Cited Article:    Holt JK. Fast mass transport through sub-2-nanometer carbon nanotubes
 Alert Expires:    09 NOV 2010
 Number of Citing Articles:    5 new records this week (5 in this e-mail)
 Organization ID:  3b97d1bbc1878baed0ab183d8b03130b
========================================================================
 Note:  Instructions on how to purchase the full text of an article, import the records into an 
 ISI ResearchSoft product, and Help Desk Contact information are at the end of the e-mail.
========================================================================
FN ISI Export Format
VR 1.0
PT J
*Record 1 of 5. 
L5 <http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;UT=000272413500011>
*Order Full Text [ ]
AU Sparreboom, W
   van den Berg, A
   Eijkel, JCT
AF Sparreboom, W.
   van den Berg, A.
   Eijkel, J. C. T.
TI Principles and applications of nanofluidic transport
SO NATURE NANOTECHNOLOGY
LA English
DT Review
ID ELECTROKINETIC ENERGY-CONVERSION; PRESSURE-DRIVEN TRANSPORT;
   HYDRODYNAMIC CHROMATOGRAPHY; CONCENTRATION POLARIZATION; HYDROPHOBIC
   SURFACES; SILICA-NANOCHANNELS; CARBON NANOTUBES; POWER-GENERATION;
   DNA-MOLECULES; ION-TRANSPORT
AB The evolution from microfluidic to nanofluidic systems has been
   accompanied by the emergence of new fluid phenomena and the potential
   for new nanofluidic devices. This review provides an introduction to
   the theory of nanofluidic transport, focusing on the various forces
   that influence the movement of both solvents and solutes through
   nanochannels,and reviews the applications of nanofluidic devices in
   separation science and energy conversion.
C1 [Sparreboom, W.; van den Berg, A.; Eijkel, J. C. T.] Univ Twente, MESA Inst Nanotechnol, BIOS Lab Chip Grp, NL-7500 AE Enschede, Netherlands.
RP Sparreboom, W, Univ Twente, MESA Inst Nanotechnol, BIOS Lab Chip Grp,
   POB 217, NL-7500 AE Enschede, Netherlands.
EM w.sparreboom@utwente.nl
CR ABGRALL P, 2008, ANAL CHEM, V80, P2326, DOI 10.1021/ac702296u
   AJDARI A, 2006, PHYS REV LETT, V96, ARTN 186102
   ALCARAZ A, 2006, J PHYS CHEM B, V110, P21205, DOI 10.1021/jp063204w
   ALI M, 2009, ACS NANO, V3, P603, DOI 10.1021/nn900039f
   ANDERSON JL, 1987, CHEM ENG COMMUN, V55, P211
   AUSTIN R, 2007, NAT NANOTECHNOL, V2, P79, DOI 10.1038/nnano.2007.18
   BLOM MT, 2003, ANAL CHEM, V75, P6761, DOI 10.1021/ac034663I
   BOUZIGUES CI, 2008, PHYS REV LETT, V101, ARTN 114503
   BOWEN WR, 1996, J MEMBRANE SCI, V112, P263
   BURGREEN D, 1964, J PHYS CHEM-US, V68, P1084
   BURGREEN D, 1965, J APPL MECH, V32, P675
   CHENG LJ, 2007, NANO LETT, V7, P3165, DOI 10.1021/nl071770c
   CHRISTENSON HK, 2001, ADV COLLOID INTERFAC, V91, P391
   COTTINBIZONNE C, 2005, PHYS REV LETT, V94, ARTN 056102
   CRANK J, 1975, MATH DIFFUSION
   CROSS JD, 2007, J APPL PHYS, V102, ARTN 024514
   DAIGUJI H, 2004, NANO LETT, V4, P2315, DOI 10.1021/nl0489945
   DAVIDSON C, 2008, ELECTROPHORESIS, V29, P1125, DOI
   10.1002/elps.200700549
   DAVIDSON C, 2008, J POWER SOURCES, V179, P297, DOI
   10.1016/j.jpowsour.2007.12.050
   DEEN WM, 1987, AICHE J, V33, P1409
   DELAMARCHE E, 1997, SCIENCE, V276, P779
   DURAND NFY, 2007, APPL PHYS LETT, V91, ARTN 203106
   EIJKEL JCT, 2005, APPL PHYS LETT, V87, ARTN 114103
   EIJKEL JCT, 2005, MICROFLUID NANOFLUID, V1, P249, DOI
   10.1007/s10404-004-0012-9
   EIJKEL JCT, 2007, LAB CHIP, V7, P1630, DOI 10.1039/b716545p
   FAN R, 2005, PHYS REV LETT, V95, ARTN 086607
   FAN R, 2008, NAT MATER, V7, P303, DOI 10.1038/nmat2127
   FU JP, 2007, NAT NANOTECHNOL, V2, P121, DOI 10.1038/nnano.2006.206
   GADELHAK M, 1999, T ASME, V121, P5
   GARCIAGIMENEZ E, 2009, J MEMBRANE SCI, V331, P137, DOI
   10.1016/j.memsci.2009.01.026
   GIDDINGS JC, 1968, J PHYS CHEM-US, V72, P4397
   GIJS MAM, 2007, NAT NANOTECHNOL, V2, P268, DOI 10.1038/nnano.2007.116
   GOEDECKE N, 2002, LAB CHIP, V2, P219, DOI 10.1039/b208031c
   HAN AP, 2006, NANOTECHNOLOGY, V17, P2498, DOI
   10.1088/0957-4484/17/10/010
   HAN J, 2000, SCIENCE, V288, P1026
   HAN JY, 2008, LAB CHIP, V8, P23, DOI 10.1039/b714128a
   HOLT JK, 2006, SCIENCE, V312, P1034, DOI 10.1126/science.1126298
   HUH D, 2007, NAT MATER, V6, P424, DOI 10.1038/nmat1907
   JOLY L, 2006, J CHEM PHYS, V125, ARTN 204716
   KARLSSON R, 2002, LANGMUIR, V18, P4186
   KARNIK R, 2005, NANO LETT, V5, P943, DOI 10.1021/nl050493b
   KARNIK R, 2006, APPL PHYS LETT, V88, ARTN 123114
   KARNIK R, 2006, NANO LETT, V6, P1735, DOI 10.1021/nl061159y
   KARNIK R, 2007, NANO LETT, V7, P547, DOI 10.1021/nl062806o
   KEH HJ, 2002, J COLLOID INTERF SCI, V252, P354, DOI
   10.1006/jcis.2002.8483
   KIEVSKY YY, 2008, J CHEM PHYS, V128, ARTN 151102
   KUO TC, 2001, LANGMUIR, V17, P6298
   KUO TC, 2003, ANAL CHEM, V75, P1861
   LEVINE S, 1975, J COLLOID INTERF SCI, V52, P136
   LI ZR, 2008, ELECTROPHORESIS, V29, P329, DOI 10.1002/elps.200700679
   LYKLEMA J, 2000, FUNDAMENTALS INTERFA
   MAJUMDER M, 2005, NATURE, V438, P44, DOI 10.1038/43844a
   MANI A, 2009, LANGMUIR, V25, P3898, DOI 10.1021/1a803317p
   MANNION JT, 2006, BIOPHYS J, V90, P4538, DOI 10.1529/biophysj.105.074732
   MEYER EE, 2006, P NATL ACAD SCI USA, V103, P15739, DOI
   10.1073/pnas.0606422103
   MIEDEMA H, 2007, NANO LETT, V7, P2886, DOI 10.1021/nl0716808
   MIJATOVIC D, 2005, LAB CHIP, V5, P492, DOI 10.1039/b416951d
   MULLER VM, 1986, COLLOID J USSR, V48, P606
   NINHAM BW, 1997, LANGMUIR, V13, P2097
   NORDE W, 2000, PHYS CHEM BIOL INTER, P115
   OGSTON AG, 1958, T FARADAY SOC, V54, P1754
   OSTERLE JF, 1964, APPL SCI RES, V12, P425
   PENNATHUR S, 2005, ANAL CHEM, V77, P6772, UNSP AC050835Y
   PENNATHUR S, 2005, ANAL CHEM, V77, P6782, DOI 10.1021/ac0508346
   PENNATHUR S, 2007, ANAL CHEM, V79, P8316, DOI 10.1021/ac0710580
   PENNATHUR S, 2007, LAB CHIP, V7, P1234, DOI 10.1039/b712893m
   PERRY JL, 2006, MICROFLUID NANOFLUID, V2, P185, DOI
   10.1007/s10404-005-0068-1
   PIERRET RF, 1996, SEMICONDUCTOR DEVICE
   PLECIS A, 2008, ANAL CHEM, V80, P9542, DOI 10.1021/ac8017907
   POPPE H, 1997, J CHROMATOGR A, V778, P3
   PRIEVE DC, 1978, J COLLOID INTERF SCI, V64, P201
   PRIEVE DC, 1984, J FLUID MECH, V148, P247
   PROBSTEIN RF, 1994, PHYSICOCHEMICAL HYDR
   PU QS, 2004, NANO LETT, V4, P1099, DOI 10.1021/nl0494811
   QIAN SZ, 2007, J COLLOID INTERF SCI, V315, P721, DOI
   10.1016/j.jcis.2007.06.075
   QUAKE SR, 2000, SCIENCE, V290, P1536
   REN YQ, 2008, NANOTECHNOLOGY, V19, ARTN 195707
   RUCKENSTEIN E, 1976, AICHE J, V22, P276
   SALIEBBEUGELAAR GB, 2008, NANO LETT, V8, P1785
   SCHOCH RB, 2006, NANO LETT, V6, P543, DOI 10.1021/nl052372h
   SCHOCH RB, 2008, REV MOD PHYS, V80, P839, DOI 10.1103/RevModPhys.80.839
   SOARE MA, 2006, J INTEL MAT SYST STR, V17, P231, DOI
   10.1177/1045389X06056861
   STEIN D, 2006, P NATL ACAD SCI USA, V103, P15853, DOI
   10.1073/pnas.0605900103
   SUCCI S, 2007, INT J MOD PHYS C, V18, P667
   TAS NR, 2002, ANAL CHEM, V74, P2224
   TEGENFELDT JO, 2004, ANAL BIOANAL CHEM, V378, P1678, DOI
   10.1007/s00216-004-2526-0
   TERAOKA I, 1996, PROG POLYM SCI, V21, P89
   TURNER SW, 1998, J VAC SCI TECHNOL B, V16, P3835
   TURNER SWP, 2002, PHYS REV LETT, V88, ARTN 128103
   VANDERHEYDEN FHJ, 2007, NANO LETT, V7, P1022, DOI 10.1021/nl070194h
   VANOSS CJ, 2003, J MOL RECOGNIT, V16, P177, DOI 10.1002/jmr.618
   VERMESH U, 2009, NANO LETT, V9, P1315, DOI 10.1021/nl802931r
   VINOGRADOVA OI, 1999, INT J MINER PROCESS, V56, P31
   VLASSIOUK I, 2007, NANO LETT, V7, P552, DOI 10.1021/nl062924b
   WANG XY, 2008, J CHROMATOGR A, V1200, P108, DOI
   10.1016/j.chroma.2008.05.088
   WANG YC, 2005, ANAL CHEM, V77, P4293, DOI 10.1021/ac050321z
   WHEELER TD, 2008, NATURE, V455, P208, DOI 10.1038/nature07226
   WIJMANS JG, 1995, J MEMBRANE SCI, V107, P1
   XUAN XC, 2008, ELECTROPHORESIS, V29, P3737, DOI 10.1002/elps.200800098
   YAMAGUCHI A, 2006, ANAL SCI, V22, P1501
   YAMAGUCHI A, 2008, J PHYS CHEM B, V112, P2024, DOI 10.1021/jp0767516
   YUAN Z, 2007, ELECTROPHORESIS, V28, P595, DOI 10.1002/elps.200600612
   ZANGLE TA, 2009, LANGMUIR, V25, P3909, DOI 10.1021/1a803318e
NR 103
TC 0
PU NATURE PUBLISHING GROUP; MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1
   9XW, ENGLAND
SN 1748-3387
DI 10.1038/NNANO.2009.332
PD NOV
VL 4
IS 11
BP 713
EP 720
SC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary
GA 528AW
UT ISI:000272413500011
ER
PT J
*Record 2 of 5. 
L5 <http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;UT=000272454500026>
*Order Full Text [ ]
AU Ahadian, S
   Mizuseki, H
   Kawazoe, Y
AF Ahadian, Samad
   Mizuseki, Hiroshi
   Kawazoe, Yoshiyuki
TI An efficient tool for modeling and predicting fluid flow in nanochannels
SO JOURNAL OF CHEMICAL PHYSICS
LA English
DT Article
ID ARTIFICIAL NEURAL-NETWORKS; CARBON NANOTUBES; MOLECULAR-DYNAMICS;
   CAPILLARY RISE; TRANSPORT; LIQUIDS; SURFACE; NANOFLUIDICS; IMBIBITION;
   NANOPORES
AB Molecular dynamics simulations were performed to evaluate the
   penetration of two different fluids (i.e., a Lennard-Jones fluid and a
   polymer) through a designed nanochannel. For both fluids, the length of
   permeation as a function of time was recorded for various wall-fluid
   interactions. A novel methodology, namely, the artificial neural
   network (ANN) approach was then employed for modeling and prediction of
   the length of imbibition as a function of influencing parameters (i.e.,
   time, the surface tension and the viscosity of fluids, and the
   wall-fluid interaction). It was demonstrated that the designed ANN is
   capable of modeling and predicting the length of penetration with
   superior accuracy. Moreover, the importance of variables in the
   designed ANN, i.e., time, the surface tension and the viscosity of
   fluids, and the wall-fluid interaction, was demonstrated with the aid
   of the so-called connection weight approach, by which all parameters
   are simultaneously considered. It was revealed that the wall-fluid
   interaction plays a significant role in such transport phenomena,
   namely, fluid flow in nanochannels. (C) 2009 American Institute of
   Physics. [doi: 10.1063/1.3253701]
C1 [Ahadian, Samad; Mizuseki, Hiroshi; Kawazoe, Yoshiyuki] Tohoku Univ, IMR, Sendai, Miyagi 9808577, Japan.
RP Ahadian, S, Tohoku Univ, IMR, Sendai, Miyagi 9808577, Japan.
EM ahadian@imr.edu
CR ABGRALL P, 2008, ANAL CHEM, V80, P2326, DOI 10.1021/ac702296u
   AHADIAN S, 2007, COLLOID SURFACE A, V302, P280, DOI
   10.1016/j.colsurfa.2007.02.041
   AHADIAN S, 2008, CHEM ENG COMMUN, V195, P435, DOI
   10.1080/00986440701707735
   AHADIAN S, 2009, COLLOID POLYM SCI, V287, P961, DOI
   10.1007/s00396-009-2052-x
   AHADIAN S, 2009, MATER TRANS, V50, P1157, DOI
   10.2320/matertrans.MRA2008405
   AHADIAN S, 2009, NANOSCALE RES LETT, V4, P1054, DOI
   10.1007/s11671-009-9361-3
   ALLEN MP, 1987, COMPUTER SIMULATION
   BACKER JA, 2005, J CHEM PHYS, V122, ARTN 154503
   BATCHELOR GK, 2000, INTRO FLUID DYNAMICS
   BISHOP CM, 1995, NEURAL NETWORKS PATT
   BLAKE TD, 1969, J COLLOID INTERF SCI, V30, P421
   BOSANQUET CH, 1923, PHILOS MAG, V45, P525
   COX RG, 1986, J FLUID MECH, V168, P169
   DEGENNES PG, 1985, REV MOD PHYS, V57, P827
   DEMUTH H, 2002, NEURAL NETWORK TOOLB
   DIMITROV DI, 2007, PHYS REV LETT, V99, ARTN 054501
   DRAPER NR, 1998, APPL REGRESSION ANAL
   FRENKEL D, 2002, UNDERSTANDING MOL SI
   GREST GS, 1986, PHYS REV A, V33, P3628
   HAN AJ, 2008, J APPL PHYS, V104, ARTN 124908
   HASTIE T, 2001, ELEMENTS STAT LEARNI
   HAYKIN S, 1999, NEURAL NETWORKS COMP
   HOLT JK, 2006, SCIENCE, V312, P1034, DOI 10.1126/science.1126298
   HORNIK K, 1989, NEURAL NETWORKS, V2, P359
   JOLLIFFE IT, 1986, PRINCIPAL COMPONENT
   KARNIADAKIS G, 2005, MICROFLOWS NANOFLOWS
   KEMP SJ, 2007, ECOL MODEL, V204, P326, DOI
   10.1016/j.ecolmodel.2007.01.009
   KIM T, 2008, J APPL PHYS, V104, ARTN 034304
   LUCAS R, 1918, KOLLOID Z, V23, P15
   MAIBAUM L, 2003, J PHYS CHEM B, V107, P1189, DOI 10.1021/jp0267196
   MAJUMDER M, 2005, NATURE, V438, P44, DOI 10.1038/43844a
   MARTIC G, 2005, LANGMUIR, V21, P11201, DOI 10.1021/la0513149
   MCCULLOCH S, 1943, B MATH BIOPHYS, V5, P115
   NOY A, 2007, NANO TODAY, V2, P22
   OLDEN JD, 2004, ECOL MODEL, V178, P389, DOI
   10.1016/j.ecolmodel.2004.03.013
   QIAO Y, 2007, J AM CHEM SOC, V129, P2355, DOI 10.1021/ja067185f
   QIAO Y, 2009, NANO LETT, V9, P984, DOI 10.1021/nl8030136
   RIDEAL EK, 1922, PHILOS MAG, V44, P1152
   ROWLINSON JS, 1982, MOL THEORY CAPILLARI
   RUMELHART DE, 1986, NATURE, V323, P533
   SCHOCH RB, 2008, REV MOD PHYS, V80, P839, DOI 10.1103/RevModPhys.80.839
   SHIKHMURZAEV YD, 1997, J FLUID MECH, V334, P211
   SODDEMANN T, 2003, PHYS REV E 2, V68, ARTN 046702
   SUNG AH, 1998, P IEEE WORLD C COMP, V1, P316
   SUPPLE S, 2003, PHYS REV LETT, V90, ARTN 214501
   SUPPLE S, 2005, J CHEM PHYS, V122, ARTN 104706
   THOMAS JA, 2008, NANO LETT, V8, P2788, DOI 10.1021/nl8013617
   WASHBURN EW, 1921, PHYS REV, V17, P273
   WHITBY M, 2007, NAT NANOTECHNOL, V2, P87, DOI 10.1038/nnano.2006.175
   WHITBY M, 2008, NANO LETT, V8, P2632, DOI 10.1021/nl080705f
   ZURADA JM, 1997, NEUROCOMPUTING, V14, P177
NR 51
TC 0
PU AMER INST PHYSICS; CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON
   QUADRANGLE, STE 1 N O 1,
      MELVILLE, NY 11747-4501 USA
SN 0021-9606
DI 10.1063/1.3253701
PD NOV 14
VL 131
IS 18
AR 184506
SC Physics, Atomic, Molecular & Chemical
GA 528NY
UT ISI:000272454500026
ER
PT B
*Record 3 of 5. 
L5 <http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;UT=000272170200096>
*Order Full Text [ ]
AU Whitby, M
   Thanou, M
   Quirke, N
AF Whitby, M.
   Thanou, M.
   Quirke, N.
TI Enhanced Fluid Transport Through Carbon Nanopipes
SO NSTI NANOTECH 2008, VOL 3, TECHNICAL PROCEEDINGS
LA English
DT Proceedings Paper
DE nanopipes; nanotubes; carbon; nanofluidics; flow; plasma
ID NANOTUBES; ALUMINA; FLOW
AB Experimental measurement of fluid flow and diffusion through nanoscale
   channels is important both for determining how classical theories of
   fluid dynamics apply at very small length scales and with a view to
   constructing practical nanofluidic devices. In this study, we observe
   water flow enhancement of more than 250% in relatively large 271 +/- 31
   nm diameter carbon nanopipes with plasma induced surface modification
   of the carbon walls. Our findings have application in the development
   of biomedical devices both for sensing and for delivery of therapeutic
   drugs.
C1 [Whitby, M.; Thanou, M.; Quirke, N.] Univ London Imperial Coll Sci Technol & Med, Dept Chem, London SW7 2AZ, England.
RP Whitby, M, Univ London Imperial Coll Sci Technol & Med, Dept Chem,
   London SW7 2AZ, England.
CR CHE G, 1998, CHEM MATER, V10, P260
   HOLT JK, 2006, SCIENCE, V312, P1034, DOI 10.1126/science.1126298
   JOSEPH S, 2008, NANOLETT
   MAJUMDER M, 2005, NATURE, V438, P44, DOI 10.1038/43844a
   MASUDA H, 1995, SCIENCE, V268, P1466
   NIELSCH K, 2002, NANO LETTERS, V2, P677
   SUPPLE S, 2003, PHYS REV LETT, V90
   WHITBY M, UNPUB
   WHITBY M, 2007, NAT NANOTECHNOL, V2, P87, DOI 10.1038/nnano.2006.175
NR 9
TC 0
PU CRC PRESS-TAYLOR & FRANCIS GROUP; 6000 BROKEN SOUND PARKWAY NW, STE
   300, BOCA RATON, FL 33487-2742 USA
BP 367
EP 369
GA BMF51
UT ISI:000272170200096
ER
PT B
*Record 4 of 5. 
L5 <http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;UT=000272169900030>
*Order Full Text [ ]
AU Fornasiero, F
   Park, HG
   Holt, JK
   Stadermann, M
   Kim, S
   In, JB
   Grigoropoulos, CP
   Noy, A
   Bakajin, O
AF Fornasiero, Francesco
   Park, Hyung Gyu
   Holt, Jason K.
   Stadermann, Michael
   Kim, Sangil
   In, Jung Bin
   Grigoropoulos, Costas P.
   Noy, Aleksandr
   Bakajin, Olgica
TI Nanofiltration of Electrolyte Solutions by Sub-2nm Carbon Nanotube
   Membranes
SO NSTI NANOTECH 2008, VOL 2, TECHNICAL PROCEEDINGS
LA English
DT Proceedings Paper
DE carbon nanotube; membrane; ion exclusion; fast flow
ID WATER; TRANSPORT; GROWTH
AB Both MD simulations and experimental studies have shown that liquid and
   gas flow through carbon nanotubes with nanometer size diameter is
   exceptionally fast. For applications in separation technology,
   selectivity is required together with fast flow. In this work, we use
   pressure-driven filtration experiments to study ion exclusion in
   silicon nitride/sub-2-nm CNT composite membranes as a function of
   solution ionic strength, pH, and ion valence. We show that carbon
   nanotube membranes exhibit significant ion exclusion at low salt
   concentration. Our results support a rejection mechanism dominated by
   electrostatic interactions between fixed membrane charges and mobile
   ions, while steric and hydrodynamic effects appear to be less
   important. Comparison with commercial nanofiltration membranes for
   water softening reveals that our carbon nanotube membranes provides far
   superior water fluxes for similar ion rejection capabilities.
C1 [Fornasiero, Francesco; Park, Hyung Gyu; Holt, Jason K.; Stadermann, Michael; Noy, Aleksandr; Bakajin, Olgica] Lawrence Livermore Natl Lab, CMELS, Biosci & Biotechnol Div, Livermore, CA 94550 USA.
RP Fornasiero, F, Lawrence Livermore Natl Lab, CMELS, Biosci & Biotechnol
   Div, Livermore, CA 94550 USA.
CR CHEUNG CL, 2002, J PHYS CHEM B, V106, P2429
   FORNASIERO F, 2008, PNAS IN PRESS
   FRANKLIN NR, 2002, APPL PHYS LETT, V81, P913
   FUTABA DN, 2006, NAT MATER, V5, P987, DOI 10.1038/nmat1782
   HOLT JK, 2006, SCIENCE, V312, P1034, DOI 10.1126/science.1126298
   HUMMER G, 2001, NATURE, V414, P188
   JOSEPH S, 2008, NANO LETT, V8, P452, DOI 10.1021/nl072385q
   KALRA A, 2003, P NATL ACAD SCI USA, V100, P10175
   KOLESNIKOV AI, 2004, PHYS REV LETT, V93, P5503
   LOISEAU A, 2006, LECT NOTE PHYS, V677, P49
   MAJUMDER M, 2005, NATURE, V438, P44, DOI 10.1038/43844a
   MAMONTOV E, 2006, J CHEM PHYS, V124, P94703
   MANIWA Y, 2007, NAT MATER, V6, P135, DOI 10.1038/nmat1823
   NAGUIB N, 2004, NANO LETT, V4, P2237, DOI 10.1021/nl0484907
   NOY A, 2007, NANO TODAY, V2, P22
   PURETZKY AA, 2005, APPL PHYS A-MATER, V81, P223, DOI
   10.1007/s00339-005-3256-7
   YAMADA T, 2006, NAT NANOTECHNOL, V1, P131, DOI 10.1038/nnano.2006.95
NR 17
TC 0
PU CRC PRESS-TAYLOR & FRANCIS GROUP; 6000 BROKEN SOUND PARKWAY NW, STE
   300, BOCA RATON, FL 33487-2742 USA
BP 106
EP 109
GA BMF49
UT ISI:000272169900030
ER
PT B
*Record 5 of 5. 
L5 <http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;UT=000272169500012>
*Order Full Text [ ]
AU Park, HG
   In, J
   Kim, S
   Fornasiero, F
   Holt, JK
   Grigoropoulos, CP
   Noy, A
   Bakajin, O
AF Park, H. G.
   In, J.
   Kim, S.
   Fornasiero, F.
   Holt, J. K.
   Grigoropoulos, C. P.
   Noy, A.
   Bakajin, O.
TI A High-Flux, Flexible Membrane with Parylene-encapsulated Carbon
   Nanotubes
SO NSTI NANOTECH 2008, VOL 1, TECHNICAL PROCEEDINGS
LA English
DT Proceedings Paper
DE membrane; carbon nanotube; parylene; high-flux
ID BOUNDARY-CONDITIONS; MASS-TRANSPORT; WATER; NANOPORES; FABRICATION;
   FLOW; ARRAYS
AB We present fabrication and characterization of a membrane based on
   carbon nanotubes (CNTs) and parylene. Carbon nanotubes have shown
   orders of magnitude enhancement in gas and water permeability compared
   to estimates generated by conventional theories [1, 2]. Large area
   membranes that exhibit flux enhancement characteristics of carbon
   nanotubes may provide an economical solution to a variety of
   technologies including water desalination [3] and gas sequestration
   [4]. We report a novel method of making carbon nanotube-based, robust
   membranes with large areas. A vertically aligned dense carbon nanotube
   array is infiltrated with parylene. Parylene polymer creates a pinhole
   free transparent film by exhibiting high surface conformity and
   excellent crevice penetration. Using this moisture-, chemical- and
   solvent-resistant polymer creates carbon nanotube membranes that
   promise to exhibit high stability and biocompatibility. CNT membranes
   are formed by releasing a free-standing film that consists of
   parylene-infiltrated CNTs, followed by CNT uncapping on both sides of
   the composite material. Thus fabricated membranes show flexibility and
   ductility due to the parylene matrix material. These membranes have a
   potential for applications that may require high flux, flexibility and
   durability.
C1 [Park, H. G.; Fornasiero, F.; Holt, J. K.; Noy, A.; Bakajin, O.] LLNS LLC, Livermore, CA USA.
RP Park, HG, LLNS LLC, Livermore, CA USA.
CR ALLEN R, 2003, J CHEM PHYS, V119, P3905, DOI 10.1063/1.1590956
   BECKSTEIN O, 2003, P NATL ACAD SCI USA, V100, P7063, DOI
   10.1073/pnas.1136844100
   CHE G, 1998, CHEM MATER, V10, P260
   CHEN HB, 2006, J PHYS CHEM B, V110, P1971, DOI 10.1021/jp056911i
   COTTINBIZONNE C, 2002, EUR PHYS J E, V9, P47, DOI
   10.1140/epje/i2002-10112-9
   CRAIG VSJ, 2001, PHYS REV LETT, V87, P54504
   FAN R, 2003, J AM CHEM SOC, V125, P5254, DOI 10.1021/ja034163
   FORNASIERO F, 2008, P NATL ACAD IN PRESS
   HINDS BJ, 2004, SCIENCE, V303, P62, DOI 10.1126/science.1092048
   HOLT JK, 2004, NANO LETT, V4, P2245, DOI 10.1021/nl048876h
   HOLT JK, 2006, SCIENCE, V312, P1034, DOI 10.1126/science.1126298
   HUMMER G, 2001, NATURE, V414, P188
   HUMMER G, 2007, MOL PHYS, V105, P201, DOI 10.1080/00268970601140784
   KALRA A, 2003, P NATL ACAD SCI USA, V100, P10175
   KIM S, 2007, NANO LETT, V7, P2806, DOI 10.1021/nl071414u
   KOLESNIKOV AI, 2004, PHYS REV LETT, V93, P5503
   MAJUMDER M, 2005, NATURE, V438, P44, DOI 10.1038/43844a
   MISERENDINO S, 2006, NANOTECHNOLOGY, V17, S23, DOI
   10.1088/0957-4484/17/4/005
   NAGUIB N, 2004, NANO LETT, V4, P2237, DOI 10.1021/nl0484907
   NOY A, 2007, NANO TODAY, V2, P22
   SHOLL DS, 2006, SCIENCE, V312, P1033
   SKOULIDAS AI, 2002, PHYS REV LETT, V89, P5901
   SKOULIDAS AI, 2006, J CHEM PHYS, V124, P54708
   SOKHAN VP, 2001, J CHEM PHYS, V115, P3878
   SOKHAN VP, 2002, J CHEM PHYS, V117, P8531, DOI 10.1063/1.1512643
   SOKHAN VP, 2004, J CHEM PHYS, V120, P3855, DOI 10.1063/1.1643726
   WAGHE A, 2002, J CHEM PHYS, V117, P10789, DOI 10.1063/1.1519861
NR 27
TC 0
PU CRC PRESS-TAYLOR & FRANCIS GROUP; 6000 BROKEN SOUND PARKWAY NW, STE
   300, BOCA RATON, FL 33487-2742 USA
BP 43
EP 46
GA BMF46
UT ISI:000272169500012
ER
EF
========================================================================
 *Order Full Text* 
 All Customers
--------------
    Please contact your library administrator, or person(s) responsible for 
    document delivery, to find out more about your organization's policy for 
    obtaining the full text of the above articles. If your organization does 
    not have a current document delivery provider, your administrator can 
    contact ISI Document Solution at service@isidoc.com, or call 800-603-4367 
    or 734-459-8565.
 IDS Customers
--------------
    IDS customers can purchase the full text of an article (having page number, 
    volume, and issue information) by returning this ENTIRE message as a Reply 
    to Sender or Forward to orders@isidoc.com. Mark your choices with an X in 
    the "Order Full Text: []" brackets for each item. For example, [X].
Please enter your account number here:
========================================================================
 *Import Records into an ISI ResearchSoft product*
 1) Save the email as a text file. If your e-mail software removed extra line breaks, restore them before saving.
 2) From within an ISI ResearchSoft product, import the text file using the ISI-CE filter.
========================================================================
 *Help Desk Contact Information*
 If you have any questions, please visit the Thomson Scientific Technical Support Contact Information Web page:
http://www.thomsonscientific.com/support/techsupport
========================================================================
 
No comments:
Post a Comment