Friday, January 9, 2009

ISI Web of Knowledge Alert - Hummer, G

ISI Web of Knowledge Citation Alert (Solaris 2.1)

Cited Article: Hummer, G. Water conduction through the hydrophobic channel of a carbon nanotube
Alert Expires: 22 OCT 2009
Number of Citing Articles: 5 new records this week (5 in this e-mail)
Organization ID: 3b97d1bbc1878baed0ab183d8b03130b
========================================================================
Note: Instructions on how to purchase the full text of an article and Help Desk Contact information are at the end of the e-mail.
========================================================================

*Record 1 of 5.
*View Full Record: http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000261607400007
*Order Full Text [ ]

Title:
New Look at Thermodynamics of Gas and at Clusterization

Authors:
Maslov, VP

Author Full Names:
Maslov, V. P.

Source:
RUSSIAN JOURNAL OF MATHEMATICAL PHYSICS 15 (4): 493-510 DEC 2008

Language:
English

Document Type:
Article

Keywords Plus:
CARBON NANOTUBES; QUASI-PARTICLES; QUANTIZATION; NUCLEATION; FERMIONS; BOSONS; WATER; LAW

Abstract:
In the paper, by using the example of a rigorous formulation and rigorous proof of the Maxwell distribution, estimates for the distribution in dependence of the parameter N (the number of particles) are established. Further, the problem concerning the creation of dimers in classical gas is regarded as an analog of Bose condensation, and estimates for the lower level of the analog of Bose condensation are proved. The relationship between this level and the theory of "capture" in the scattering problem corresponding to interaction in the form of Lennard-Jones potential is clarified.
The equation of state of a nonideal gas as a result of pairwise interaction of particles in the Lennard-Jones and Kihara models is derived.
New quantum equations for the transfer of neutral gas consisting of particles with evenly and oddly many neutrons in capillaries and nanotubes are also presented.

Cited References:
ALEKSEEV VA, 2001, J EXP THEOR PHYS+, V92, P608.
ANDREWS GE, 1976, ENCY MATH APPL, V2.
BOGOLYUBOV NN, 1970, SUPERFLUIDITY THEORY, V2, P210.
BURSHTEIN AI, 1986, MOL PHYS.
HUMMER G, 2001, NATURE, V414, P188.
JOSEPH S, 2008, NANO LETT, V8, P452, DOI 10.1021/nl072385q.
KLAIN DA, 1997, INTRO GEOMETRIC PROB.
KOZLOV VV, 2002, THERMAL EQUILIBRIUM.
KVASNIKOV IA, 2002, STAT PHYS.
LANDA PS, 2001, J COMMUN TECHNOL EL+, V46, P1068.
LANDAU LD, 1968, STAT PHYS.
MASLOV VP, 1972, PERTURBATION THEORY.
MASLOV VP, 1973, OPERATOR METHODS.
MASLOV VP, 1979, MATH USSR IZV, V42, P1101.
MASLOV VP, 1995, RUSS J MATH PHYS, V3, P271.
MASLOV VP, 1998, MATH NOTES+, V63, P695.
MASLOV VP, 1998, MATH NOTES, V63, P406.
MASLOV VP, 1999, MATH NOTES+, V66, P701.
MASLOV VP, 2005, MATH NOTES+, V78, P347.
MASLOV VP, 2005, RUSS J MATH PHYS, V12, P483.
MASLOV VP, 2006, MATH NOTES+, V80, P679.
MASLOV VP, 2006, QUANTUM EC.
MASLOV VP, 2006, RUSS J MATH PHYS, V13, P315.
MASLOV VP, 2007, RUSS J MATH PHYS, V14, P304, DOI 10.1134/S1061920807030065.
MASLOV VP, 2007, RUSS J MATH PHYS, V14, P401.
MASLOV VP, 2008, MATH NOTES+, V83, P790, DOI 10.1134/S0001434608050258.
MASLOV VP, 2008, MATH NOTES+, V83, P804, DOI 10.1134/S000143460805026X.
MASLOV VP, 2008, MATH NOTES+, V84, P73, DOI 10.1134/S0001434608070079.
MASLOV VP, 2008, RUSS J MATH PHYS, V15, P332, DOI 10.1134/S106192080803004X.
MASLOV VP, 2008, RUSS J MATH PHYS, V15, P61.
MASLOV VP, 2008, TEOR MAT FIZ, V156, P159.
NOY A, 2007, NANO TODAY, V2, P22.
PONTRYAGIN L, 1933, ZH EKSP TEOR FIZ, V3, P165.
SHIRYAEV AN, 1984, PROBABILITY.
SKOULIDAS AI, 2002, PHYS REV LETT, V89, ARTN 185901.
VERSHIK AM, 1996, FUNCT ANAL APPL+, V30, P90.

Cited Reference Count:
36

Times Cited:
0

Publisher:
MAIK NAUKA/INTERPERIODICA/SPRINGER; 233 SPRING ST, NEW YORK, NY 10013-1578 USA

Subject Category:
Physics, Mathematical

ISSN:
1061-9208

DOI:
10.1134/S1061920808040079

IDS Number:
382LL

========================================================================

*Record 2 of 5.
*View Full Record: http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000261577900043
*Order Full Text [ ]

Title:
Uncovering channels in photosystem II by computer modelling: current progress, future prospects, and lessons from analogous systems

Authors:
Ho, F

Author Full Names:
Ho, Felix M.

Source:
PHOTOSYNTHESIS RESEARCH 98 (1-3): 503-522 OCT 2008

Language:
English

Document Type:
Review

Author Keywords:
Photosystem II; Molecular dynamics; Channels; Substrate water access; H+ exit pathway; O-2 exit pathway

Keywords Plus:
CYTOCHROME-C-OXIDASE; OXYGEN-EVOLVING COMPLEX; PHOTOSYNTHETIC WATER OXIDATION; HEME-COPPER OXIDASES; QUANTUM MECHANICS/MOLECULAR MECHANICS; MOLECULAR-DYNAMICS SIMULATIONS; SITE-DIRECTED MUTAGENESIS; COUPLED ELECTRON-TRANSFER; VALENCE-BOND MODEL; PROTON-TRANSFER

Abstract:
Even prior to the publication of the crystal structures for photosystem II (PSII), it had already been suggested that water, O-2 and H+ channels exist in PSII to achieve directed transport of these molecules, and to avoid undesirable side reactions. Computational efforts to uncover these channels and investigate their properties are still at early stages, and have so far only been based on the static PSII structure. The rationale behind the proposals for such channels and the computer modelling studies thus far are reviewed here. The need to take the dynamic protein into account is then highlighted with reference to the specific issues and techniques applicable to the simulation of each of the three channels. In particular, lessons are drawn from simulation studies on other protein systems containing similar channels.

Reprint Address:
Ho, F, Uppsala Univ, Angstrom Lab, Dept Photochem & Mol Sci, POB 523, S-75120 Uppsala, Sweden.

Research Institution addresses:
Uppsala Univ, Angstrom Lab, Dept Photochem & Mol Sci, S-75120 Uppsala, Sweden

E-mail Address:
Felix.Ho@fotomol.uu.se

Cited References:
ANANYEV G, 1992, BIOCHIM BIOPHYS ACTA, V1100, P303.
ANDERSON JM, 2001, FEBS LETT, V488, P1.
ANDERSON JM, 2002, PHILOS T ROY SOC B, V357, P1421, DOI 10.1098/rstb.2002.1138.
ARATO A, 2004, BBA-BIOENERGETICS, V1608, P171, DOI 10.1016/j.bbabio.2003.12.003.
ASADA K, 1987, PHOTOINHIBITION, P227.
BACKGREN C, 2000, BIOCHEMISTRY-US, V39, P7863.
BARBER J, 2004, BBA-BIOENERGETICS, V1655, P123, DOI 10.1016/j.bbabio.2003.10.011.
BARBER J, 2004, PHYS CHEM CHEM PHYS, V6, P4737, DOI 10.1039/b407981g.
BAZELYANSKY M, 1986, BIOCHEMISTRY-US, V25, P125.
BECKMANN K, 2007, PHOTOSYNTH RES, V91, P176.
BECKSTEIN O, 2004, PHYS BIOL, V1, P42.
BERNAT G, 2002, BIOCHEMISTRY-US, V41, P5830.
BOUSSAC A, 1989, BIOCHEMISTRY-US, V28, P8984.
BOUSSAC A, 1990, FEBS LETT, V277, P69.
BRADLEY RL, 1991, FEBS LETT, V286, P209.
BRANDEN G, 2006, BBA-BIOENERGETICS, V1757, P1052, DOI 10.1016/j.bbabio.2006.05.020.
BRICKER TM, 2005, PHOTOSYSTEM, V2, P95.
BRZEZINSKI P, 2003, BBA-BIOENERGETICS, V1605, P1, DOI 10.1016/S0005-2728(03)00079-3.
BRZEZINSKI P, 2006, CURR OPIN STRUC BIOL, V16, P465, DOI 10.1016/j.sbi.2006.06.012.
BUHRKE T, 2005, J BIOL CHEM, V280, P23791, DOI 10.1074/jbc.M503260200.
BURYKIN A, 2003, BIOPHYS J, V85, P3696.
CHAKRABARTI N, 2004, J MOL BIOL, V343, P493, DOI 10.1016/j.jmb.2004.08.036.
CHAKRABARTI N, 2004, STRUCTURE, V12, P65, DOI 10.1016/j.str.2003.11.017.
CHANG CJ, 2004, BBA-BIOENERGETICS, V1655, P13, DOI 10.1016/j.bbabio.2003.08.010.
CHEN L, 2008, BIOCHEMISTRY-US, V47, P5368, DOI 10.1021/bi800228w.
CHOW WS, 2005, PHOTOSYSTEM, V2, P627.
COHEN J, 2005, BIOCHEM SOC T 1, V33, P80.
COHEN J, 2005, STRUCTURE, V13, P1321, DOI 10.1016/j.str.2005.05.013d.
COHEN J, 2006, BIOPHYS J, V91, P1844, DOI 10.1529/biophysj.106.085746.
COHEN J, 2007, BIOPHYS J, V93, P3591, DOI 10.1529/biophysj.107.108712.
CUKIER RI, 2004, BBA-BIOENERGETICS, V1656, P189, DOI 10.1016/j.bbabio.2004.03.006.
CUKIERMAN S, 2006, BBA-BIOENERGETICS, V1757, P876, DOI 10.1016/j.bbabio.2005.12.001.
DAU H, 2008, COORDIN CHEM REV, V252, P273, DOI 10.1016/j.ccr.2007.09.001.
DAY TJF, 2002, J CHEM PHYS, V117, P5839, DOI 10.1063/1.1497157.
DEBUS RJ, 2005, PHOTOSYSTEM, V2, P261.
DEGROOT BL, 2001, SCIENCE, V294, P2353.
DEGROOT BL, 2003, J MOL BIOL, V333, P279, DOI 10.1016/j.jmb.2003.08.003.
DEGROOT BL, 2005, CURR OPIN STRUC BIOL, V15, P176, DOI 10.1016/j.sbi.2005.02.003.
DELASRIVAS J, 2004, PHOTOSYNTH RES, V81, P329.
DURRANT JR, 1990, BIOCHIM BIOPHYS ACTA, V1017, P167.
ELBER R, 1990, J AM CHEM SOC, V112, P9161.
FALLER P, 2005, PHOTOSYSTEM, V2, P347.
FERREIRA KN, 2004, SCIENCE, V303, P1831, DOI 10.1126/science.1093087.
FERSHT A, 1999, STRUCTURE MECH PROTE.
FINE PL, 1992, BIOCHEMISTRY-US, V31, P12204.
FORCE DA, 1998, J AM CHEM SOC, V120, P13321.
FRANK HA, 2004, BIOCHEMISTRY-US, V43, P8607, DOI 10.1021/bi0492096.
GREGOR WG, 2005, BIOCHEMISTRY-US, V44, P8817, DOI 10.1021/bi047400+.
GUNNER MR, 2006, BBA-BIOENERGETICS, V1757, P942, DOI 10.1016/j.bbabio.2006.06.005.
HANLEY J, 1999, BIOCHEMISTRY-US, V38, P8189.
HAVELIUS KGV, 2007, BIOCHEMISTRY-US, V46, P7865, DOI 10.1021/bi700377g.
HENDRY G, 2002, BIOCHEMISTRY-US, V41, P13328, DOI 10.1021/bi026246t.
HENDRY G, 2003, BIOCHEMISTRY-US, V42, P6209, DOI 10.1021/bi034279i.
HIDEG E, 1998, BIOCHEMISTRY-US, V37, P11405.
HIENERWADEL R, 2008, BBA-BIOENERGETICS, V1777, P525, DOI 10.1016/j.bbabio.2008.04.004.
HILLIER W, 1998, BIOCHEMISTRY-US, V37, P16908.
HILLIER W, 2000, BIOCHEMISTRY-US, V39, P4399.
HILLIER W, 2001, J BIOL CHEM, V276, P46917.
HILLIER W, 2004, PHYS CHEM CHEM PHYS, V6, P4882, DOI 10.1039/b407269c.
HILLIER W, 2008, COORDIN CHEM REV, V252, P306, DOI 10.1016/j.ccr.2007.09.004.
HO FM, 2008, BBA-BIOENERGETICS, V1777, P140, DOI 10.1016/j.bbabio.2007.08.009.
HOFACKER I, 1998, PROTEINS, V30, P100.
HOSLER JP, 2006, ANNU REV BIOCHEM, V75, P165, DOI 10.1146/annurev.biochem.75.062003.101730.
HUMMER G, 2001, NATURE, V414, P188.
HUYNH MHV, 2007, CHEM REV, V107, P5004, DOI 10.1021/cr0500030.
HWANG HJ, 2007, BIOCHEMISTRY-US, V46, P11987, DOI 10.1021/bi701387b.
ILAN B, 2004, PROTEINS, V55, P223, DOI 10.1002/prot.20038.
ISHIDA N, 2008, J BIOL CHEM, V283, P13330, DOI 10.1074/jbc.M710583200.
ISHIKITA H, 2006, BIOCHEMISTRY-US, V45, P2063, DOI 10.1021/bi051615h.
ISHIKITA H, 2007, BBA-BIOENERGETICS, V1767, P79, DOI 10.1016/j.bbabio.2006.10.006.
JENSEN MO, 2002, P NATL ACAD SCI USA, V99, P6731.
JOHNSON BJ, 2007, J BIOL CHEM, V282, P17767, DOI 10.1074/jbc.M701308200.
KANDT C, 2005, PROTEINS, V58, P528, DOI 10.1002/prot.20343.
KARPLUS M, 2002, NAT STRUCT BIOL, V9, P646.
KNOEPFLE N, 1999, BIOCHEMISTRY-US, V38, P1582.
KRISHTALIK LI, 1986, BIOCHIM BIOPHYS ACTA, V849, P162.
KRISHTALIK LI, 1990, BIOELECTROCH BIOENER, V23, P249.
LANYI JK, 2004, ANNU REV PHYSIOL, V66, P665, DOI 10.1146/annurev.physiol.66.032102.150049.
LANYI JK, 2006, BBA-BIOENERGETICS, V1757, P1012, DOI 10.1016/j.bbabio.2005.11.003.
LARIO PI, 2003, J MOL BIOL, V326, P1635, DOI 10.1016/S0022-2836(03)00054-8.
LAVERGNE J, 1993, PHOTOSYNTH RES, V38, P279.
LEACH AR, 2001, MOL MODELLING PRINCI.
LOLL B, 2005, NATURE, V438, P1040, DOI 10.1038/nature04224.
MCEVOY JP, 2004, PHYS CHEM CHEM PHYS, V6, P4754, DOI 10.1039/b407500e.
MCEVOY JP, 2005, PHOTOCH PHOTOBIO SCI, V4, P940, DOI 10.1039/b506755c.
MCEVOY JP, 2006, CHEM REV, V106, P4455, DOI 10.1021/cr0204294.
MEI R, 1990, CURRENT RES PHOTOSYN, V1, P729.
MESSINGER J, 1995, P NATL ACAD SCI USA, V92, P3209.
MILLS JD, 1986, PHOTOSYNTHESIS ENERG.
MITCHELL DM, 1996, BIOCHEMISTRY-US, V35, P13089.
MULKIDJANIAN AY, 1999, FEBS LETT, V463, P199.
MURATA K, 2000, NATURE, V407, P599.
MURRAY JW, 2006, BIOCHEMISTRY-US, V45, P4128, DOI 10.1021/bi052503t.
MURRAY JW, 2007, J STRUCT BIOL, V159, P228, DOI 10.1016/j.jsb.2007.01.016.
NAMSLAUER A, 2003, P NATL ACAD SCI USA, V100, P15543, DOI 10.1073/pnas.2432106100.
NEUTZE R, 2002, BBA-BIOMEMBRANES, V1565, P144.
OLKHOVA E, 2004, BIOPHYS J, V86, P1873.
OLSSON MHM, 2005, FEBS LETT, V579, P2026, DOI 10.1016/j.febslet.2005.02.051.
OLSSON MHM, 2006, P NATL ACAD SCI USA, V103, P6500, DOI 10.1073/pnas.0510860103.
OLSSON MHM, 2007, BBA-BIOENERGETICS, V1767, P244, DOI 10.1016/j.bbabio.2007.01.015.
ONO T, 1989, BIOCHIM BIOPHYS ACTA, V973, P443.
PADDOCK ML, 1999, P NATL ACAD SCI USA, V96, P6183.
PAWATE AS, 2002, BIOCHEMISTRY-US, V41, P13417, DOI 10.1021/bi026582+.
PETREK M, 2006, BMC BIOINFORMATICS, V7, ARTN 316.
PETREK M, 2007, STRUCTURE, V15, P1357.
PFITZNER U, 2000, BIOCHEMISTRY-US, V39, P6756.
POMES R, 1998, BBA-BIOENERGETICS, V1365, P255.
QUINN DM, 1987, CHEM REV, V87, P955.
RAPPAPORT F, 2001, BBA-BIOENERGETICS, V1503, P246.
RIISTAMA S, 1996, BBA-BIOENERGETICS, V1275, P1.
ROUX B, 2004, STRUCTURE, V12, P1343, DOI 10.1016/j.str.2004.06.013.
RUTHERFORD AW, 1989, TRENDS BIOCHEM SCI, V14, P227.
RUTHERFORD AW, 2001, TRENDS BIOCHEM SCI, V26, P341.
SAAM J, 2007, P NATL ACAD SCI USA, V104, P13319, DOI 10.1073/pnas.0702401104.
SALOMONSSON L, 2004, P NATL ACAD SCI USA, V101, P11617, DOI 10.1073/pnas.0402242101.
SCHMITT UW, 1999, J CHEM PHYS, V111, P9361.
SCHRODER WP, 1986, BIOCHIM BIOPHYS ACTA, V848, P359.
SHEN TY, 2002, ACCOUNTS CHEM RES, V35, P332.
SINGH S, 2008, PHILOS T R SOC B, V363, P1229, DOI 10.1098/rstb.2007.2219.
SIVARAJA M, 1989, BIOCHEMISTRY-US, V28, P9459.
SPROVIERO EM, 2006, J CHEM THEORY COMPUT, V2, P1119, DOI 10.1021/ct0600181.
SPROVIERO EM, 2007, CURR OPIN STRUC BIOL, V17, P173, DOI 10.1016/j.sbi.2007.03.015.
SPROVIERO EM, 2008, COORDIN CHEM REV, V252, P395, DOI 10.1016/j.ccr.2007.09.006.
SPROVIERO EM, 2008, J AM CHEM SOC, V130, P3428, DOI 10.1021/ja076130q.
SPROVIERO EM, 2008, PHILOS T R SOC B, V363, P1149, DOI 10.1098/rstb.2007.2210.
SUI HX, 2001, NATURE, V414, P872.
SUSSMAN JL, 1991, SCIENCE, V253, P872.
SUZUKI H, 2005, BIOCHEMISTRY-US, V44, P1708, DOI 10.1021/bi0483312.
SVENSSONEK M, 2002, J MOL BIOL, V321, P329, DOI 10.1016/S0022-2836(02)00619-8.
SWANSON JMJ, 2007, J PHYS CHEM B, V111, P4300, DOI 10.1021/jp070104x.
TAI K, 2001, BIOPHYS J, V81, P715.
TAJKHORSHID E, 2002, SCIENCE, V296, P525.
TELFER A, 2005, PHOTOCH PHOTOBIO SCI, V4, P950, DOI 10.1039/b507888c.
TOMMOS C, 2002, PHILOS T ROY SOC B, V357, P1383, DOI 10.1098/rstb.2002.1135.
TSO J, 1991, BIOCHEMISTRY-US, V30, P4734.
TSUKIHARA T, 1995, SCIENCE, V269, P1069.
TSUKIHARA T, 1996, SCIENCE, V272, P1136.
TSUKIHARA T, 2003, P NATL ACAD SCI USA, V100, P15304, DOI 10.1073/pnas.2635097100.
TUUKKANEN A, 2007, BBA-BIOENERGETICS, V1767, P1102, DOI 10.1016/j.bbabio.2007.06.010.
TYYSTJARVI E, 2008, COORDIN CHEM REV, V252, P361, DOI 10.1016/j.ccr.2007.08.021.
VANGORKOM HJ, 2005, PHOTOSYSTEM, V2, P307.
VASILEV S, 2006, BIOPHYS J, V90, P3062, DOI 10.1529/biophysj.105.076075.
VASS I, 1992, P NATL ACAD SCI USA, V89, P1408.
WIKSTROM M, 2003, BBA-BIOENERGETICS, V1604, P61, DOI 10.1016/S0005-2728(03)00041-0.
WIKSTROM M, 2004, BBA-BIOENERGETICS, V1655, P241, DOI 10.1016/j.bbabio.2003.07.013.
WIKSTROM M, 2005, P NATL ACAD SCI USA, V102, P10478, DOI 10.1073/pnas.0502873102.
WIKSTROM M, 2007, BBA-BIOENERGETICS, V1767, P1200, DOI 10.1016/j.bbabio.2007.06.008.
WLODEK ST, 1997, J AM CHEM SOC, V119, P9513.
WRAIGHT CA, 2006, BBA-BIOENERGETICS, V1757, P886, DOI 10.1016/j.bbabio.2006.06.017.
WU YJ, 2008, J PHYS CHEM B, V112, P467, DOI 10.1021/jp076658h.
WYDRZYNSKI T, 1989, BIOCHIM BIOPHYS ACTA, V973, P23.
WYDRZYNSKI T, 1996, PHYSIOL PLANTARUM, V96, P342.
WYDRZYNSKI TJ, 2005, PHOTOSYSTEM, V2.
XU JC, 2005, P NATL ACAD SCI USA, V102, P6795.
XU JC, 2006, BBA-BIOENERGETICS, V1757, P852, DOI 10.1016/j.bbabio.2006.05.028.
XU JC, 2007, J AM CHEM SOC, V129, P2910, DOI 10.1021/ja067360s.
XU JC, 2008, BBA-BIOENERGETICS, V1777, P196, DOI 10.1016/j.bbabio.2007.11.008.
YOSHIKAWA S, 1998, SCIENCE, V280, P1723.
ZHOU HX, 1998, J CHEM PHYS, V108, P8146.
ZHOU HX, 1998, P NATL ACAD SCI USA, V95, P9280.
ZHU FQ, 2001, FEBS LETT, V504, P212.
ZHU FQ, 2004, BIOPHYS J 1, V86, P50.
ZOUNI A, 2001, NATURE, V409, P739.

Cited Reference Count:
163

Times Cited:
0

Publisher:
SPRINGER; VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS

Subject Category:
Plant Sciences

ISSN:
0166-8595

DOI:
10.1007/s11120-008-9358-2

IDS Number:
382AV

========================================================================

*Record 3 of 5.
*View Full Record: http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000261731700081
*Order Full Text [ ]

Title:
Buckling instability of double-wall carbon nanotubes conveying fluid

Authors:
Wang, L; Ni, Q; Li, M

Author Full Names:
Wang, L.; Ni, Q.; Li, M.

Source:
COMPUTATIONAL MATERIALS SCIENCE 44 (2): 821-825 DEC 2008

Language:
English

Document Type:
Article

Author Keywords:
Double-wall; Carbon nanotube conveying fluid; Vibration; Buckling; Critical flow velocity

Keywords Plus:
VIBRATION; STORAGE; PIPES; FLOW

Abstract:
It is of fundamental value to understand the vibrations and instability of carbon nanotubes conveying fluid. In this paper, by using a multi-elastic beam model in which the intertube radial displacements and the related internal degrees of freedom are considered, the natural vibrations and buckling instability of double-wall carbon nanotubes (DWNTs) conveying fluid with simply supports at both ends are investigated. It is found that the resonant frequencies depend on the fluid flow velocity, and that buckling instability of the DWNTs occurs at a critical flow velocity. In particular, some new, interesting and sometimes unexpected results are shown and discussed. (C) 2008 Elsevier B.V. All rights reserved.

Reprint Address:
Wang, L, Huazhong Univ Sci & Technol, Dept Mech, Wuhan 430074, Peoples R China.

Research Institution addresses:
[Wang, L.; Ni, Q.] Huazhong Univ Sci & Technol, Dept Mech, Wuhan 430074, Peoples R China; [Li, M.] Wuhan Inst Technol, Sch Mech Engn, Wuhan 430074, Peoples R China

E-mail Address:
wanglinfliping@sohu.com

Cited References:
CHE GL, 1998, NATURE, V393, P346.
DONG K, 2008, COMP MATER SCI, V42, P139, DOI 10.1016/j.commatsci.2007.07.007.
EVANS E, 1996, SCIENCE, V273, P933.
GADD GE, 1997, SCIENCE, V277, P933.
GAO YH, 2002, NATURE, V415, P599.
GOGOTSI Y, 2001, APPL PHYS LETT, V79, P1021.
HUMMER G, 2001, NATURE, V414, P188.
LANIR Y, 1972, J COMPOS MATER, V6, P387.
LI J, 2003, J CHEM PHYS, V119, P2376, DOI 10.1063/1.1582831.
LIU J, 1998, SCIENCE, V280, P1253.
PAIDOUSSIS MP, 1993, J FLUID STRUCT, V7, P137.
PAIDOUSSIS MP, 1998, FLUID STRUCTURE INTE, V1.
REDDY CD, 2007, APPL PHYS LETT, V90, ARTN 133122.
RU CQ, 2000, PHYS REV B, V62, P16962.
SKOULIDAS AI, 2002, PHYS REV LETT, V89, ARTN 185901.
TUZUN RE, 1996, NANOTECHNOLOGY, V7, P241.
WANG L, 2006, J SOUND VIB, V296, P1079, DOI 10.1016/j.jsv.2006.03.016.
YOON J, 2003, COMPOS SCI TECHNOL, V63, P1533, DOI 10.1016/S0266-3538(03)00058-7.
YOON J, 2005, COMPOS SCI TECHNOL, V65, P1326, DOI 10.1016/j.compscitech.2004.12.002.
YOON J, 2006, INT J SOLIDS STRUCT, V43, P3337, DOI 10.1016/j.ijsolstr.2005.04.039.

Cited Reference Count:
20

Times Cited:
0

Publisher:
ELSEVIER SCIENCE BV; PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS

Subject Category:
Materials Science, Multidisciplinary

ISSN:
0927-0256

DOI:
10.1016/j.commatsci.2008.06.001

IDS Number:
384FW

========================================================================

*Record 4 of 5.
*View Full Record: http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000261810800009
*Order Full Text [ ]

Title:
Adsorption Mechanism and Dynamic Behavior of Water and Ethanol Molecules Inside Au Nanotubes

Authors:
Wang, YC; Chen, C; Ju, SP

Author Full Names:
Wang Yao-Chun; Chen Chuan; Ju Shin-Pon

Source:
CHINESE JOURNAL OF CATALYSIS 29 (11): 1099-1106 NOV 2008

Language:
English

Document Type:
Proceedings Paper

Author Keywords:
water; ethanol; gold nanotube; molecular dynamics simulation; hydrogen bond

Keywords Plus:
CARBON NANOTUBES; FUEL-CELLS; SIMULATIONS; TEMPERATURES; SEPARATIONS; MEMBRANES; PROTEINS; SURFACES; ARRAYS; FILMS

Abstract:
Molecular dynamics simulation was used to investigate the behavior of pure water molecules, ethanol molecules, and water/ethanol mixture at various weight fractions inside An nanotubes. The radius density distributions and the probability of the number of hydrogen bonds per water and ethanol molecule were used to investigate the nano-confined effect. The results show that the radius density distributions and the number of hydrogen bonds are significantly influenced by Au nanotube and display different behavior from those at bulk environment. In addition, the interaction between water molecules and the An nanotube is stronger than that between ethanol molecules and the An nanotube, resulting in the variance in the number of hydrogen bonds per water and ethanol molecule.

Reprint Address:
Ju, SP, Sun Yat Sen Univ, Ctr Nanosci & Nanotechnol, Dept Mech & Electromech Engn, Kaohsiung 80424, Taiwan.

Research Institution addresses:
[Wang Yao-Chun; Ju Shin-Pon] Sun Yat Sen Univ, Ctr Nanosci & Nanotechnol, Dept Mech & Electromech Engn, Kaohsiung 80424, Taiwan; [Chen Chuan] Meiho Inst Technol, Dept Informat Management, Pingtung 912, Taiwan; [Chen Chuan] Cheng Kung Univ, Dept Engn Sci, Tainan 70101, Taiwan

E-mail Address:
jushin-pon@mail.nsysu.edu.tw

Cited References:
CURULLI A, 2005, SENSOR ACTUAT B-CHEM, V111, P526, DOI 10.1016/j.snb.2005.03.084.
DELLAGO C, 2005, COMPUT PHYS COMMUN, V169, P36, DOI 10.1016/j.cpc.2005.03.010.
DOU YS, 2001, J PHYS CHEM A, V105, P2748.
DOU YS, 2003, J PHYS CHEM B, V107, P2362, DOI 10.1021/jp0267306.
FRENKEL D, 1996, UNDERSTANDING MOL SI.
GOGOTSI Y, 2001, APPL PHYS LETT, V79, P1021.
GU C, 2002, PHYS CHEM CHEM PHYS, V4, P4700, DOI 10.1039/b203567g.
HARTNIG C, 2002, CHEM REC, V2, P259.
HUMMER G, 2001, NATURE, V414, P188.
JANG SS, 2005, J AM CHEM SOC, V127, P1563, DOI 10.1021/ja044530x.
KOUSKSOU T, 2007, CHEM ENG SCI, V62, P6516.
LEVITT M, 1995, COMPUT PHYS COMMUN, V91, P215.
MAYO SL, 1990, J PHYS CHEM-US, V94, P8897.
SONG SQ, 2005, INT J HYDROGEN ENERG, V30, P995, DOI 10.1016/j.ijhydene.2004.11.006.
SONG SQ, 2006, APPL CATAL B-ENVIRON, V63, P187, DOI 10.1016/j.apcatb.2005.09.018.
VASUDEVAN VN, 2007, J MEMBRANE SCI, V306, P209.
WANG J, 2004, PHYS CHEM CHEM PHYS, V6, P829, DOI 10.1039/b313307a.
WENG MH, 2008, J CHEM PHYS, V128, P74705.
WIRTZ M, 2002, ANALYST, V127, P871.
WU W, 1995, J DENT RES, V23, P27.
YU SF, 2001, NANO LETTERS, V1, P495.
ZHANG XR, 2002, PHYS CHEM CHEM PHYS, V4, P3048.

Cited Reference Count:
22

Times Cited:
0

Publisher:
SCIENCE CHINA PRESS; 16 DONGHUANGCHENGGEN NORTH ST, BEIJING 100717, PEOPLES R CHINA

Subject Category:
Chemistry, Applied; Chemistry, Physical; Engineering, Chemical

ISSN:
0253-9837

IDS Number:
385JP

========================================================================

*Record 5 of 5.
*View Full Record: http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000261723400002
*Order Full Text [ ]

Title:
Molecular Simulation of Water in Carbon Nanotubes

Authors:
Alexiadis, A; Kassinos, S

Author Full Names:
Alexiadis, Alessio; Kassinos, Stavros

Source:
CHEMICAL REVIEWS 108 (12): 5014-5034 DEC 2008

Language:
English

Document Type:
Review

Keywords Plus:
LENNARD-JONES FLUIDS; DYNAMICS SIMULATION; LIQUID WATER; MECHANICAL-PROPERTIES; FORCE-FIELD; STRUCTURAL CHARACTERISTICS; STATIC PROPERTIES; ROOM-TEMPERATURE; DENSITY PROFILE; CONFINED WATER

Reprint Address:
Kassinos, S, Univ Cyprus, Dept Mech & Mfg Engn, Sci Computat Lab UCY CompSci, 75 Kallipoleos St,POB 20537, CY-1678 Nicosia, Cyprus.

Research Institution addresses:
[Alexiadis, Alessio; Kassinos, Stavros] Univ Cyprus, Dept Mech & Mfg Engn, Sci Computat Lab UCY CompSci, CY-1678 Nicosia, Cyprus

E-mail Address:
kassinos@ucy.ac.cy

Cited References:
*ELS, SCOP CIT IND.
*THOMSONSCIENTIFIC, WEB SCI ISI.
ABRAHAM FF, 1978, J CHEM PHYS, V68, P3713.
ACKERMAN DM, 2003, MOL SIMULAT, V29, P677, DOI 10.1080/0892702031000103239.
ADAMSON AW, 1997, PHYS CHEM SURFACES.
AJAYAN PM, 1999, CHEM REV, V99, P1787.
ALEXIADIS A, 2008, CHEM ENG SCI, V63, P2047, DOI 10.1016/j.ces.2007.12.035.
ALEXIADIS A, 2008, CHEM ENG SCI, V63, P2093.
ALEXIADIS A, 2008, MOL SIMULAT, V34, P671, DOI 10.1080/08927020802073057.
ALLEN MP, 1987, COMPUTER SIMULATION.
ALLEN TW, 1999, J CHEM PHYS, V111, P7985.
ALLINGER NL, 1989, J AM CHEM SOC, V111, P8551.
ALLINGER NL, 1996, J COMPUT CHEM, V17, P642.
ANDREEV S, 2005, J CHEM PHYS, V123, ARTN 194502.
ARAB M, 2004, PHYS REV B, V69, ARTN 165401.
BAEZ LA, 1994, J CHEM PHYS, V101, P9837.
BANERJEE S, 2007, CHEM PHYS LETT, V434, P292, DOI 10.1016/j.cplett.2006.12.025.
BAO JD, 2006, PHYS REV E, P74.
BARTHLOTT W, 1997, PLANTA, V202, P1.
BAUGHMAN RH, 1999, SCIENCE, V284, P1340.
BAUGHMAN RH, 2002, SCIENCE, V297, P787.
BELYTSCHKO T, 2002, PHYS REV B, V65, ARTN 235430.
BENEDICT LX, 1995, PHYS REV B, V52, P8541.
BERENDSEN HJC, 1981, INTERMOLECULAR FORCE.
BERENDSEN HJC, 1984, J CHEM PHYS, V81, P3684.
BERENDSEN HJC, 1987, J PHYS CHEM-US, V91, P6269.
BEREZHKOVSKII A, 2002, PHYS REV LETT, V89, ARTN 064503.
BETHUNE DS, 1993, NATURE, V363, P605.
BITSANIS I, 1987, J CHEM PHYS, V87, P1733.
BOJAN MJ, 1987, LANGMUIR, V3, P1123.
BRENNER DW, 1990, PHYS REV B, V42, P9458.
BROOKS BR, 1983, J COMPUT CHEM, V4, P187.
CAO DP, 2003, J PHYS CHEM B, V107, P13286, DOI 10.1021/jp036094r.
CHAPLIN M, WATER STRUCTURE BAHA.
CHARLIER A, 1999, CARBON, V37, P1779.
CHEN MJ, 2006, CHINESE PHYS, V15, P2676.
CHENG HS, 2005, J PHYS CHEM B, V109, P3780, DOI 10.1021/jp045358m.
CHERUKURI P, 2004, J AM CHEM SOC, V126, P15638, DOI 10.1021/ja0466311.
COOK DB, 2005, HDB COMPUTATIONAL QU.
DARDEN T, 1993, J CHEM PHYS, V98, P10089.
DEGROTTHUSS CJT, 1806, ANN CHIM, V58, P54.
DELLAGO C, 2003, PHYS REV LETT, V90, ARTN 105902.
DELLAGO C, 2005, COMPUT PHYS COMMUN, V169, P36, DOI 10.1016/j.cpc.2005.03.010.
DESOUZA NR, 2006, J PHYS CONDENS MATT, V18, P2321.
DRESSELHAUS M, 1998, PHYS WORLD, V11, P33.
DRESSELHAUS MS, 1996, CARBON NANOTUBES.
DUAN HM, 1994, J PHYS CHEM-US, V98, P12815.
DUMITRICA T, 2002, CHEM PHYS LETT, V360, P182.
EBBESEN TW, 1992, NATURE, V358, P220.
EINSTEIN A, 1906, ANN PHYS-BERLIN, V19, P289.
EWALD PP, 1921, ANN PHYS-BERLIN, V64, P253.
FANOURGAKIS GS, 2006, J PHYS CHEM A, V110, P4100, DOI 10.1021/jp056477k.
FERMI E, 1967, AM MATH MONTHL 1 JAN, V74.
FLOQUET N, 2004, J PHYS CHEM B, V108, P13107, DOI 10.1021/jp048687n.
FRENKEL D, 2001, UNDERSTANDING MOL SI.
GAO HJ, 2004, ANNU REV MATER RES, V34, P123, DOI 10.1146/annurev.matsci.34.040203.120402.
GARG A, 1998, CHEM PHYS LETT, V295, P273.
GARG A, 1998, PHYS REV LETT, V81, P2260.
GAY SC, 2002, J CHEM PHYS, V116, P8876.
GOGOTSI Y, 2001, APPL PHYS LETT, V79, P1021.
GORDILLO MC, 2000, CHEM PHYS LETT, V329, P341.
GREEN MS, 1954, J CHEM PHYS, V22, P398.
GUBSKAYA AV, 2002, J CHEM PHYS, V117, P5290, DOI 10.1063/1.1501122.
GUILLOT B, 2002, J MOL LIQ, V101, P219.
GUO GY, 2004, COMP MATER SCI, V30, P269, DOI 10.1016/j.commatsci.2004.02.021.
GUO T, 1995, CHEM PHYS LETT, V243, P49.
HAILE JM, 1997, MOL DYNAMICS SIMULAT.
HALICIOGLU T, 2002, NANO LETTERS, V2, P573.
HANASAKI I, 2006, J CHEM PHYS, V124, ARTN 144708.
HANASAKI I, 2006, J CHEM PHYS, V124, ARTN 174714.
HANASAKI I, 2006, MATER SCI FORUM, V512, P399.
HANASAKI I, 2006, MODEL SIMUL MATER SC, V14, P9.
HARRIS TE, 1965, J APPL PROBAB, V2, P323.
HARRISON JA, 1997, J PHYS CHEM B, V101, P9682.
HEFFELFINGER GS, 1994, J CHEM PHYS, V100, P7548.
HEO S, 2007, J NANOSCI NANOTECHNO, V7, P1518, DOI 10.1166/jnn.2007.335.
HINDS BJ, 2004, SCIENCE, V303, P62, DOI 10.1126/science.1092048.
HOLT JK, 2006, SCIENCE, V312, P1034, DOI 10.1126/science.1126298.
HONG MH, 2000, APPL PHYS LETT, V77, P2604.
HOOVER WG, 1985, PHYS REV A, V31, P1695.
HOU SM, 2003, CHEM PHYS LETT, V373, P308, DOI 10.1016/S0009-2614(03)00588-8.
HUANG BD, 2004, CHINESE PHYS LETT, V21, P2388.
HUANG BD, 2005, J CHEM PHYS, V122, ARTN 084708.
HUANG LL, 2006, J PHYS CHEM B, V110, P25761, DOI 10.1021/jp064676d.
HUANG LL, 2006, PHYS CHEM CHEM PHYS, V8, P3836, DOI 10.1039/b604585p.
HUGHES TV, 1889, 405480, US.
HUHTALA M, 2002, COMPUT PHYS COMMUN, V146, P30.
HUHTALA M, 2002, COMPUT PHYS COMMUN, V147, P91.
HULLMANN A, 2007, SCIENTOMETRICS, V70, P739, DOI 10.1007/s11192-007-0310-6.
HUMMER G, 2001, NATURE, V414, P188.
IIJIMA S, 1991, NATURE, V354, P56.
JORGENSEN WL, 1983, J CHEM PHYS, V79, P926.
JORGENSEN WL, 1985, MOL PHYS, V56, P1381.
JORGENSEN WL, 1996, J AM CHEM SOC, V118, P11225.
JOSEPH S, 2003, NANO LETT, V3, P1399, DOI 10.1021/nl0346326.
JOSEYACAMAN M, 1993, APPL PHYS LETT, V62, P657.
KALRA A, 2003, P NATL ACAD SCI USA, V100, P10175.
KALRA A, 2004, J PHYS CHEM B, V108, P544, DOI 10.1021/jp035828x.
KAM NWS, 2004, J AM CHEM SOC, V126, P6850, DOI 10.1021/ja0486059.
KAM NWS, 2005, P NATL ACAD SCI USA, V102, P11600, DOI 10.1073/pnas.0502680102.
KASSINOS SC, 2004, LECT NOTES COMPUTER, V39.
KIM P, 1999, SCIENCE, V286, P2148.
KIYOHARA K, 1998, MOL PHYS, V94, P803.
KOGA K, 2001, NATURE, V412, P802.
KOGA K, 2002, PHYSICA A, V314, P462.
KOHANOFF J, 2006, ELECT STRUCTURE CALC.
KOLESNIKOV AI, 2004, PHYS REV LETT, V93, ARTN 035503.
KOLESNIKOV AI, 2006, PHYSICA B 1, V385, P272, DOI 10.1016/j.physb.2006.05.065.
KONG J, 2000, SCIENCE, V287, P622.
KOPLIK J, 1995, ANNU REV FLUID MECH, V27, P257.
KOTSALIS EM, 2004, INT J MULTIPHAS FLOW, V30, P995, DOI 10.1016/j.imultiphaseflow.2004.03.009.
KOTSALIS EM, 2005, CHEM PHYS LETT, V412, P250, DOI 10.1016/j.cplett.2005.06.122.
KUSALIK PG, 1994, SCIENCE, V265, P1219.
KUUSI O, 2007, SCIENTOMETRICS, V70, P759, DOI 10.1007/s11192-007-0311-5.
LAU KKS, 2003, NANO LETT, V3, P1701, DOI 10.1021/nl034704t.
LEE KH, 2005, NANO LETT, V5, P793, DOI 10.1021/nl0502219.
LENNARDJONES JE, 1931, P PHYS SOC LOND 1, V43, P461.
LEVITT M, 1997, J PHYS CHEM B, V101, P5051.
LI J, 1998, PHYS REV E, V57, P7259.
LI LW, 2006, J PHYS CHEM B, V110, P10509, DOI 10.1021/jp060718m.
LIJIMA S, 1993, NATURE, V363, P603.
LIJIMA S, 1999, CHEM PHYS LETT, V309, P165.
LIU C, 1999, SCIENCE, V286, P1127.
LIU H, 2006, SOFT MATTER, V2, P811, DOI 10.1039/b606654b.
LIU YC, 2005, J CHEM PHYS, V122, ARTN 044714.
LIU YC, 2005, J CHEM PHYS, V123, ARTN 234701.
LIU YC, 2005, LANGMUIR, V21, P12025, DOI 10.1021/la0517181.
LIU YC, 2005, PHYS REV B, V72, ARTN 085420.
LONGHURST MJ, 2005, MOL SIMULAT, V31, P135, DOI 10.1080/08927020412331308520.
LONGHURST MJ, 2006, J CHEM PHYS, V124, ARTN 234708.
LONGHURST MJ, 2006, J CHEM PHYS, V125, ARTN 184705.
LONGHURST MJ, 2007, PHYS REV LETT, V98, ARTN 145503.
LU DY, 2005, J PHYS CHEM B, V109, P11461, DOI 10.1021/jp050420g.
LU DY, 2006, PHYS BIOL, V3, P40.
LUZAR A, 1996, NATURE, V379, P55.
MAHONEY AW, 2000, J CHEM PHYS, V112, P8910.
MAHONEY MW, 2001, J CHEM PHYS, V114, P363.
MAMONTOV E, 2006, J CHEM PHYS, V124, ARTN 194703.
MANIWA Y, 2002, J PHYS SOC JPN, V71, P2863, DOI 10.1143/JPSJ.71.2863.
MANN DJ, 2003, PHYS REV LETT, V90, ARTN 195503.
MAO ZG, 2000, J PHYS CHEM B, V104, P4618.
MARTI J, 2001, J CHEM PHYS, V114, P10486.
MARTIN RM, 2004, ELECT STRUCTURES BAS.
MARX D, 1999, NATURE, V397, P601.
MASHL RJ, 2003, NANO LETT, V3, P589, DOI 10.1021/nl0340226.
MATSUDA K, 2006, PHYS REV B, V74, ARTN 073415.
MAYO SL, 1990, J PHYS CHEM-US, V94, P8897.
MCCAMMON JA, 1998, DYNAMICS PROTEINS NU.
MENKE H, 1932, PHYS Z, V33, P593.
MONTHIOUX M, 2006, CARBON, V44, P1621, DOI 10.1016/j.carbon.2006.03.019.
MORRELL WE, 1936, J CHEM PHYS, V4, P224.
MOULIN F, 2005, PHYS REV B, V71, ARTN 165401.
MUKHERJEE B, 2007, J CHEM PHYS, V126, ARTN 124704.
MURR LE, 2004, J NANOPART RES, V6, P241.
NIJMEIJER MJP, 1990, PHYS REV A, V42, P6052.
NOON WH, 2002, CHEM PHYS LETT, V355, P445.
NOSE S, 1984, J CHEM PHYS, V81, P511.
PARRINELLO M, 1981, J APPL PHYS, V52, P7182.
PEARLMAN DA, 1995, COMPUT PHYS COMMUN, V91, P1.
PELABON C, 1903, ACAD SCI PARIS, V137, P706.
PHILLIPS JC, 2005, J COMPUT CHEM, V26, P1781.
PIQUEMAL JP, 2006, J CHEM PHYS, V125, ARTN 054511.
PONDER JW, 2003, ADV PROTEIN CHEM, V66, P27.
PORTER AE, 2007, NAT NANOTECHNOL, V2, P713, DOI 10.1038/nnano.2007.347.
PORTNEY NG, 2006, ANAL BIOANAL CHEM, V384, P620, DOI 10.1007/s00216-005-0247-7.
POWER TD, 2002, J AM CHEM SOC, V124, P1858.
PRINS JA, 1931, NATURWISSENSCHAFTEN, V19, P435.
RADUSHKEVICH LV, 1952, ZH FIZ KHIM, V26, P88.
RAFIITABAR H, 2004, PHYS REP, V390, P235, DOI 10.1016/j.physrep.2003.10.012.
RAPAPORT DC, 2004, ART MOL DYNAMICS SIM.
RASAIAH JC, 2008, ANNU REV PHYS CHEM, V59, P713.
REIBOLD M, 2006, NATURE, V444, P286, DOI 10.1038/444286a.
RICHARDS PM, 1977, PHYS REV B, V16, P1393.
RIEUTORD F, 1998, J PHYS CHEM B, V102, P3941.
RUOFF RS, 2003, CR PHYS, V4, P993, DOI 10.1016/j.crhy.2003.08.001.
SANSOM MSP, 1996, BIOPHYS J, V70, P693.
SANSOM MSP, 2001, NATURE, V414, P156.
SAZONOVA V, 2004, NATURE, V431, P284, DOI 10.1038/nature02905.
SCHUTZENBERGER P, 1890, ACAD SCI PARIS, V111, P774.
SINGH R, 2006, P NATL ACAD SCI USA, V103, P3357, DOI 10.1073/pnas.0509009103.
SNOW ES, 2005, SCIENCE, V307, P1942, DOI 10.1126/science.1109128.
SOKHAN VP, 2002, J CHEM PHYS, V117, P8531, DOI 10.1063/1.1512643.
STAN G, 1998, SURF SCI, V395, P280.
STEELE WA, 1974, INTERACTION GASES SO.
STRIOLO A, 2005, J CHEM PHYS, V122, ARTN 234712.
STRIOLO A, 2006, J CHEM PHYS, V124, ARTN 074710.
STRIOLO A, 2006, NANO LETT, V6, P633, DOI 10.1021/nl052254u.
SUN M, 1992, PHYS REV A, V46, P4813.
TAJKHORSHID E, 2002, SCIENCE, V296, P525.
TAKAIWA D, 2007, MOL SIMULAT, V33, P127, DOI 10.1080/08927020601059893.
TASIS D, 2006, CHEM REV, V106, P1105, DOI 10.1021/cr050569o.
TELEMAN O, 1987, MOL PHYS, V60, P193.
TERSOFF J, 1986, PHYS REV LETT, V56, P632.
TRAVIS KP, 1997, PHYS REV E, V55, P4288.
TRAVIS KP, 2000, J CHEM PHYS, V112, P1984.
TRUSKETT TM, 2003, P NATL ACAD SCI USA, V100, P10139.
TSUNGLUNG L, 2007, PHYS B, V393, P195.
TUZUN RE, 1996, NANOTECHNOLOGY, V7, P241.
VALENTINI L, 2005, DIAM RELAT MATER, V14, P121, DOI 10.1016/j.diamond.2004.07.017.
VANDERSPOEL D, 1998, J CHEM PHYS, V108, P10220.
VANDERSPOEL D, 2005, J COMPUT CHEM, V26, P1701, DOI 10.1002/jcc.20291.
VEGA C, 2005, J CHEM PHYS, V122, ARTN 114507.
VEGA C, 2005, J CHEM PHYS, V123, ARTN 144504.
WAGHE A, 2002, J CHEM PHYS, V117, P10789, DOI 10.1063/1.1519861.
WALTHER JH, 2001, J PHYS CHEM B, V105, P9980.
WAN RZ, 2005, J AM CHEM SOC, V127, P7166, DOI 10.1021/ja050044d.
WANG J, 2004, PHYS CHEM CHEM PHYS, V6, P829, DOI 10.1039/b313307a.
WEI JQ, 2004, APPL PHYS LETT, V84, P4869, DOI 10.1063/1.1762697.
WERDER T, 2001, NANO LETT, V1, P697, DOI 10.1021/nl015640u.
WERDER T, 2002, INT C COMP NAN NAN I.
WERDER T, 2003, 2003 NAN C TRAD SHOW, V3.
WERDER T, 2003, J PHYS CHEM B, V107, P1345, DOI 10.1021/jp0268112.
WON CY, 2006, J CHEM PHYS, V125, ARTN 114701.
WU YJ, 2006, J CHEM PHYS, V124, ARTN 024503.
XIE YH, 2007, COMP MATER SCI, V40, P460, DOI 10.1016/j.commatsci.2007.01.016.
YANG L, 2007, J CHEM PHYS, V126, ARTN 084706.
YAO ZH, 2001, COMP MATER SCI, V22, P180.
YEH IC, 2004, P NATL ACAD SCI USA, V101, P12177, DOI 10.1073/pnas.0402699101.
YU HB, 2004, J CHEM PHYS, V121, P9549, DOI 10.1063/1.1805516.
YUAN LM, 2001, CHEM PHYS LETT, V340, P237.
YUAN LM, 2001, CHEM PHYS LETT, V346, P23.
ZHENG J, 2005, J CHEM PHYS, V122, ARTN 214702.
ZHOU XY, 2007, CHINESE PHYS, V16, P335.
ZHU CZ, 2005, NANOTECHNOLOGY, V16, P1035, DOI 10.1088/0957-4484/16/8/006.
ZHU FQ, 2003, BIOPHYS J, V85, P236.
ZIELKIEWICZ J, 2005, J CHEM PHYS, V123, ARTN 104501.
ZIMMERLI U, 2005, NANO LETT, V5, P1017, DOI 10.1021/nl0503126.
ZOU J, 2006, SMALL, V2, P1348, DOI 10.1002/smll.200600055.

Cited Reference Count:
228

Times Cited:
0

Publisher:
AMER CHEMICAL SOC; 1155 16TH ST, NW, WASHINGTON, DC 20036 USA

Subject Category:
Chemistry, Multidisciplinary

ISSN:
0009-2665

DOI:
10.1021/cr078140f

IDS Number:
384DB

========================================================================
*Order Full Text*
All Customers
--------------
Please contact your library administrator, or person(s) responsible for
document delivery, to find out more about your organization's policy for
obtaining the full text of the above articles. If your organization does
not have a current document delivery provider, your administrator can
contact ISI Document Solution at service@isidoc.com, or call 800-603-4367
or 734-459-8565.

IDS Customers
--------------
IDS customers can purchase the full text of an article (having page number,
volume, and issue information) by returning this ENTIRE message as a Reply
to Sender or Forward to orders@isidoc.com. Mark your choices with an X in
the "Order Full Text: []" brackets for each item. For example, [X].

Please enter your account number here:

========================================================================
*Help Desk Contact Information*
If you have any questions, please visit the Thomson Scientific Technical Support Contact Information Web page:
http://www.thomsonscientific.com/support/techsupport
========================================================================

No comments: