Thursday, December 17, 2009

ISI Web of Knowledge Alert - Majumder M

ISI Web of Knowledge Citation Alert

Cited Article: Majumder M. Nanoscale hydrodynamics - Enhanced flow in carbon nanotubes
Alert Expires: 09 NOV 2010
Number of Citing Articles: 6 new records this week (6 in this e-mail)
Organization ID: 3b97d1bbc1878baed0ab183d8b03130b
========================================================================
Note: Instructions on how to purchase the full text of an article and Help Desk Contact information are at the end of the e-mail.
========================================================================

*Record 1 of 6.
*View Full Record: http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000272413500011
*Order Full Text [ ]

Title:
Principles and applications of nanofluidic transport

Authors:
Sparreboom, W; van den Berg, A; Eijkel, JCT

Author Full Names:
Sparreboom, W.; van den Berg, A.; Eijkel, J. C. T.

Source:
NATURE NANOTECHNOLOGY 4 (11): 713-720 NOV 2009

Language:
English

Document Type:
Review

KeyWords Plus:
ELECTROKINETIC ENERGY-CONVERSION; PRESSURE-DRIVEN TRANSPORT; HYDRODYNAMIC CHROMATOGRAPHY; CONCENTRATION POLARIZATION; HYDROPHOBIC SURFACES; SILICA-NANOCHANNELS; CARBON NANOTUBES; POWER-GENERATION; DNA-MOLECULES; ION-TRANSPORT

Abstract:
The evolution from microfluidic to nanofluidic systems has been accompanied by the emergence of new fluid phenomena and the potential for new nanofluidic devices. This review provides an introduction to the theory of nanofluidic transport, focusing on the various forces that influence the movement of both solvents and solutes through nanochannels,and reviews the applications of nanofluidic devices in separation science and energy conversion.

Reprint Address:
Sparreboom, W, Univ Twente, MESA Inst Nanotechnol, BIOS Lab Chip Grp, POB 217, NL-7500 AE Enschede, Netherlands.

Research Institution addresses:
[Sparreboom, W.; van den Berg, A.; Eijkel, J. C. T.] Univ Twente, MESA Inst Nanotechnol, BIOS Lab Chip Grp, NL-7500 AE Enschede, Netherlands

E-mail Address:
w.sparreboom@utwente.nl

Cited References:
ABGRALL P, 2008, ANAL CHEM, V80, P2326, DOI 10.1021/ac702296u.
AJDARI A, 2006, PHYS REV LETT, V96, ARTN 186102.
ALCARAZ A, 2006, J PHYS CHEM B, V110, P21205, DOI 10.1021/jp063204w.
ALI M, 2009, ACS NANO, V3, P603, DOI 10.1021/nn900039f.
ANDERSON JL, 1987, CHEM ENG COMMUN, V55, P211.
AUSTIN R, 2007, NAT NANOTECHNOL, V2, P79, DOI 10.1038/nnano.2007.18.
BLOM MT, 2003, ANAL CHEM, V75, P6761, DOI 10.1021/ac034663I.
BOUZIGUES CI, 2008, PHYS REV LETT, V101, ARTN 114503.
BOWEN WR, 1996, J MEMBRANE SCI, V112, P263.
BURGREEN D, 1964, J PHYS CHEM-US, V68, P1084.
BURGREEN D, 1965, J APPL MECH, V32, P675.
CHENG LJ, 2007, NANO LETT, V7, P3165, DOI 10.1021/nl071770c.
CHRISTENSON HK, 2001, ADV COLLOID INTERFAC, V91, P391.
COTTINBIZONNE C, 2005, PHYS REV LETT, V94, ARTN 056102.
CRANK J, 1975, MATH DIFFUSION.
CROSS JD, 2007, J APPL PHYS, V102, ARTN 024514.
DAIGUJI H, 2004, NANO LETT, V4, P2315, DOI 10.1021/nl0489945.
DAVIDSON C, 2008, ELECTROPHORESIS, V29, P1125, DOI 10.1002/elps.200700549.
DAVIDSON C, 2008, J POWER SOURCES, V179, P297, DOI 10.1016/j.jpowsour.2007.12.050.
DEEN WM, 1987, AICHE J, V33, P1409.
DELAMARCHE E, 1997, SCIENCE, V276, P779.
DURAND NFY, 2007, APPL PHYS LETT, V91, ARTN 203106.
EIJKEL JCT, 2005, APPL PHYS LETT, V87, ARTN 114103.
EIJKEL JCT, 2005, MICROFLUID NANOFLUID, V1, P249, DOI 10.1007/s10404-004-0012-9.
EIJKEL JCT, 2007, LAB CHIP, V7, P1630, DOI 10.1039/b716545p.
FAN R, 2005, PHYS REV LETT, V95, ARTN 086607.
FAN R, 2008, NAT MATER, V7, P303, DOI 10.1038/nmat2127.
FU JP, 2007, NAT NANOTECHNOL, V2, P121, DOI 10.1038/nnano.2006.206.
GADELHAK M, 1999, T ASME, V121, P5.
GARCIAGIMENEZ E, 2009, J MEMBRANE SCI, V331, P137, DOI 10.1016/j.memsci.2009.01.026.
GIDDINGS JC, 1968, J PHYS CHEM-US, V72, P4397.
GIJS MAM, 2007, NAT NANOTECHNOL, V2, P268, DOI 10.1038/nnano.2007.116.
GOEDECKE N, 2002, LAB CHIP, V2, P219, DOI 10.1039/b208031c.
HAN AP, 2006, NANOTECHNOLOGY, V17, P2498, DOI 10.1088/0957-4484/17/10/010.
HAN J, 2000, SCIENCE, V288, P1026.
HAN JY, 2008, LAB CHIP, V8, P23, DOI 10.1039/b714128a.
HOLT JK, 2006, SCIENCE, V312, P1034, DOI 10.1126/science.1126298.
HUH D, 2007, NAT MATER, V6, P424, DOI 10.1038/nmat1907.
JOLY L, 2006, J CHEM PHYS, V125, ARTN 204716.
KARLSSON R, 2002, LANGMUIR, V18, P4186.
KARNIK R, 2005, NANO LETT, V5, P943, DOI 10.1021/nl050493b.
KARNIK R, 2006, APPL PHYS LETT, V88, ARTN 123114.
KARNIK R, 2006, NANO LETT, V6, P1735, DOI 10.1021/nl061159y.
KARNIK R, 2007, NANO LETT, V7, P547, DOI 10.1021/nl062806o.
KEH HJ, 2002, J COLLOID INTERF SCI, V252, P354, DOI 10.1006/jcis.2002.8483.
KIEVSKY YY, 2008, J CHEM PHYS, V128, ARTN 151102.
KUO TC, 2001, LANGMUIR, V17, P6298.
KUO TC, 2003, ANAL CHEM, V75, P1861.
LEVINE S, 1975, J COLLOID INTERF SCI, V52, P136.
LI ZR, 2008, ELECTROPHORESIS, V29, P329, DOI 10.1002/elps.200700679.
LYKLEMA J, 2000, FUNDAMENTALS INTERFA.
MAJUMDER M, 2005, NATURE, V438, P44, DOI 10.1038/43844a.
MANI A, 2009, LANGMUIR, V25, P3898, DOI 10.1021/1a803317p.
MANNION JT, 2006, BIOPHYS J, V90, P4538, DOI 10.1529/biophysj.105.074732.
MEYER EE, 2006, P NATL ACAD SCI USA, V103, P15739, DOI 10.1073/pnas.0606422103.
MIEDEMA H, 2007, NANO LETT, V7, P2886, DOI 10.1021/nl0716808.
MIJATOVIC D, 2005, LAB CHIP, V5, P492, DOI 10.1039/b416951d.
MULLER VM, 1986, COLLOID J USSR, V48, P606.
NINHAM BW, 1997, LANGMUIR, V13, P2097.
NORDE W, 2000, PHYS CHEM BIOL INTER, P115.
OGSTON AG, 1958, T FARADAY SOC, V54, P1754.
OSTERLE JF, 1964, APPL SCI RES, V12, P425.
PENNATHUR S, 2005, ANAL CHEM, V77, P6772, UNSP AC050835Y.
PENNATHUR S, 2005, ANAL CHEM, V77, P6782, DOI 10.1021/ac0508346.
PENNATHUR S, 2007, ANAL CHEM, V79, P8316, DOI 10.1021/ac0710580.
PENNATHUR S, 2007, LAB CHIP, V7, P1234, DOI 10.1039/b712893m.
PERRY JL, 2006, MICROFLUID NANOFLUID, V2, P185, DOI 10.1007/s10404-005-0068-1.
PIERRET RF, 1996, SEMICONDUCTOR DEVICE.
PLECIS A, 2008, ANAL CHEM, V80, P9542, DOI 10.1021/ac8017907.
POPPE H, 1997, J CHROMATOGR A, V778, P3.
PRIEVE DC, 1978, J COLLOID INTERF SCI, V64, P201.
PRIEVE DC, 1984, J FLUID MECH, V148, P247.
PROBSTEIN RF, 1994, PHYSICOCHEMICAL HYDR.
PU QS, 2004, NANO LETT, V4, P1099, DOI 10.1021/nl0494811.
QIAN SZ, 2007, J COLLOID INTERF SCI, V315, P721, DOI 10.1016/j.jcis.2007.06.075.
QUAKE SR, 2000, SCIENCE, V290, P1536.
REN YQ, 2008, NANOTECHNOLOGY, V19, ARTN 195707.
RUCKENSTEIN E, 1976, AICHE J, V22, P276.
SALIEBBEUGELAAR GB, 2008, NANO LETT, V8, P1785.
SCHOCH RB, 2006, NANO LETT, V6, P543, DOI 10.1021/nl052372h.
SCHOCH RB, 2008, REV MOD PHYS, V80, P839, DOI 10.1103/RevModPhys.80.839.
SOARE MA, 2006, J INTEL MAT SYST STR, V17, P231, DOI 10.1177/1045389X06056861.
STEIN D, 2006, P NATL ACAD SCI USA, V103, P15853, DOI 10.1073/pnas.0605900103.
SUCCI S, 2007, INT J MOD PHYS C, V18, P667.
TAS NR, 2002, ANAL CHEM, V74, P2224.
TEGENFELDT JO, 2004, ANAL BIOANAL CHEM, V378, P1678, DOI 10.1007/s00216-004-2526-0.
TERAOKA I, 1996, PROG POLYM SCI, V21, P89.
TURNER SW, 1998, J VAC SCI TECHNOL B, V16, P3835.
TURNER SWP, 2002, PHYS REV LETT, V88, ARTN 128103.
VANDERHEYDEN FHJ, 2007, NANO LETT, V7, P1022, DOI 10.1021/nl070194h.
VANOSS CJ, 2003, J MOL RECOGNIT, V16, P177, DOI 10.1002/jmr.618.
VERMESH U, 2009, NANO LETT, V9, P1315, DOI 10.1021/nl802931r.
VINOGRADOVA OI, 1999, INT J MINER PROCESS, V56, P31.
VLASSIOUK I, 2007, NANO LETT, V7, P552, DOI 10.1021/nl062924b.
WANG XY, 2008, J CHROMATOGR A, V1200, P108, DOI 10.1016/j.chroma.2008.05.088.
WANG YC, 2005, ANAL CHEM, V77, P4293, DOI 10.1021/ac050321z.
WHEELER TD, 2008, NATURE, V455, P208, DOI 10.1038/nature07226.
WIJMANS JG, 1995, J MEMBRANE SCI, V107, P1.
XUAN XC, 2008, ELECTROPHORESIS, V29, P3737, DOI 10.1002/elps.200800098.
YAMAGUCHI A, 2006, ANAL SCI, V22, P1501.
YAMAGUCHI A, 2008, J PHYS CHEM B, V112, P2024, DOI 10.1021/jp0767516.
YUAN Z, 2007, ELECTROPHORESIS, V28, P595, DOI 10.1002/elps.200600612.
ZANGLE TA, 2009, LANGMUIR, V25, P3909, DOI 10.1021/1a803318e.

Cited Reference Count:
103

Times Cited:
0

Publisher:
NATURE PUBLISHING GROUP; MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND

Subject Category:
Nanoscience & Nanotechnology; Materials Science, Multidisciplinary

ISSN:
1748-3387

DOI:
10.1038/NNANO.2009.332

IDS Number:
528AW

========================================================================

*Record 2 of 6.
*View Full Record: http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000272454500026
*Order Full Text [ ]

Title:
An efficient tool for modeling and predicting fluid flow in nanochannels

Authors:
Ahadian, S; Mizuseki, H; Kawazoe, Y

Author Full Names:
Ahadian, Samad; Mizuseki, Hiroshi; Kawazoe, Yoshiyuki

Source:
JOURNAL OF CHEMICAL PHYSICS 131 (18): Art. No. 184506 NOV 14 2009

Language:
English

Document Type:
Article

KeyWords Plus:
ARTIFICIAL NEURAL-NETWORKS; CARBON NANOTUBES; MOLECULAR-DYNAMICS; CAPILLARY RISE; TRANSPORT; LIQUIDS; SURFACE; NANOFLUIDICS; IMBIBITION; NANOPORES

Abstract:
Molecular dynamics simulations were performed to evaluate the penetration of two different fluids (i.e., a Lennard-Jones fluid and a polymer) through a designed nanochannel. For both fluids, the length of permeation as a function of time was recorded for various wall-fluid interactions. A novel methodology, namely, the artificial neural network (ANN) approach was then employed for modeling and prediction of the length of imbibition as a function of influencing parameters (i.e., time, the surface tension and the viscosity of fluids, and the wall-fluid interaction). It was demonstrated that the designed ANN is capable of modeling and predicting the length of penetration with superior accuracy. Moreover, the importance of variables in the designed ANN, i.e., time, the surface tension and the viscosity of fluids, and the wall-fluid interaction, was demonstrated with the aid of the so-called connection weight approach, by which all parameters are simultaneously considered. It was!
revealed that the wall-fluid interaction plays a significant role in such transport phenomena, namely, fluid flow in nanochannels. (C) 2009 American Institute of Physics. [doi: 10.1063/1.3253701]

Reprint Address:
Ahadian, S, Tohoku Univ, IMR, Sendai, Miyagi 9808577, Japan.

Research Institution addresses:
[Ahadian, Samad; Mizuseki, Hiroshi; Kawazoe, Yoshiyuki] Tohoku Univ, IMR, Sendai, Miyagi 9808577, Japan

E-mail Address:
ahadian@imr.edu

Cited References:
ABGRALL P, 2008, ANAL CHEM, V80, P2326, DOI 10.1021/ac702296u.
AHADIAN S, 2007, COLLOID SURFACE A, V302, P280, DOI 10.1016/j.colsurfa.2007.02.041.
AHADIAN S, 2008, CHEM ENG COMMUN, V195, P435, DOI 10.1080/00986440701707735.
AHADIAN S, 2009, COLLOID POLYM SCI, V287, P961, DOI 10.1007/s00396-009-2052-x.
AHADIAN S, 2009, MATER TRANS, V50, P1157, DOI 10.2320/matertrans.MRA2008405.
AHADIAN S, 2009, NANOSCALE RES LETT, V4, P1054, DOI 10.1007/s11671-009-9361-3.
ALLEN MP, 1987, COMPUTER SIMULATION.
BACKER JA, 2005, J CHEM PHYS, V122, ARTN 154503.
BATCHELOR GK, 2000, INTRO FLUID DYNAMICS.
BISHOP CM, 1995, NEURAL NETWORKS PATT.
BLAKE TD, 1969, J COLLOID INTERF SCI, V30, P421.
BOSANQUET CH, 1923, PHILOS MAG, V45, P525.
COX RG, 1986, J FLUID MECH, V168, P169.
DEGENNES PG, 1985, REV MOD PHYS, V57, P827.
DEMUTH H, 2002, NEURAL NETWORK TOOLB.
DIMITROV DI, 2007, PHYS REV LETT, V99, ARTN 054501.
DRAPER NR, 1998, APPL REGRESSION ANAL.
FRENKEL D, 2002, UNDERSTANDING MOL SI.
GREST GS, 1986, PHYS REV A, V33, P3628.
HAN AJ, 2008, J APPL PHYS, V104, ARTN 124908.
HASTIE T, 2001, ELEMENTS STAT LEARNI.
HAYKIN S, 1999, NEURAL NETWORKS COMP.
HOLT JK, 2006, SCIENCE, V312, P1034, DOI 10.1126/science.1126298.
HORNIK K, 1989, NEURAL NETWORKS, V2, P359.
JOLLIFFE IT, 1986, PRINCIPAL COMPONENT.
KARNIADAKIS G, 2005, MICROFLOWS NANOFLOWS.
KEMP SJ, 2007, ECOL MODEL, V204, P326, DOI 10.1016/j.ecolmodel.2007.01.009.
KIM T, 2008, J APPL PHYS, V104, ARTN 034304.
LUCAS R, 1918, KOLLOID Z, V23, P15.
MAIBAUM L, 2003, J PHYS CHEM B, V107, P1189, DOI 10.1021/jp0267196.
MAJUMDER M, 2005, NATURE, V438, P44, DOI 10.1038/43844a.
MARTIC G, 2005, LANGMUIR, V21, P11201, DOI 10.1021/la0513149.
MCCULLOCH S, 1943, B MATH BIOPHYS, V5, P115.
NOY A, 2007, NANO TODAY, V2, P22.
OLDEN JD, 2004, ECOL MODEL, V178, P389, DOI 10.1016/j.ecolmodel.2004.03.013.
QIAO Y, 2007, J AM CHEM SOC, V129, P2355, DOI 10.1021/ja067185f.
QIAO Y, 2009, NANO LETT, V9, P984, DOI 10.1021/nl8030136.
RIDEAL EK, 1922, PHILOS MAG, V44, P1152.
ROWLINSON JS, 1982, MOL THEORY CAPILLARI.
RUMELHART DE, 1986, NATURE, V323, P533.
SCHOCH RB, 2008, REV MOD PHYS, V80, P839, DOI 10.1103/RevModPhys.80.839.
SHIKHMURZAEV YD, 1997, J FLUID MECH, V334, P211.
SODDEMANN T, 2003, PHYS REV E 2, V68, ARTN 046702.
SUNG AH, 1998, P IEEE WORLD C COMP, V1, P316.
SUPPLE S, 2003, PHYS REV LETT, V90, ARTN 214501.
SUPPLE S, 2005, J CHEM PHYS, V122, ARTN 104706.
THOMAS JA, 2008, NANO LETT, V8, P2788, DOI 10.1021/nl8013617.
WASHBURN EW, 1921, PHYS REV, V17, P273.
WHITBY M, 2007, NAT NANOTECHNOL, V2, P87, DOI 10.1038/nnano.2006.175.
WHITBY M, 2008, NANO LETT, V8, P2632, DOI 10.1021/nl080705f.
ZURADA JM, 1997, NEUROCOMPUTING, V14, P177.

Cited Reference Count:
51

Times Cited:
0

Publisher:
AMER INST PHYSICS; CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA

Subject Category:
Physics, Atomic, Molecular & Chemical

ISSN:
0021-9606

DOI:
10.1063/1.3253701

IDS Number:
528NY

========================================================================

*Record 3 of 6.
*View Full Record: http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000272170200096
*Order Full Text [ ]

Title:
Enhanced Fluid Transport Through Carbon Nanopipes

Authors:
Whitby, M; Thanou, M; Quirke, N

Author Full Names:
Whitby, M.; Thanou, M.; Quirke, N.

Source:
NSTI NANOTECH 2008, VOL 3, TECHNICAL PROCEEDINGS : 367-369 2008

Language:
English

Document Type:
Proceedings Paper

Author Keywords:
nanopipes; nanotubes; carbon; nanofluidics; flow; plasma

KeyWords Plus:
NANOTUBES; ALUMINA; FLOW

Abstract:
Experimental measurement of fluid flow and diffusion through nanoscale channels is important both for determining how classical theories of fluid dynamics apply at very small length scales and with a view to constructing practical nanofluidic devices. In this study, we observe water flow enhancement of more than 250% in relatively large 271 +/- 31 nm diameter carbon nanopipes with plasma induced surface modification of the carbon walls. Our findings have application in the development of biomedical devices both for sensing and for delivery of therapeutic drugs.

Reprint Address:
Whitby, M, Univ London Imperial Coll Sci Technol & Med, Dept Chem, London SW7 2AZ, England.

Research Institution addresses:
[Whitby, M.; Thanou, M.; Quirke, N.] Univ London Imperial Coll Sci Technol & Med, Dept Chem, London SW7 2AZ, England

Cited References:
CHE G, 1998, CHEM MATER, V10, P260.
HOLT JK, 2006, SCIENCE, V312, P1034, DOI 10.1126/science.1126298.
JOSEPH S, 2008, NANOLETT.
MAJUMDER M, 2005, NATURE, V438, P44, DOI 10.1038/43844a.
MASUDA H, 1995, SCIENCE, V268, P1466.
NIELSCH K, 2002, NANO LETTERS, V2, P677.
SUPPLE S, 2003, PHYS REV LETT, V90.
WHITBY M, UNPUB.
WHITBY M, 2007, NAT NANOTECHNOL, V2, P87, DOI 10.1038/nnano.2006.175.

Cited Reference Count:
9

Times Cited:
0

Publisher:
CRC PRESS-TAYLOR & FRANCIS GROUP; 6000 BROKEN SOUND PARKWAY NW, STE 300, BOCA RATON, FL 33487-2742 USA

IDS Number:
BMF51

========================================================================

*Record 4 of 6.
*View Full Record: http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000272169900030
*Order Full Text [ ]

Title:
Nanofiltration of Electrolyte Solutions by Sub-2nm Carbon Nanotube Membranes

Authors:
Fornasiero, F; Park, HG; Holt, JK; Stadermann, M; Kim, S; In, JB; Grigoropoulos, CP; Noy, A; Bakajin, O

Author Full Names:
Fornasiero, Francesco; Park, Hyung Gyu; Holt, Jason K.; Stadermann, Michael; Kim, Sangil; In, Jung Bin; Grigoropoulos, Costas P.; Noy, Aleksandr; Bakajin, Olgica

Source:
NSTI NANOTECH 2008, VOL 2, TECHNICAL PROCEEDINGS : 106-109 2008

Language:
English

Document Type:
Proceedings Paper

Author Keywords:
carbon nanotube; membrane; ion exclusion; fast flow

KeyWords Plus:
WATER; TRANSPORT; GROWTH

Abstract:
Both MD simulations and experimental studies have shown that liquid and gas flow through carbon nanotubes with nanometer size diameter is exceptionally fast. For applications in separation technology, selectivity is required together with fast flow. In this work, we use pressure-driven filtration experiments to study ion exclusion in silicon nitride/sub-2-nm CNT composite membranes as a function of solution ionic strength, pH, and ion valence. We show that carbon nanotube membranes exhibit significant ion exclusion at low salt concentration. Our results support a rejection mechanism dominated by electrostatic interactions between fixed membrane charges and mobile ions, while steric and hydrodynamic effects appear to be less important. Comparison with commercial nanofiltration membranes for water softening reveals that our carbon nanotube membranes provides far superior water fluxes for similar ion rejection capabilities.

Reprint Address:
Fornasiero, F, Lawrence Livermore Natl Lab, CMELS, Biosci & Biotechnol Div, Livermore, CA 94550 USA.

Research Institution addresses:
[Fornasiero, Francesco; Park, Hyung Gyu; Holt, Jason K.; Stadermann, Michael; Noy, Aleksandr; Bakajin, Olgica] Lawrence Livermore Natl Lab, CMELS, Biosci & Biotechnol Div, Livermore, CA 94550 USA

Cited References:
CHEUNG CL, 2002, J PHYS CHEM B, V106, P2429.
FORNASIERO F, 2008, PNAS IN PRESS.
FRANKLIN NR, 2002, APPL PHYS LETT, V81, P913.
FUTABA DN, 2006, NAT MATER, V5, P987, DOI 10.1038/nmat1782.
HOLT JK, 2006, SCIENCE, V312, P1034, DOI 10.1126/science.1126298.
HUMMER G, 2001, NATURE, V414, P188.
JOSEPH S, 2008, NANO LETT, V8, P452, DOI 10.1021/nl072385q.
KALRA A, 2003, P NATL ACAD SCI USA, V100, P10175.
KOLESNIKOV AI, 2004, PHYS REV LETT, V93, P5503.
LOISEAU A, 2006, LECT NOTE PHYS, V677, P49.
MAJUMDER M, 2005, NATURE, V438, P44, DOI 10.1038/43844a.
MAMONTOV E, 2006, J CHEM PHYS, V124, P94703.
MANIWA Y, 2007, NAT MATER, V6, P135, DOI 10.1038/nmat1823.
NAGUIB N, 2004, NANO LETT, V4, P2237, DOI 10.1021/nl0484907.
NOY A, 2007, NANO TODAY, V2, P22.
PURETZKY AA, 2005, APPL PHYS A-MATER, V81, P223, DOI 10.1007/s00339-005-3256-7.
YAMADA T, 2006, NAT NANOTECHNOL, V1, P131, DOI 10.1038/nnano.2006.95.

Cited Reference Count:
17

Times Cited:
0

Publisher:
CRC PRESS-TAYLOR & FRANCIS GROUP; 6000 BROKEN SOUND PARKWAY NW, STE 300, BOCA RATON, FL 33487-2742 USA

IDS Number:
BMF49

========================================================================

*Record 5 of 6.
*View Full Record: http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000272169500012
*Order Full Text [ ]

Title:
A High-Flux, Flexible Membrane with Parylene-encapsulated Carbon Nanotubes

Authors:
Park, HG; In, J; Kim, S; Fornasiero, F; Holt, JK; Grigoropoulos, CP; Noy, A; Bakajin, O

Author Full Names:
Park, H. G.; In, J.; Kim, S.; Fornasiero, F.; Holt, J. K.; Grigoropoulos, C. P.; Noy, A.; Bakajin, O.

Source:
NSTI NANOTECH 2008, VOL 1, TECHNICAL PROCEEDINGS : 43-46 2008

Language:
English

Document Type:
Proceedings Paper

Author Keywords:
membrane; carbon nanotube; parylene; high-flux

KeyWords Plus:
BOUNDARY-CONDITIONS; MASS-TRANSPORT; WATER; NANOPORES; FABRICATION; FLOW; ARRAYS

Abstract:
We present fabrication and characterization of a membrane based on carbon nanotubes (CNTs) and parylene. Carbon nanotubes have shown orders of magnitude enhancement in gas and water permeability compared to estimates generated by conventional theories [1, 2]. Large area membranes that exhibit flux enhancement characteristics of carbon nanotubes may provide an economical solution to a variety of technologies including water desalination [3] and gas sequestration [4]. We report a novel method of making carbon nanotube-based, robust membranes with large areas. A vertically aligned dense carbon nanotube array is infiltrated with parylene. Parylene polymer creates a pinhole free transparent film by exhibiting high surface conformity and excellent crevice penetration. Using this moisture-, chemical- and solvent-resistant polymer creates carbon nanotube membranes that promise to exhibit high stability and biocompatibility. CNT membranes are formed by releasing a free-standing film !
that consists of parylene-infiltrated CNTs, followed by CNT uncapping on both sides of the composite material. Thus fabricated membranes show flexibility and ductility due to the parylene matrix material. These membranes have a potential for applications that may require high flux, flexibility and durability.

Reprint Address:
Park, HG, LLNS LLC, Livermore, CA USA.

Research Institution addresses:
[Park, H. G.; Fornasiero, F.; Holt, J. K.; Noy, A.; Bakajin, O.] LLNS LLC, Livermore, CA USA

Cited References:
ALLEN R, 2003, J CHEM PHYS, V119, P3905, DOI 10.1063/1.1590956.
BECKSTEIN O, 2003, P NATL ACAD SCI USA, V100, P7063, DOI 10.1073/pnas.1136844100.
CHE G, 1998, CHEM MATER, V10, P260.
CHEN HB, 2006, J PHYS CHEM B, V110, P1971, DOI 10.1021/jp056911i.
COTTINBIZONNE C, 2002, EUR PHYS J E, V9, P47, DOI 10.1140/epje/i2002-10112-9.
CRAIG VSJ, 2001, PHYS REV LETT, V87, P54504.
FAN R, 2003, J AM CHEM SOC, V125, P5254, DOI 10.1021/ja034163.
FORNASIERO F, 2008, P NATL ACAD IN PRESS.
HINDS BJ, 2004, SCIENCE, V303, P62, DOI 10.1126/science.1092048.
HOLT JK, 2004, NANO LETT, V4, P2245, DOI 10.1021/nl048876h.
HOLT JK, 2006, SCIENCE, V312, P1034, DOI 10.1126/science.1126298.
HUMMER G, 2001, NATURE, V414, P188.
HUMMER G, 2007, MOL PHYS, V105, P201, DOI 10.1080/00268970601140784.
KALRA A, 2003, P NATL ACAD SCI USA, V100, P10175.
KIM S, 2007, NANO LETT, V7, P2806, DOI 10.1021/nl071414u.
KOLESNIKOV AI, 2004, PHYS REV LETT, V93, P5503.
MAJUMDER M, 2005, NATURE, V438, P44, DOI 10.1038/43844a.
MISERENDINO S, 2006, NANOTECHNOLOGY, V17, S23, DOI 10.1088/0957-4484/17/4/005.
NAGUIB N, 2004, NANO LETT, V4, P2237, DOI 10.1021/nl0484907.
NOY A, 2007, NANO TODAY, V2, P22.
SHOLL DS, 2006, SCIENCE, V312, P1033.
SKOULIDAS AI, 2002, PHYS REV LETT, V89, P5901.
SKOULIDAS AI, 2006, J CHEM PHYS, V124, P54708.
SOKHAN VP, 2001, J CHEM PHYS, V115, P3878.
SOKHAN VP, 2002, J CHEM PHYS, V117, P8531, DOI 10.1063/1.1512643.
SOKHAN VP, 2004, J CHEM PHYS, V120, P3855, DOI 10.1063/1.1643726.
WAGHE A, 2002, J CHEM PHYS, V117, P10789, DOI 10.1063/1.1519861.

Cited Reference Count:
27

Times Cited:
0

Publisher:
CRC PRESS-TAYLOR & FRANCIS GROUP; 6000 BROKEN SOUND PARKWAY NW, STE 300, BOCA RATON, FL 33487-2742 USA

IDS Number:
BMF46

========================================================================

*Record 6 of 6.
*View Full Record: http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000272254800056
*Order Full Text [ ]

Title:
Performance Augmentation of a Water Chiller System Using Nanofluids

Authors:
Liu, MS; Hu, R; Lin, MCC; Wang, CC; Liaw, JS

Author Full Names:
Liu, M. S.; Hu, R.; Lin, M. C. C.; Wang, C. C.; Liaw, J. S.

Source:
ASHRAE TRANSACTIONS 2009, VOL 115, PT 1 115: 581-586 Part 1 2009

Language:
English

Document Type:
Proceedings Paper

KeyWords Plus:
THERMAL-CONDUCTIVITY; CARBON NANOTUBE; HEAT-TRANSFER; ENHANCEMENT; FLOW

Abstract:
This study examined the overall system performance of a water chiller that is subject to the influence of nanofluids. The system performance of a 10 R T water chiller (air conditioner) located in a well-controlled chamber was observed. Multiwalled carbon nanotubes (MWCNTs) were used as the heat transfer medium in the evaporator The system performance was tested at the standard water chiller rating condition in the range of the flow rate (60 L/min to 140 L/min). The static measurement of the thermal conductivity of the nanofluids showed only a 1.3% marginal increase relative to the base fluid, so it was surprising to find that a 4.2% increase in cooling capacity and a slight decrease of about 0.8% in power consumption occurred in the nanofluids system at a flow rate of 100 L/min. In summary, with the introduction of nanofluids, the coefficient of performance (COP) of the water chiller is increased by 5.15% relative to that without nanofluids.

Reprint Address:
Liu, MS, Ind Technol Res Inst, Energy & Environm Res Labs, Hsinchu, Taiwan.

Research Institution addresses:
[Liu, M. S.; Hu, R.; Lin, M. C. C.; Wang, C. C.; Liaw, J. S.] Ind Technol Res Inst, Energy & Environm Res Labs, Hsinchu, Taiwan

Cited References:
BEHZADMEHR A, 2007, INT J HEAT FLUID FL, V28, P211, DOI 10.1016/j.ijheatfluidflow.2006.04.006.
CHOI SUS, 1995, DEV APPL NONNEWTONIA, V231, P99.
CHOI SUS, 2001, APPL PHYS LETT, V79, P2252.
DAUNGTHONGSUK W, 2007, RENEW SUST ENERG REV, V11, P797, DOI 10.1016/j.rser.2005.06.005.
DING Y, 2005, INT J HEAT MASS TRAN, V49, P240.
GAO L, 2007, CHEM PHYS LETT, V434, P297, DOI 10.1016/j.cplett.2006.12.036.
LIU MS, 2005, INT COMMUN HEAT MASS, V32, P1202, DOI 10.1016/j.icheatmasstransfer.2005.05.005.
LIU MS, 2006, P 2 INT S MICR NAN, P345.
LU HF, 2007, CARBON, V45, P936, DOI 10.1016/j.carbon.2007.01.001.
MAJUMDER M, 2005, NATURE, V438, P44, DOI 10.1038/43844a.
WANG XQ, 2007, INT J THERM SCI, V46, P1, DOI 10.1016/j.ijthermalsci.2006.06.010.
XIE HQ, 2003, J APPL PHYS, V94, P4967, DOI 10.1063/1.1613374.
XUAN Y, 2003, ASME, V125, P151.
YANG Y, 2005, INT J HEAT MASS TRAN, V48, P1107, DOI 10.1016/j.ijheatmasstransfer.2004.09.038.
ZHANG X, 2007, EXP THERM FLUID SCI, V31, P593, DOI 10.1016/j.expthermflusci.2006.06.009.

Cited Reference Count:
15

Times Cited:
0

Publisher:
AMER SOC HEATING, REFRIGERATING AND AIR-CONDITIONING ENGS; 1791 TULLIE CIRCLE NE, ATLANTA, GA 30329 USA

ISSN:
0001-2505

IDS Number:
BMG17

========================================================================
*Order Full Text*
All Customers
--------------
Please contact your library administrator, or person(s) responsible for
document delivery, to find out more about your organization's policy for
obtaining the full text of the above articles. If your organization does
not have a current document delivery provider, your administrator can
contact ISI Document Solution at service@isidoc.com, or call 800-603-4367
or 734-459-8565.

IDS Customers
--------------
IDS customers can purchase the full text of an article (having page number,
volume, and issue information) by returning this ENTIRE message as a Reply
to Sender or Forward to orders@isidoc.com. Mark your choices with an X in
the "Order Full Text: []" brackets for each item. For example, [X].

Please enter your account number here:

========================================================================
*Help Desk Contact Information*
If you have any questions, please visit the Thomson Scientific Technical Support Contact Information Web page:
http://www.thomsonscientific.com/support/techsupport
========================================================================

No comments: