V181, P559
   WHITBY M, 2007, NAT NANOTECHNOL, V2, P87, DOI 10.1038/nnano.2006.175
   WHITBY M, 2008, NANO LETT, V8, P2632, DOI 10.1021/nl080705f
   WHITE FM, 2003, FLUID MECH
   WHITESIDES GM, 2006, NATURE, V442, P368, DOI 10.1038/nature05058
   WILLIS DR, 1962, PHYS FLUIDS, V5, P127
   WOLF FG, 2009, J STAT MECH-THEO JUN, ARTN P06008
   WU L, 2008, APPL PHYS LETT, V93, ARTN 253103
   YAMAMOTO K, 2001, AIP CONF PROC, V585, P339
   YAMAMOTO K, 2003, AIP CONF PROC, V663, P1008
   YAMAMOTO K, 2006, PHYS FLUIDS, V18, ARTN 046103
   YAMANISHI N, 1999, PHYS FLUIDS, V11, P3540
   YANG SC, 2005, MOL SIMULAT, V31, P971, DOI 10.1080/08927020500423778
   YANG SC, 2006, MICROFLUID NANOFLUID, V2, P501, DOI
   10.1007/s10404-006-0096-5
   YANG SJ, 2007, LANGMUIR, V23, P7072, DOI 10.1021/1a070004i
   YBERT C, 2007, PHYS FLUIDS, V19, ARTN 123601
   YEN TH, 2007, MICROFLUID NANOFLUID, V3, P665, DOI
   10.1007/s10404-007-0154-7
   YOUNG T, 1805, PHILOS T R SOC LONDO, V95, P65
   YU YS, 2006, CHINESE PHYS LETT, V23, P1634
   ZAMBRANO HA, 2009, NANO LETT, V9, P66, DOI 10.1021/nl802429s
   ZHANG HW, 2006, INT J MULTISCALE COM, V4, P3
   ZHANG XH, 2006, LANGMUIR, V22, P5025, DOI 10.1021/la0601814
   ZHANG XH, 2008, LANGMUIR, V24, P4756, DOI 10.1021/la703475q
   ZHONG XL, 1993, AIAA J, V31, P1036
   ZHU LD, 2005, J COMPUT PHYS, V202, P181, DOI 10.1016/j.jcp.2004.07.004
   ZHU YX, 2001, PHYS REV LETT, V87, ARTN 096105
   ZHU YX, 2002, LANGMUIR, V18, P10058, DOI 10.1021/la026016f
   ZHU YX, 2002, MACROMOLECULES, V35, P4658
   ZHU YX, 2002, PHYS REV LETT, V88, ARTN 106102
   ZIARANI AS, 2008, NANOSC MICROSC THERM, V12, P154, DOI
   10.1080/15567260802171929
NR 412
TC 0
PU MOLECULAR DIVERSITY PRESERVATION INTERNATIONAL-MDPI; KANDERERSTRASSE
   25, CH-4057 BASEL, SWITZERLAND
SN 1422-0067
DI 10.3390/ijms10114638
PD NOV
VL 10
IS 11
BP 4638
EP 4706
SC Chemistry, Multidisciplinary
GA 525CR
UT ISI:000272191200003
ER
EF
========================================================================
 *Order Full Text* 
 All Customers
--------------
    Please contact your library administrator, or person(s) responsible for 
    document delivery, to find out more about your organization's policy for 
    obtaining the full text of the above articles. If your organization does 
    not have a current document delivery provider, your administrator can 
    contact ISI Document Solution at service@isidoc.com, or call 800-603-4367 
    or 734-459-8565.
 IDS Customers
--------------
    IDS customers can purchase the full text of an article (having page number, 
    volume, and issue information) by returning this ENTIRE message as a Reply 
    to Sender or Forward to orders@isidoc.com. Mark your choices with an X in 
    the "Order Full Text: []" brackets for each item. For example, [X].
Please enter your account number here:
========================================================================
 *Import Records into an ISI ResearchSoft product*
 1) Save the email as a text file. If your e-mail software removed extra line breaks, restore them before saving.
 2) From within an ISI ResearchSoft product, import the text file using the ISI-CE filter.
========================================================================
 *Help Desk Contact Information*
 If you have any questions, please visit the Thomson Scientific Technical Support Contact Information Web page:
http://www.thomsonscientific.com/support/techsupport
========================================================================
 
No comments:
Post a Comment