Thursday, December 17, 2009

ISI Web of Knowledge Alert - Holt JK

ISI Web of Knowledge Citation Alert

Cited Article: Holt JK. Fast mass transport through sub-2-nanometer carbon nanotubes
Alert Expires: 09 NOV 2010
Number of Citing Articles: 5 new records this week (5 in this e-mail)
Organization ID: 3b97d1bbc1878baed0ab183d8b03130b
========================================================================
Note: Instructions on how to purchase the full text of an article, import the records into an
ISI ResearchSoft product, and Help Desk Contact information are at the end of the e-mail.
========================================================================

FN ISI Export Format
VR 1.0

PT J
*Record 1 of 5.
L5 <http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;UT=000272413500011>
*Order Full Text [ ]
AU Sparreboom, W
van den Berg, A
Eijkel, JCT
AF Sparreboom, W.
van den Berg, A.
Eijkel, J. C. T.
TI Principles and applications of nanofluidic transport
SO NATURE NANOTECHNOLOGY
LA English
DT Review
ID ELECTROKINETIC ENERGY-CONVERSION; PRESSURE-DRIVEN TRANSPORT;
HYDRODYNAMIC CHROMATOGRAPHY; CONCENTRATION POLARIZATION; HYDROPHOBIC
SURFACES; SILICA-NANOCHANNELS; CARBON NANOTUBES; POWER-GENERATION;
DNA-MOLECULES; ION-TRANSPORT
AB The evolution from microfluidic to nanofluidic systems has been
accompanied by the emergence of new fluid phenomena and the potential
for new nanofluidic devices. This review provides an introduction to
the theory of nanofluidic transport, focusing on the various forces
that influence the movement of both solvents and solutes through
nanochannels,and reviews the applications of nanofluidic devices in
separation science and energy conversion.
C1 [Sparreboom, W.; van den Berg, A.; Eijkel, J. C. T.] Univ Twente, MESA Inst Nanotechnol, BIOS Lab Chip Grp, NL-7500 AE Enschede, Netherlands.
RP Sparreboom, W, Univ Twente, MESA Inst Nanotechnol, BIOS Lab Chip Grp,
POB 217, NL-7500 AE Enschede, Netherlands.
EM w.sparreboom@utwente.nl
CR ABGRALL P, 2008, ANAL CHEM, V80, P2326, DOI 10.1021/ac702296u
AJDARI A, 2006, PHYS REV LETT, V96, ARTN 186102
ALCARAZ A, 2006, J PHYS CHEM B, V110, P21205, DOI 10.1021/jp063204w
ALI M, 2009, ACS NANO, V3, P603, DOI 10.1021/nn900039f
ANDERSON JL, 1987, CHEM ENG COMMUN, V55, P211
AUSTIN R, 2007, NAT NANOTECHNOL, V2, P79, DOI 10.1038/nnano.2007.18
BLOM MT, 2003, ANAL CHEM, V75, P6761, DOI 10.1021/ac034663I
BOUZIGUES CI, 2008, PHYS REV LETT, V101, ARTN 114503
BOWEN WR, 1996, J MEMBRANE SCI, V112, P263
BURGREEN D, 1964, J PHYS CHEM-US, V68, P1084
BURGREEN D, 1965, J APPL MECH, V32, P675
CHENG LJ, 2007, NANO LETT, V7, P3165, DOI 10.1021/nl071770c
CHRISTENSON HK, 2001, ADV COLLOID INTERFAC, V91, P391
COTTINBIZONNE C, 2005, PHYS REV LETT, V94, ARTN 056102
CRANK J, 1975, MATH DIFFUSION
CROSS JD, 2007, J APPL PHYS, V102, ARTN 024514
DAIGUJI H, 2004, NANO LETT, V4, P2315, DOI 10.1021/nl0489945
DAVIDSON C, 2008, ELECTROPHORESIS, V29, P1125, DOI
10.1002/elps.200700549
DAVIDSON C, 2008, J POWER SOURCES, V179, P297, DOI
10.1016/j.jpowsour.2007.12.050
DEEN WM, 1987, AICHE J, V33, P1409
DELAMARCHE E, 1997, SCIENCE, V276, P779
DURAND NFY, 2007, APPL PHYS LETT, V91, ARTN 203106
EIJKEL JCT, 2005, APPL PHYS LETT, V87, ARTN 114103
EIJKEL JCT, 2005, MICROFLUID NANOFLUID, V1, P249, DOI
10.1007/s10404-004-0012-9
EIJKEL JCT, 2007, LAB CHIP, V7, P1630, DOI 10.1039/b716545p
FAN R, 2005, PHYS REV LETT, V95, ARTN 086607
FAN R, 2008, NAT MATER, V7, P303, DOI 10.1038/nmat2127
FU JP, 2007, NAT NANOTECHNOL, V2, P121, DOI 10.1038/nnano.2006.206
GADELHAK M, 1999, T ASME, V121, P5
GARCIAGIMENEZ E, 2009, J MEMBRANE SCI, V331, P137, DOI
10.1016/j.memsci.2009.01.026
GIDDINGS JC, 1968, J PHYS CHEM-US, V72, P4397
GIJS MAM, 2007, NAT NANOTECHNOL, V2, P268, DOI 10.1038/nnano.2007.116
GOEDECKE N, 2002, LAB CHIP, V2, P219, DOI 10.1039/b208031c
HAN AP, 2006, NANOTECHNOLOGY, V17, P2498, DOI
10.1088/0957-4484/17/10/010
HAN J, 2000, SCIENCE, V288, P1026
HAN JY, 2008, LAB CHIP, V8, P23, DOI 10.1039/b714128a
HOLT JK, 2006, SCIENCE, V312, P1034, DOI 10.1126/science.1126298
HUH D, 2007, NAT MATER, V6, P424, DOI 10.1038/nmat1907
JOLY L, 2006, J CHEM PHYS, V125, ARTN 204716
KARLSSON R, 2002, LANGMUIR, V18, P4186
KARNIK R, 2005, NANO LETT, V5, P943, DOI 10.1021/nl050493b
KARNIK R, 2006, APPL PHYS LETT, V88, ARTN 123114
KARNIK R, 2006, NANO LETT, V6, P1735, DOI 10.1021/nl061159y
KARNIK R, 2007, NANO LETT, V7, P547, DOI 10.1021/nl062806o
KEH HJ, 2002, J COLLOID INTERF SCI, V252, P354, DOI
10.1006/jcis.2002.8483
KIEVSKY YY, 2008, J CHEM PHYS, V128, ARTN 151102
KUO TC, 2001, LANGMUIR, V17, P6298
KUO TC, 2003, ANAL CHEM, V75, P1861
LEVINE S, 1975, J COLLOID INTERF SCI, V52, P136
LI ZR, 2008, ELECTROPHORESIS, V29, P329, DOI 10.1002/elps.200700679
LYKLEMA J, 2000, FUNDAMENTALS INTERFA
MAJUMDER M, 2005, NATURE, V438, P44, DOI 10.1038/43844a
MANI A, 2009, LANGMUIR, V25, P3898, DOI 10.1021/1a803317p
MANNION JT, 2006, BIOPHYS J, V90, P4538, DOI 10.1529/biophysj.105.074732
MEYER EE, 2006, P NATL ACAD SCI USA, V103, P15739, DOI
10.1073/pnas.0606422103
MIEDEMA H, 2007, NANO LETT, V7, P2886, DOI 10.1021/nl0716808
MIJATOVIC D, 2005, LAB CHIP, V5, P492, DOI 10.1039/b416951d
MULLER VM, 1986, COLLOID J USSR, V48, P606
NINHAM BW, 1997, LANGMUIR, V13, P2097
NORDE W, 2000, PHYS CHEM BIOL INTER, P115
OGSTON AG, 1958, T FARADAY SOC, V54, P1754
OSTERLE JF, 1964, APPL SCI RES, V12, P425
PENNATHUR S, 2005, ANAL CHEM, V77, P6772, UNSP AC050835Y
PENNATHUR S, 2005, ANAL CHEM, V77, P6782, DOI 10.1021/ac0508346
PENNATHUR S, 2007, ANAL CHEM, V79, P8316, DOI 10.1021/ac0710580
PENNATHUR S, 2007, LAB CHIP, V7, P1234, DOI 10.1039/b712893m
PERRY JL, 2006, MICROFLUID NANOFLUID, V2, P185, DOI
10.1007/s10404-005-0068-1
PIERRET RF, 1996, SEMICONDUCTOR DEVICE
PLECIS A, 2008, ANAL CHEM, V80, P9542, DOI 10.1021/ac8017907
POPPE H, 1997, J CHROMATOGR A, V778, P3
PRIEVE DC, 1978, J COLLOID INTERF SCI, V64, P201
PRIEVE DC, 1984, J FLUID MECH, V148, P247
PROBSTEIN RF, 1994, PHYSICOCHEMICAL HYDR
PU QS, 2004, NANO LETT, V4, P1099, DOI 10.1021/nl0494811
QIAN SZ, 2007, J COLLOID INTERF SCI, V315, P721, DOI
10.1016/j.jcis.2007.06.075
QUAKE SR, 2000, SCIENCE, V290, P1536
REN YQ, 2008, NANOTECHNOLOGY, V19, ARTN 195707
RUCKENSTEIN E, 1976, AICHE J, V22, P276
SALIEBBEUGELAAR GB, 2008, NANO LETT, V8, P1785
SCHOCH RB, 2006, NANO LETT, V6, P543, DOI 10.1021/nl052372h
SCHOCH RB, 2008, REV MOD PHYS, V80, P839, DOI 10.1103/RevModPhys.80.839
SOARE MA, 2006, J INTEL MAT SYST STR, V17, P231, DOI
10.1177/1045389X06056861
STEIN D, 2006, P NATL ACAD SCI USA, V103, P15853, DOI
10.1073/pnas.0605900103
SUCCI S, 2007, INT J MOD PHYS C, V18, P667
TAS NR, 2002, ANAL CHEM, V74, P2224
TEGENFELDT JO, 2004, ANAL BIOANAL CHEM, V378, P1678, DOI
10.1007/s00216-004-2526-0
TERAOKA I, 1996, PROG POLYM SCI, V21, P89
TURNER SW, 1998, J VAC SCI TECHNOL B, V16, P3835
TURNER SWP, 2002, PHYS REV LETT, V88, ARTN 128103
VANDERHEYDEN FHJ, 2007, NANO LETT, V7, P1022, DOI 10.1021/nl070194h
VANOSS CJ, 2003, J MOL RECOGNIT, V16, P177, DOI 10.1002/jmr.618
VERMESH U, 2009, NANO LETT, V9, P1315, DOI 10.1021/nl802931r
VINOGRADOVA OI, 1999, INT J MINER PROCESS, V56, P31
VLASSIOUK I, 2007, NANO LETT, V7, P552, DOI 10.1021/nl062924b
WANG XY, 2008, J CHROMATOGR A, V1200, P108, DOI
10.1016/j.chroma.2008.05.088
WANG YC, 2005, ANAL CHEM, V77, P4293, DOI 10.1021/ac050321z
WHEELER TD, 2008, NATURE, V455, P208, DOI 10.1038/nature07226
WIJMANS JG, 1995, J MEMBRANE SCI, V107, P1
XUAN XC, 2008, ELECTROPHORESIS, V29, P3737, DOI 10.1002/elps.200800098
YAMAGUCHI A, 2006, ANAL SCI, V22, P1501
YAMAGUCHI A, 2008, J PHYS CHEM B, V112, P2024, DOI 10.1021/jp0767516
YUAN Z, 2007, ELECTROPHORESIS, V28, P595, DOI 10.1002/elps.200600612
ZANGLE TA, 2009, LANGMUIR, V25, P3909, DOI 10.1021/1a803318e
NR 103
TC 0
PU NATURE PUBLISHING GROUP; MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1
9XW, ENGLAND
SN 1748-3387
DI 10.1038/NNANO.2009.332
PD NOV
VL 4
IS 11
BP 713
EP 720
SC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary
GA 528AW
UT ISI:000272413500011
ER

PT J
*Record 2 of 5.
L5 <http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;UT=000272454500026>
*Order Full Text [ ]
AU Ahadian, S
Mizuseki, H
Kawazoe, Y
AF Ahadian, Samad
Mizuseki, Hiroshi
Kawazoe, Yoshiyuki
TI An efficient tool for modeling and predicting fluid flow in nanochannels
SO JOURNAL OF CHEMICAL PHYSICS
LA English
DT Article
ID ARTIFICIAL NEURAL-NETWORKS; CARBON NANOTUBES; MOLECULAR-DYNAMICS;
CAPILLARY RISE; TRANSPORT; LIQUIDS; SURFACE; NANOFLUIDICS; IMBIBITION;
NANOPORES
AB Molecular dynamics simulations were performed to evaluate the
penetration of two different fluids (i.e., a Lennard-Jones fluid and a
polymer) through a designed nanochannel. For both fluids, the length of
permeation as a function of time was recorded for various wall-fluid
interactions. A novel methodology, namely, the artificial neural
network (ANN) approach was then employed for modeling and prediction of
the length of imbibition as a function of influencing parameters (i.e.,
time, the surface tension and the viscosity of fluids, and the
wall-fluid interaction). It was demonstrated that the designed ANN is
capable of modeling and predicting the length of penetration with
superior accuracy. Moreover, the importance of variables in the
designed ANN, i.e., time, the surface tension and the viscosity of
fluids, and the wall-fluid interaction, was demonstrated with the aid
of the so-called connection weight approach, by which all parameters
are simultaneously considered. It was revealed that the wall-fluid
interaction plays a significant role in such transport phenomena,
namely, fluid flow in nanochannels. (C) 2009 American Institute of
Physics. [doi: 10.1063/1.3253701]
C1 [Ahadian, Samad; Mizuseki, Hiroshi; Kawazoe, Yoshiyuki] Tohoku Univ, IMR, Sendai, Miyagi 9808577, Japan.
RP Ahadian, S, Tohoku Univ, IMR, Sendai, Miyagi 9808577, Japan.
EM ahadian@imr.edu
CR ABGRALL P, 2008, ANAL CHEM, V80, P2326, DOI 10.1021/ac702296u
AHADIAN S, 2007, COLLOID SURFACE A, V302, P280, DOI
10.1016/j.colsurfa.2007.02.041
AHADIAN S, 2008, CHEM ENG COMMUN, V195, P435, DOI
10.1080/00986440701707735
AHADIAN S, 2009, COLLOID POLYM SCI, V287, P961, DOI
10.1007/s00396-009-2052-x
AHADIAN S, 2009, MATER TRANS, V50, P1157, DOI
10.2320/matertrans.MRA2008405
AHADIAN S, 2009, NANOSCALE RES LETT, V4, P1054, DOI
10.1007/s11671-009-9361-3
ALLEN MP, 1987, COMPUTER SIMULATION
BACKER JA, 2005, J CHEM PHYS, V122, ARTN 154503
BATCHELOR GK, 2000, INTRO FLUID DYNAMICS
BISHOP CM, 1995, NEURAL NETWORKS PATT
BLAKE TD, 1969, J COLLOID INTERF SCI, V30, P421
BOSANQUET CH, 1923, PHILOS MAG, V45, P525
COX RG, 1986, J FLUID MECH, V168, P169
DEGENNES PG, 1985, REV MOD PHYS, V57, P827
DEMUTH H, 2002, NEURAL NETWORK TOOLB
DIMITROV DI, 2007, PHYS REV LETT, V99, ARTN 054501
DRAPER NR, 1998, APPL REGRESSION ANAL
FRENKEL D, 2002, UNDERSTANDING MOL SI
GREST GS, 1986, PHYS REV A, V33, P3628
HAN AJ, 2008, J APPL PHYS, V104, ARTN 124908
HASTIE T, 2001, ELEMENTS STAT LEARNI
HAYKIN S, 1999, NEURAL NETWORKS COMP
HOLT JK, 2006, SCIENCE, V312, P1034, DOI 10.1126/science.1126298
HORNIK K, 1989, NEURAL NETWORKS, V2, P359
JOLLIFFE IT, 1986, PRINCIPAL COMPONENT
KARNIADAKIS G, 2005, MICROFLOWS NANOFLOWS
KEMP SJ, 2007, ECOL MODEL, V204, P326, DOI
10.1016/j.ecolmodel.2007.01.009
KIM T, 2008, J APPL PHYS, V104, ARTN 034304
LUCAS R, 1918, KOLLOID Z, V23, P15
MAIBAUM L, 2003, J PHYS CHEM B, V107, P1189, DOI 10.1021/jp0267196
MAJUMDER M, 2005, NATURE, V438, P44, DOI 10.1038/43844a
MARTIC G, 2005, LANGMUIR, V21, P11201, DOI 10.1021/la0513149
MCCULLOCH S, 1943, B MATH BIOPHYS, V5, P115
NOY A, 2007, NANO TODAY, V2, P22
OLDEN JD, 2004, ECOL MODEL, V178, P389, DOI
10.1016/j.ecolmodel.2004.03.013
QIAO Y, 2007, J AM CHEM SOC, V129, P2355, DOI 10.1021/ja067185f
QIAO Y, 2009, NANO LETT, V9, P984, DOI 10.1021/nl8030136
RIDEAL EK, 1922, PHILOS MAG, V44, P1152
ROWLINSON JS, 1982, MOL THEORY CAPILLARI
RUMELHART DE, 1986, NATURE, V323, P533
SCHOCH RB, 2008, REV MOD PHYS, V80, P839, DOI 10.1103/RevModPhys.80.839
SHIKHMURZAEV YD, 1997, J FLUID MECH, V334, P211
SODDEMANN T, 2003, PHYS REV E 2, V68, ARTN 046702
SUNG AH, 1998, P IEEE WORLD C COMP, V1, P316
SUPPLE S, 2003, PHYS REV LETT, V90, ARTN 214501
SUPPLE S, 2005, J CHEM PHYS, V122, ARTN 104706
THOMAS JA, 2008, NANO LETT, V8, P2788, DOI 10.1021/nl8013617
WASHBURN EW, 1921, PHYS REV, V17, P273
WHITBY M, 2007, NAT NANOTECHNOL, V2, P87, DOI 10.1038/nnano.2006.175
WHITBY M, 2008, NANO LETT, V8, P2632, DOI 10.1021/nl080705f
ZURADA JM, 1997, NEUROCOMPUTING, V14, P177
NR 51
TC 0
PU AMER INST PHYSICS; CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON
QUADRANGLE, STE 1 N O 1,
MELVILLE, NY 11747-4501 USA
SN 0021-9606
DI 10.1063/1.3253701
PD NOV 14
VL 131
IS 18
AR 184506
SC Physics, Atomic, Molecular & Chemical
GA 528NY
UT ISI:000272454500026
ER

PT B
*Record 3 of 5.
L5 <http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;UT=000272170200096>
*Order Full Text [ ]
AU Whitby, M
Thanou, M
Quirke, N
AF Whitby, M.
Thanou, M.
Quirke, N.
TI Enhanced Fluid Transport Through Carbon Nanopipes
SO NSTI NANOTECH 2008, VOL 3, TECHNICAL PROCEEDINGS
LA English
DT Proceedings Paper
DE nanopipes; nanotubes; carbon; nanofluidics; flow; plasma
ID NANOTUBES; ALUMINA; FLOW
AB Experimental measurement of fluid flow and diffusion through nanoscale
channels is important both for determining how classical theories of
fluid dynamics apply at very small length scales and with a view to
constructing practical nanofluidic devices. In this study, we observe
water flow enhancement of more than 250% in relatively large 271 +/- 31
nm diameter carbon nanopipes with plasma induced surface modification
of the carbon walls. Our findings have application in the development
of biomedical devices both for sensing and for delivery of therapeutic
drugs.
C1 [Whitby, M.; Thanou, M.; Quirke, N.] Univ London Imperial Coll Sci Technol & Med, Dept Chem, London SW7 2AZ, England.
RP Whitby, M, Univ London Imperial Coll Sci Technol & Med, Dept Chem,
London SW7 2AZ, England.
CR CHE G, 1998, CHEM MATER, V10, P260
HOLT JK, 2006, SCIENCE, V312, P1034, DOI 10.1126/science.1126298
JOSEPH S, 2008, NANOLETT
MAJUMDER M, 2005, NATURE, V438, P44, DOI 10.1038/43844a
MASUDA H, 1995, SCIENCE, V268, P1466
NIELSCH K, 2002, NANO LETTERS, V2, P677
SUPPLE S, 2003, PHYS REV LETT, V90
WHITBY M, UNPUB
WHITBY M, 2007, NAT NANOTECHNOL, V2, P87, DOI 10.1038/nnano.2006.175
NR 9
TC 0
PU CRC PRESS-TAYLOR & FRANCIS GROUP; 6000 BROKEN SOUND PARKWAY NW, STE
300, BOCA RATON, FL 33487-2742 USA
BP 367
EP 369
GA BMF51
UT ISI:000272170200096
ER

PT B
*Record 4 of 5.
L5 <http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;UT=000272169900030>
*Order Full Text [ ]
AU Fornasiero, F
Park, HG
Holt, JK
Stadermann, M
Kim, S
In, JB
Grigoropoulos, CP
Noy, A
Bakajin, O
AF Fornasiero, Francesco
Park, Hyung Gyu
Holt, Jason K.
Stadermann, Michael
Kim, Sangil
In, Jung Bin
Grigoropoulos, Costas P.
Noy, Aleksandr
Bakajin, Olgica
TI Nanofiltration of Electrolyte Solutions by Sub-2nm Carbon Nanotube
Membranes
SO NSTI NANOTECH 2008, VOL 2, TECHNICAL PROCEEDINGS
LA English
DT Proceedings Paper
DE carbon nanotube; membrane; ion exclusion; fast flow
ID WATER; TRANSPORT; GROWTH
AB Both MD simulations and experimental studies have shown that liquid and
gas flow through carbon nanotubes with nanometer size diameter is
exceptionally fast. For applications in separation technology,
selectivity is required together with fast flow. In this work, we use
pressure-driven filtration experiments to study ion exclusion in
silicon nitride/sub-2-nm CNT composite membranes as a function of
solution ionic strength, pH, and ion valence. We show that carbon
nanotube membranes exhibit significant ion exclusion at low salt
concentration. Our results support a rejection mechanism dominated by
electrostatic interactions between fixed membrane charges and mobile
ions, while steric and hydrodynamic effects appear to be less
important. Comparison with commercial nanofiltration membranes for
water softening reveals that our carbon nanotube membranes provides far
superior water fluxes for similar ion rejection capabilities.
C1 [Fornasiero, Francesco; Park, Hyung Gyu; Holt, Jason K.; Stadermann, Michael; Noy, Aleksandr; Bakajin, Olgica] Lawrence Livermore Natl Lab, CMELS, Biosci & Biotechnol Div, Livermore, CA 94550 USA.
RP Fornasiero, F, Lawrence Livermore Natl Lab, CMELS, Biosci & Biotechnol
Div, Livermore, CA 94550 USA.
CR CHEUNG CL, 2002, J PHYS CHEM B, V106, P2429
FORNASIERO F, 2008, PNAS IN PRESS
FRANKLIN NR, 2002, APPL PHYS LETT, V81, P913
FUTABA DN, 2006, NAT MATER, V5, P987, DOI 10.1038/nmat1782
HOLT JK, 2006, SCIENCE, V312, P1034, DOI 10.1126/science.1126298
HUMMER G, 2001, NATURE, V414, P188
JOSEPH S, 2008, NANO LETT, V8, P452, DOI 10.1021/nl072385q
KALRA A, 2003, P NATL ACAD SCI USA, V100, P10175
KOLESNIKOV AI, 2004, PHYS REV LETT, V93, P5503
LOISEAU A, 2006, LECT NOTE PHYS, V677, P49
MAJUMDER M, 2005, NATURE, V438, P44, DOI 10.1038/43844a
MAMONTOV E, 2006, J CHEM PHYS, V124, P94703
MANIWA Y, 2007, NAT MATER, V6, P135, DOI 10.1038/nmat1823
NAGUIB N, 2004, NANO LETT, V4, P2237, DOI 10.1021/nl0484907
NOY A, 2007, NANO TODAY, V2, P22
PURETZKY AA, 2005, APPL PHYS A-MATER, V81, P223, DOI
10.1007/s00339-005-3256-7
YAMADA T, 2006, NAT NANOTECHNOL, V1, P131, DOI 10.1038/nnano.2006.95
NR 17
TC 0
PU CRC PRESS-TAYLOR & FRANCIS GROUP; 6000 BROKEN SOUND PARKWAY NW, STE
300, BOCA RATON, FL 33487-2742 USA
BP 106
EP 109
GA BMF49
UT ISI:000272169900030
ER

PT B
*Record 5 of 5.
L5 <http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;UT=000272169500012>
*Order Full Text [ ]
AU Park, HG
In, J
Kim, S
Fornasiero, F
Holt, JK
Grigoropoulos, CP
Noy, A
Bakajin, O
AF Park, H. G.
In, J.
Kim, S.
Fornasiero, F.
Holt, J. K.
Grigoropoulos, C. P.
Noy, A.
Bakajin, O.
TI A High-Flux, Flexible Membrane with Parylene-encapsulated Carbon
Nanotubes
SO NSTI NANOTECH 2008, VOL 1, TECHNICAL PROCEEDINGS
LA English
DT Proceedings Paper
DE membrane; carbon nanotube; parylene; high-flux
ID BOUNDARY-CONDITIONS; MASS-TRANSPORT; WATER; NANOPORES; FABRICATION;
FLOW; ARRAYS
AB We present fabrication and characterization of a membrane based on
carbon nanotubes (CNTs) and parylene. Carbon nanotubes have shown
orders of magnitude enhancement in gas and water permeability compared
to estimates generated by conventional theories [1, 2]. Large area
membranes that exhibit flux enhancement characteristics of carbon
nanotubes may provide an economical solution to a variety of
technologies including water desalination [3] and gas sequestration
[4]. We report a novel method of making carbon nanotube-based, robust
membranes with large areas. A vertically aligned dense carbon nanotube
array is infiltrated with parylene. Parylene polymer creates a pinhole
free transparent film by exhibiting high surface conformity and
excellent crevice penetration. Using this moisture-, chemical- and
solvent-resistant polymer creates carbon nanotube membranes that
promise to exhibit high stability and biocompatibility. CNT membranes
are formed by releasing a free-standing film that consists of
parylene-infiltrated CNTs, followed by CNT uncapping on both sides of
the composite material. Thus fabricated membranes show flexibility and
ductility due to the parylene matrix material. These membranes have a
potential for applications that may require high flux, flexibility and
durability.
C1 [Park, H. G.; Fornasiero, F.; Holt, J. K.; Noy, A.; Bakajin, O.] LLNS LLC, Livermore, CA USA.
RP Park, HG, LLNS LLC, Livermore, CA USA.
CR ALLEN R, 2003, J CHEM PHYS, V119, P3905, DOI 10.1063/1.1590956
BECKSTEIN O, 2003, P NATL ACAD SCI USA, V100, P7063, DOI
10.1073/pnas.1136844100
CHE G, 1998, CHEM MATER, V10, P260
CHEN HB, 2006, J PHYS CHEM B, V110, P1971, DOI 10.1021/jp056911i
COTTINBIZONNE C, 2002, EUR PHYS J E, V9, P47, DOI
10.1140/epje/i2002-10112-9
CRAIG VSJ, 2001, PHYS REV LETT, V87, P54504
FAN R, 2003, J AM CHEM SOC, V125, P5254, DOI 10.1021/ja034163
FORNASIERO F, 2008, P NATL ACAD IN PRESS
HINDS BJ, 2004, SCIENCE, V303, P62, DOI 10.1126/science.1092048
HOLT JK, 2004, NANO LETT, V4, P2245, DOI 10.1021/nl048876h
HOLT JK, 2006, SCIENCE, V312, P1034, DOI 10.1126/science.1126298
HUMMER G, 2001, NATURE, V414, P188
HUMMER G, 2007, MOL PHYS, V105, P201, DOI 10.1080/00268970601140784
KALRA A, 2003, P NATL ACAD SCI USA, V100, P10175
KIM S, 2007, NANO LETT, V7, P2806, DOI 10.1021/nl071414u
KOLESNIKOV AI, 2004, PHYS REV LETT, V93, P5503
MAJUMDER M, 2005, NATURE, V438, P44, DOI 10.1038/43844a
MISERENDINO S, 2006, NANOTECHNOLOGY, V17, S23, DOI
10.1088/0957-4484/17/4/005
NAGUIB N, 2004, NANO LETT, V4, P2237, DOI 10.1021/nl0484907
NOY A, 2007, NANO TODAY, V2, P22
SHOLL DS, 2006, SCIENCE, V312, P1033
SKOULIDAS AI, 2002, PHYS REV LETT, V89, P5901
SKOULIDAS AI, 2006, J CHEM PHYS, V124, P54708
SOKHAN VP, 2001, J CHEM PHYS, V115, P3878
SOKHAN VP, 2002, J CHEM PHYS, V117, P8531, DOI 10.1063/1.1512643
SOKHAN VP, 2004, J CHEM PHYS, V120, P3855, DOI 10.1063/1.1643726
WAGHE A, 2002, J CHEM PHYS, V117, P10789, DOI 10.1063/1.1519861
NR 27
TC 0
PU CRC PRESS-TAYLOR & FRANCIS GROUP; 6000 BROKEN SOUND PARKWAY NW, STE
300, BOCA RATON, FL 33487-2742 USA
BP 43
EP 46
GA BMF46
UT ISI:000272169500012
ER

EF

========================================================================
*Order Full Text*
All Customers
--------------
Please contact your library administrator, or person(s) responsible for
document delivery, to find out more about your organization's policy for
obtaining the full text of the above articles. If your organization does
not have a current document delivery provider, your administrator can
contact ISI Document Solution at service@isidoc.com, or call 800-603-4367
or 734-459-8565.

IDS Customers
--------------
IDS customers can purchase the full text of an article (having page number,
volume, and issue information) by returning this ENTIRE message as a Reply
to Sender or Forward to orders@isidoc.com. Mark your choices with an X in
the "Order Full Text: []" brackets for each item. For example, [X].

Please enter your account number here:

========================================================================
*Import Records into an ISI ResearchSoft product*
1) Save the email as a text file. If your e-mail software removed extra line breaks, restore them before saving.
2) From within an ISI ResearchSoft product, import the text file using the ISI-CE filter.
========================================================================
*Help Desk Contact Information*
If you have any questions, please visit the Thomson Scientific Technical Support Contact Information Web page:
http://www.thomsonscientific.com/support/techsupport
========================================================================

No comments: