Friday, December 11, 2009

ISI Web of Knowledge Alert - Hummer, G

ISI Web of Knowledge Citation Alert

Cited Article: Hummer, G. Water conduction through the hydrophobic channel of a carbon nanotube
Alert Expires: 09 NOV 2010
Number of Citing Articles: 3 new records this week (3 in this e-mail)
Organization ID: 3b97d1bbc1878baed0ab183d8b03130b
========================================================================
Note: Instructions on how to purchase the full text of an article and Help Desk Contact information are at the end of the e-mail.
========================================================================

*Record 1 of 3.
*View Full Record: http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000272175100003
*Order Full Text [ ]

Title:
Fundamental dynamics of flow through carbon nanotube membranes

Authors:
Cannon, J; Hess, O

Author Full Names:
Cannon, James; Hess, Ortwin

Source:
MICROFLUIDICS AND NANOFLUIDICS 8 (1): 21-31 JAN 2010

Language:
English

Document Type:
Article

Author Keywords:
Non-equilibrium molecular dynamics; Carbon nanotube; Membrane flow

KeyWords Plus:
MOLECULAR-DYNAMICS; TRANSPORT DIFFUSION; MASS-TRANSPORT; WATER; NONEQUILIBRIUM; FLUIDS; SIMULATION; MODEL

Abstract:
The flow of a model non-polar liquid through small carbon nanotubes is studied using non-equilibrium molecular dynamics simulation. We explain how a membrane of small-diameter nanotubes can transport this liquid faster than a membrane consisting of larger-diameter nanotubes. This effect is shown to be back-pressure dependent, and the reasons for this are explored. The flow through the very smallest nanotubes is shown to depend strongly on the depth of the potential inside, suggesting atomic separation can be based on carbon interaction strength as well as physical size. Finally, we demonstrate how increasing the back-pressure can counter-intuitively result in lower exit velocities from a nanotube. Such studies are crucial for optimisation of nanotube membranes.

Reprint Address:
Cannon, J, Univ Surrey, Adv Technol Inst, Dept Phys, Fac Engn & Phys Sci, Guildford GU2 7XH, Surrey, England.

Research Institution addresses:
[Cannon, James; Hess, Ortwin] Univ Surrey, Adv Technol Inst, Dept Phys, Fac Engn & Phys Sci, Guildford GU2 7XH, Surrey, England

E-mail Address:
j.cannon@surrey.ac.uk

Cited References:
ACKERMAN DM, 2003, MOL SIMULAT, V29, P677, DOI 10.1080/0892702031000103239.
ALLEN MP, 1987, COMPUTER SIMULATION.
ARORA G, 2005, J CHEM PHYS, V123, UNSP 044,705.
ARYA G, 2001, J CHEM PHYS, V115, P8112.
CHEN HB, 2006, J MEMBRANE SCI, V269, P152, DOI 10.1016/j.memsci.2005.06.030.
DUREN T, 2002, CHEM ENG SCI, V57, P1343.
DUREN T, 2002, MOL PHYS, V100, P3741, DOI 10.1080/0026897021000028429.
DZUBIELLA J, 2004, J CHEM PHYS, V120, P5001, DOI 10.1063/1.1665656.
FANG HP, 2008, J PHYS D, V41, P103.
HINDS BJ, 2004, SCIENCE, V303, P62, DOI 10.1126/science.1092048.
HOLT JK, 2006, SCIENCE, V312, P1034, DOI 10.1126/science.1126298.
HUMMER G, 2001, NATURE, V414, P188.
JAKOBTORWEIHEN S, 2005, PHYS REV LETT, V95, UNSP 044,501.
JAKOBTORWEIHEN S, 2006, J PHYS CHEM B, V110, P16332, DOI 10.1021/jp063424+.
JOSEPH S, 2008, NANO LETT, V8, P452, DOI 10.1021/nl072385q.
KOSTOV MK, 2002, PHYS REV LETT, V89, P146.
LEE KH, 2004, J PHYS CHEM B, V108, P9861, DOI 10.1021/jp036791j.
MAO ZG, 2000, J PHYS CHEM B, V104, P4618.
MILLER SA, 2001, J AM CHEM SOC, V123, P12335.
NAGAYAMA G, 2004, INT J HEAT MASS TRAN, V47, P501, DOI 10.1016/j.ijheatmasstransfer.2003.07.013.
SHIOMI J, 2009, NANOTECHNOLOGY, V20, UNSP 055,708.
SKOULIDAS AI, 2002, PHYS REV LETT, V89, UNSP 185,901.
SUN L, 2000, J AM CHEM SOC, V122, P12340, DOI 10.1021/ja002429w.
SUPPLE S, 2003, PHYS REV LETT, V90, UNSP 214,501.
TRAVIS KP, 2000, J CHEM PHYS, V112, P1984.
VERLET L, 1967, PHYS REV, V159, P98.
ZHANG Q, 2008, MOL BIOL REP, V35, P439, DOI 10.1007/s11033-007-9104-4.
ZHU FQ, 2002, BIOPHYS J, V83, P154.

Cited Reference Count:
28

Times Cited:
0

Publisher:
SPRINGER HEIDELBERG; TIERGARTENSTRASSE 17, D-69121 HEIDELBERG, GERMANY

Subject Category:
Nanoscience & Nanotechnology; Instruments & Instrumentation; Physics, Fluids & Plasmas

ISSN:
1613-4982

DOI:
10.1007/s10404-009-0446-1

IDS Number:
524WM

========================================================================

*Record 2 of 3.
*View Full Record: http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000272164300011
*Order Full Text [ ]

Title:
Anomalies of water and hydrogen bond dynamics in hydrophobic nanoconfinement

Authors:
Kumar, P; Han, SH; Stanley, HE

Author Full Names:
Kumar, Pradeep; Han, Sungho; Stanley, H. Eugene

Source:
JOURNAL OF PHYSICS-CONDENSED MATTER 21 (50): Art. No. 504108 DEC 16 2009

Language:
English

Document Type:
Article

KeyWords Plus:
DEPOLARIZED RAYLEIGH-SCATTERING; LIQUID WATER; CONFINED WATER; MOLECULAR-DYNAMICS; SLOW DYNAMICS; COMPUTER-SIMULATION; X-RAY; BEHAVIOR; HYDRATION; SURFACES

Abstract:
Using molecular dynamic (MD) simulations of the TIP5P model of water, we investigate the effect of hydrophobic confinement on the anomalies of liquid water. For confinement length Lz = 1.1 nm, such that there are 2-3 molecular layers of water, we find the presence of the bulk-like density and diffusion anomaly in the lateral directions. However, the lines of these anomalies in the P-T plane are shifted to lower temperatures (Delta T approximate to 40 K) and pressures compared to bulk water. Furthermore, we introduce a method to calculate the effective diffusion constant along the confinement direction and find that the diffusion anomaly is absent. Moreover, we investigate the hydrogen bond dynamics of confined water and find that the hydrogen bond dynamics preserves the characteristics of HB dynamics in bulk water, such as a non-exponential behavior followed by an exponential tail of HB lifetime probability distributions and an Arrhenius temperature dependence of the average!
HB lifetime. The average number and lifetime of HBs decrease in confined water compared to bulk water at the same temperature. This reduction may be the origin of the reasons for the different physical properties of confined water from bulk water, such as the 40 K temperature shift.

Reprint Address:
Kumar, P, Rockefeller Univ, Ctr Studies Phys & Biol, 1230 York Ave, New York, NY 10021 USA.

Research Institution addresses:
[Kumar, Pradeep] Rockefeller Univ, Ctr Studies Phys & Biol, New York, NY 10021 USA; [Han, Sungho; Stanley, H. Eugene] Boston Univ, Dept Phys, Boston, MA 02215 USA; [Han, Sungho; Stanley, H. Eugene] Boston Univ, Ctr Polymer Studies, Boston, MA 02215 USA

Cited References:
ANGELL CA, 1995, SCIENCE, V267, P1924.
BALASUBRAMANIAN S, 2002, PHYS REV LETT, V89, ARTN 115505.
BALL P, 2008, CHEM REV, V108, P74, DOI 10.1021/cr068037a.
BELLISSENTFUNEL MC, 1996, J CHEM PHYS, V104, P10023.
BELLISSENTFUNEL MC, 1999, P NATO ADV STUDY I, V305.
BERENDSEN HJC, 1984, J CHEM PHYS, V81, P3684.
BROVCHENKO I, 2007, J CHEM PHYS, V126, ARTN 214701.
BULDYREV SV, 2007, P NATL ACAD SCI USA, V104, P20177, DOI 10.1073/pnas.0708427104.
CARRASCO J, 2009, NAT MATER, V8, P427, DOI 10.1038/NMAT2403.
CHEN SH, 1994, NATO ASI SER C-MATH, V435, P337.
CHEN SH, 1995, CAN J PHYS, V73, P703.
CHEN SH, 2006, P NATL ACAD SCI USA, V103, P9012, DOI 10.1073/pnas.0602474103.
CHU XQ, 2007, PHYS REV E 1, V76, ARTN 021505.
CONDE O, 1984, MOL PHYS, V53, P951.
CORRADINI D, 2008, J CHEM PHYS, V128, ARTN 244508.
DANNINGER W, 1981, J CHEM PHYS, V74, P2769.
DEBENEDETTI PG, 2003, J PHYS-CONDENS MAT, V15, P1669.
DEBENEDETTI PG, 2003, PHYS TODAY, V56, P40.
DOKTER AM, 2005, PHYS REV LETT, V94, ARTN 178301.
DOKTER AM, 2006, P NATL ACAD SCI USA, V103, P15355, DOI 10.1073/pnas.0603239103.
FRANK F, 1972, PHYS PHYS CHEM WATER, V1.
GALLO P, 1999, PHILOS MAG B, V79, P1923.
GALLO P, 2000, EUROPHYS LETT, V49, P183.
GALLO P, 2000, PHYS CHEM CHEM PHYS, V2, P1607.
GALLO P, 2002, J PHYS CONDENS MATT, V15, P1521.
GALLO P, 2003, J PHYS-CONDENS MAT, V15, P7625.
GELB ID, 1999, REP PROG PHYS, V61, P1573.
GIOVAMBATTISTA N, 2007, J PHYS CHEM C, V111, P1323.
GIOVAMBATTISTA N, 2009, PHYS REV LETT, V102, ARTN 050603.
HAN SH, 2008, PHYS REV E 1, V77.
HAN SH, 2009, PHYS REV E 1, V79, ARTN 041202.
HANASAKI I, 2006, J CHEM PHYS, V124, ARTN 174714.
HANSEN JP, 1996, THEORY SIMPLE LIQUID.
HARTNIG C, 2000, J MOL LIQ, V85, P127.
HUANG K, 2001, INTRO STAT PHYS.
HUMMER G, 2001, NATURE, V414, P188.
KOGA K, 2000, NATURE, V408, P564.
KOGA K, 2003, J CHEM PHYS, V118, P7973, DOI 10.1063/1.1564049.
KUMAR P, 2005, PHYS REV E 1, V72, ARTN 051503.
KUMAR P, 2006, PHYS REV LETT, V97, ARTN 177802.
LEE CY, 1984, J CHEM PHYS, V80, P4448.
LEE SH, 1994, J CHEM PHYS, V100, P3334.
LIU L, 2005, PHYS REV LETT, V95, ARTN 117802.
LUZAR A, 1993, J CHEM PHYS, V98, P8160.
LUZAR A, 1996, NATURE, V379, P55.
LUZAR A, 1996, PHYS REV LETT, V76, P928.
MAHONEY MW, 2000, J CHEM PHYS, V112, P8190.
MAHONEY MW, 2001, J CHEM PHYS, V114, P363.
MALLAMACE F, 2007, P NATL ACAD SCI USA, V104, P18387, DOI 10.1073/pnas.0706504104.
MARTI J, 1996, J CHEM PHYS, V105, P639.
MATSUMOTO M, 2002, NATURE, V416, P6879.
MICHAELIDES A, 2007, NAT MATER, V6, P597, DOI 10.1038/nmat1940.
MONTROSE CJ, 1974, J CHEM PHYS, V60, P5025.
PAUL S, 2004, CHEM PHYS LETT, V386, P218, DOI 10.1016/j.cplett.2003.12.120.
RASAIAH JC, 2008, ANNU REV PHYS CHEM, V59, P713.
RONTGEN WC, 1892, ANN PHYS, V45, P91.
SCHEIDLER P, 2002, EUROPHYS LETT, V59, P701.
SORENSON JM, 2000, J CHEM PHYS, V113, P9149.
SPOHR E, 1999, J MOL LIQ, V80, P165.
STANLEY HE, 1971, INTRO PHASE TRANSITI.
STANLEY HE, 2007, PHYSICA A, V386, P729, DOI 10.1016/j.physa.2007.07.044.
STARR FW, 1999, PHYS REV LETT, V82, P2294.
STARR FW, 2000, PHYS REV E A, V62, P579.
STILLINGER FH, 1974, J CHEM PHYS, V60, P1545.
TRUSKETT TM, 2001, J CHEM PHYS, V114, P2401.
XU LM, 2005, P NATL ACAD SCI USA, V102, P16558, DOI 10.1073/pnas.0507870102.
YAMADA M, 2002, PHYS REV LETT, V88, ARTN 195701.
ZANGI R, 2004, J PHYS-CONDENS MAT, V16, S5371, DOI 10.1088/0953-8984/16/45/005.

Cited Reference Count:
68

Times Cited:
0

Publisher:
IOP PUBLISHING LTD; DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND

Subject Category:
Physics, Condensed Matter

ISSN:
0953-8984

DOI:
10.1088/0953-8984/21/50/504108

IDS Number:
524SX

========================================================================

*Record 3 of 3.
*View Full Record: http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000271428200002
*Order Full Text [ ]

Title:
Coaxial Cross-Diffusion through Carbon Nantoubes

Authors:
Rodriguez, J; Elola, MD; Laria, D

Author Full Names:
Rodriguez, Javier; Dolores Elola, M.; Laria, Daniel

Source:
JOURNAL OF PHYSICAL CHEMISTRY B 113 (45): 14844-14848 NOV 12 2009

Language:
English

Document Type:
Article

KeyWords Plus:
MOLECULAR-DYNAMICS SIMULATIONS; NANOTUBE MEMBRANES; LIQUID WATER; TRANSPORT; MIXTURES; PORES; MODEL

Abstract:
We present results from nonequilibrium molecular dynamics experiments describing the relaxation of local concentrations at two reservoirs, initially filled with water (W) and acetonitrile (ACN), as they become connected through a membrane composed of (16,16) carbon nanotubes. Within the hydrophobic nanotube cavities, the equilibrium concentrations contrast sharply to those observed at the reservoirs, with a clear enhancement of ACN, in detriment of W. From the dynamical side, the relaxation involves three well-differentiated stages; the first one corresponds to the equilibration of individual concentrations within the nanotubes. An intermediate interval with Fickian characteristics follows, during which the overall transport can be cast in terms of coaxial opposite fluxes, with a central water domain segregated from an external ACN shell, in close contact with the tube walls. We also found evidence of a third, much slower, mechanism to reach equilibration, which involves str!
uctural modifications of tightly bound solvation shells, in close contact with the nanotube rims.

Reprint Address:
Laria, D, Comis Nacl Energia Atom, Dept Fis, Ave Libertador 8250, RA-1429 Buenos Aires, DF, Argentina.

Research Institution addresses:
[Rodriguez, Javier; Dolores Elola, M.; Laria, Daniel] Comis Nacl Energia Atom, Dept Fis, RA-1429 Buenos Aires, DF, Argentina; [Rodriguez, Javier] UNSAM, ECyT, RA-1650 San Martin, Buenos Aires, Argentina; [Laria, Daniel] Univ Buenos Aires, Dept Quim Inorgan Analit & Quim Fis & INQUIMAE, Fac Ciencias Exactas & Nat, RA-1428 Buenos Aires, DF, Argentina

E-mail Address:
dhlaria@cnea.gov.ar

Cited References:
ALEXIADIS A, 2008, CHEM REV, V108, P5104.
BERENDSEN HJC, 1987, J PHYS CHEM-US, V91, P6269.
CHANDLER D, 1987, INTRO MODERN STAT ME, CH8.
CHEN HB, 2004, J AM CHEM SOC, V126, P7778, DOI 10.1021/ja039462d.
CHEN X, 2008, NANO LETT, V8, P2988, DOI 10.1021/nl802046b.
FORNASIERO F, 2008, P NATL ACAD SCI USA, V105, P17250, DOI 10.1073/pnas.0710437105.
GRABULEDA X, 2000, J COMPUT CHEM, V21, P901.
HEFTER G, 2005, PURE APPL CHEM, V77, P605, DOI 10.1351/pac200577030605.
HINDS BJ, 2004, SCIENCE, V303, P62, DOI 10.1126/science.1092048.
HOHMANN S, 2001, CURRENT TOPICS MEMBR, P51.
HOLT JK, 2006, SCIENCE, V312, P1034, DOI 10.1126/science.1126298.
HUANG LL, 2006, J PHYS CHEM B, V110, P25761, DOI 10.1021/jp064676d.
HUMMER G, 2001, NATURE, V414, P188.
HUNG L, 2007, J PHYS CHEM C, V111, P11912.
HWANG HJ, 2004, PHYSICA E, V23, P208, DOI 10.1016/j.physe.2004.03.006.
IIJIMA S, 1993, NATURE, V363, P603.
JIRAGE KB, 1997, SCIENCE, V278, P655.
KAGULIN ON, 2008, NANO LETT, V8, P2126.
KAMALA CR, 2002, PHYS REV E 1, V65, ARTN 061202.
KAMALA CR, 2004, J PHYS CHEM B, V108, P4411, DOI 10.1021/jp036291q.
KARLA A, 2003, P NATL ACAD SCI USA, V100, P1017.
KIM P, 1999, SCIENCE, V286, P2148.
KRISHNA R, 2006, IND ENG CHEM RES, V45, P2084, DOI 10.1021/ie051126d.
LEE KH, 2005, NANO LETT, V5, P793, DOI 10.1021/nl0502219.
LIU C, 1999, SCIENCE, V286, P1127.
LIU YC, 2005, PHYS REV B, V72, ARTN 085420.
LOPEZ CF, 2004, P NATL ACAD SCI USA, V101, P4431, DOI 10.1073/pnas.0400352101.
LUI Y, 2005, PHYS REV B, V72, UNSP 085420.
MACKERELL AD, 1998, J PHYS CHEM B, V102, P3586.
MAIBAUM L, 2003, J PHYS CHEM B, V107, P1189, DOI 10.1021/jp0267196.
MAJUMDER M, 2007, LANGMUIR, V23, P8624, DOI 10.1021/la700686k.
MAO Z, 2002, PHYS REV LETT, V27, UNSP 278301.
MAO ZG, 2001, J PHYS CHEM B, V105, P6916, DOI 10.1021/jp0103272.
MARTI J, 2003, J CHEM PHYS, V119, P12540, DOI 10.1063/1.1625912.
MURIS M, 2000, LANGMUIR, V16, P7019.
RODRIGUEZ J, IN PRESS.
RODRIGUEZ J, 2009, J PHYS CHEM B, V113, P12744, DOI 10.1021/jp905920m.
SAZONOVA V, 2004, NATURE, V287, P622.
SINGH R, 2006, P NATL ACAD SCI USA, V103, P3357, DOI 10.1073/pnas.0509009103.
SKOULIDAS AI, 2002, PHYS REV LETT, V89, ARTN 185901.
SKOULIDAS AI, 2003, J MEMBRANE SCI, V227, P123, DOI 10.1016/j.memsci.2003.08.021.
STRIOLO A, 2006, NANO LETT, V6, P633, DOI 10.1021/nl052254u.
TAYLOR R, 1993, MULTICOMPONENT MASS.
THOMAS JA, 2009, PHYS REV LETT, V102, ARTN 184502.
VONGOLDAMMER E, 1970, J PHYS CHEM-US, V74, P3734.
WAGHE A, 2002, J CHEM PHYS, V117, P10789, DOI 10.1063/1.1519861.
ZHENG J, 2005, J CHEM PHYS, V122, ARTN 214702.

Cited Reference Count:
47

Times Cited:
0

Publisher:
AMER CHEMICAL SOC; 1155 16TH ST, NW, WASHINGTON, DC 20036 USA

Subject Category:
Chemistry, Physical

ISSN:
1520-6106

DOI:
10.1021/jp908791b

IDS Number:
514WY

========================================================================
*Order Full Text*
All Customers
--------------
Please contact your library administrator, or person(s) responsible for
document delivery, to find out more about your organization's policy for
obtaining the full text of the above articles. If your organization does
not have a current document delivery provider, your administrator can
contact ISI Document Solution at service@isidoc.com, or call 800-603-4367
or 734-459-8565.

IDS Customers
--------------
IDS customers can purchase the full text of an article (having page number,
volume, and issue information) by returning this ENTIRE message as a Reply
to Sender or Forward to orders@isidoc.com. Mark your choices with an X in
the "Order Full Text: []" brackets for each item. For example, [X].

Please enter your account number here:

========================================================================
*Help Desk Contact Information*
If you have any questions, please visit the Thomson Scientific Technical Support Contact Information Web page:
http://www.thomsonscientific.com/support/techsupport
========================================================================

No comments: