Thursday, January 15, 2009

ISI Web of Knowledge Alert - Hummer, G

ISI Web of Knowledge Citation Alert (Solaris 2.1)

Cited Article: Hummer, G. Water conduction through the hydrophobic channel of a carbon nanotube
Alert Expires: 22 OCT 2009
Number of Citing Articles: 4 new records this week (4 in this e-mail)
Organization ID: 3b97d1bbc1878baed0ab183d8b03130b
========================================================================
Note: Instructions on how to purchase the full text of an article and Help Desk Contact information are at the end of the e-mail.
========================================================================

*Record 1 of 4.
*View Full Record: http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000261995600025
*Order Full Text [ ]

Title:
Static and dynamic correlations in water at hydrophobic interfaces

Authors:
Mittal, J; Hummer, G

Author Full Names:
Mittal, Jeetain; Hummer, Gerhard

Source:
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA 105 (51): 20130-20135 DEC 23 2008

Language:
English

Document Type:
Article

Author Keywords:
capillary waves; drying transition; hydrophobic effect; surface tension

Keywords Plus:
SCALED PARTICLE THEORY; DEWETTING TRANSITION; PERTURBATION-THEORY; MOLECULAR-DYNAMICS; LENGTH SCALES; HYDRATION; COLLAPSE; LIQUID; SIMULATION; SURFACES

Abstract:
We study the static and dynamic properties of the water-density fluctuations in the interface of large nonpolar solutes. With the help of extensive molecular dynamics simulations of TIP4P water near smooth spherical solutes, we show that for large solutes, the interfacial density profile is broadened by capillary waves. For purely repulsive solutes, the squared width of the interface increases linearly with the logarithm of the solute size, as predicted by capillary-wave theory. The apparent interfacial tension extracted from the slope agrees with that of a free liquid-vapor interface. The characteristic length of local density fluctuations is approximate to 0.5 nm, measured along the arc, again consistent with that of a free liquid-vapor interface. Probed locally, the interfacial density fluctuations exhibit large variances that exceed those expected for an ideal gas. Qualitatively consistent with theories of the free liquid-vapor interface, we find that the water interface!
near large and strongly nonpolar solutes is flickering, broadened by capillary-wave fluctuations. These fluctuations result in transitions between locally wet and dry regions that are slow on a molecular time scale.

Reprint Address:
Hummer, G, NIDDK, Chem Phys Lab, Natl Inst Hlth, Bethesda, MD 20892 USA.

Research Institution addresses:
[Mittal, Jeetain; Hummer, Gerhard] NIDDK, Chem Phys Lab, Natl Inst Hlth, Bethesda, MD 20892 USA

E-mail Address:
gerhard.hummer@nih.gov

Cited References:
ASHBAUGH HS, 2001, J AM CHEM SOC, V123, P10721.
ASHBAUGH HS, 2002, J CHEM PHYS, V116, P2907.
ASHBAUGH HS, 2006, REV MOD PHYS, V78, P159, DOI 10.1103/RevModPhys.78.159.
ATHAWALE MV, 2007, P NATL ACAD SCI USA, V104, P733, DOI 10.1073/pnas.0605139104.
BENAMOTZ D, 2004, J PHYS CHEM B, V108, P6877, DOI 10.1021/jp037810s.
BENNAIM A, 1974, WATER AQUEOUS SOLUTI.
BERENDSEN HJC, 1984, J CHEM PHYS, V81, P3684.
BRATKO D, 2001, J CHEM PHYS, V115, P3873.
BUFF FP, 1965, PHYS REV LETT, V15, P621.
BULDYREV SV, 2007, P NATL ACAD SCI USA, V104, P20177, DOI 10.1073/pnas.0708427104.
CHANDLER D, 1993, PHYS REV E, V48, P2898.
CHANDLER D, 2005, NATURE, V437, P640, DOI 10.1038/nature04162.
CHEN F, 2007, J CHEM PHYS, V126, ARTN 221101.
CHOUDHURY N, 2005, J AM CHEM SOC, V127, P3556, DOI 10.1021/ja0441817.
CHOUDHURY N, 2007, J AM CHEM SOC, V129, P4847, DOI 10.1021/ja069242a.
CHOWDHARY J, 2006, J PHYS CHEM B, V110, P15442, DOI 10.1021/jp060440y.
COLLINS MD, 2005, P NATL ACAD SCI USA, V102, P16668, DOI 10.1073/pnas.0508224102.
DARDEN T, 1993, J CHEM PHYS, V98, P10089.
DILL KA, 1990, BIOCHEMISTRY-US, V29, P7133.
FRANKS F, 1975, WATER COMPREHENSIVE.
GIOVAMBATTISTA N, 2006, PHYS REV E 1, V73, ARTN 041604.
GIOVAMBATTISTA N, 2007, J PHYS CHEM C, V111, P1323.
GIOVAMBATTISTA N, 2008, P NATL ACAD SCI USA, V105, P2274, DOI 10.1073/pnas.0708088105.
HENDERSON JR, 1978, MOL PHYS, V36, P781.
HUANG DM, 2001, J PHYS CHEM B, V105, P6704.
HUANG DM, 2002, J PHYS CHEM B, V106, P2047.
HUANG X, 2003, P NATL ACAD SCI USA, V100, P11953, DOI 10.1073/pnas.1934837100.
HUMMER G, 1996, P NATL ACAD SCI USA, V93, P8951.
HUMMER G, 1998, J PHYS CHEM B, V102, P10469.
HUMMER G, 1998, PHYS REV LETT, V80, P4193.
HUMMER G, 2001, NATURE, V414, P188.
ISMAIL AE, 2006, J CHEM PHYS, V125, ARTN 014702.
JORGENSEN WL, 1985, MOL PHYS, V56, P1381.
JOSEPH P, 2006, PHYS REV LETT, V97, ARTN 156104.
KAUZMANN W, 1959, ADV PROTEIN CHEM, V14, P1.
KOFINGER J, 2008, P NATL ACAD SCI USA, V105, P13218, DOI 10.1073/pnas.0801448105.
KOSTINSKI AB, 2001, J FLUID MECH, V434, P389.
LACASSE MD, 1998, PHYS REV LETT, V80, P309.
LAUGA E, 2006, HDB EXPT FLUID MECH.
LEE CY, 1984, J CHEM PHYS, V80, P4448.
LINDAHL E, 2001, J MOL MODEL, V7, P306.
LIU P, 2005, NATURE, V437, P159, DOI 10.1038/nature03926.
LUM K, 1999, J PHYS CHEM B, V103, P4570.
LUZAR A, 2000, J CHEM PHYS, V113, P5836.
MEYER EE, 2006, P NATL ACAD SCI USA, V103, P15739, DOI 10.1073/pnas.0606422103.
MILLER TF, 2007, P NATL ACAD SCI USA, V104, P14559, DOI 10.1073/pnas.0705830104.
PASCHEK D, 2004, J CHEM PHYS, V120, P6674, DOI 10.1063/1.1652015.
PIEROTTI RA, 1976, CHEM REV, V76, P717.
PRATT LR, 1977, J CHEM PHYS, V67, P3683.
RAJAMANI S, 2005, P NATL ACAD SCI USA, V102, P9475, DOI 10.1073/pnas.0504089102.
RASAIAH JC, 2008, ANNU REV PHYS CHEM, V59, P713.
ROWLINSON JS, 1994, J PHYS CONDENS MATT, V6, A1.
ROWLINSON JS, 2003, MOL THEORY CAPILLARI.
SIDES SW, 1999, PHYS REV E A, V60, P6708.
SOUTHALL NT, 2002, J PHYS CHEM B, V106, P521, DOI 10.1021/jp015514e.
STILLINGER FH, 1973, J SOLUTION CHEM, V2, P141.
TANFORD C, 1973, HYDROPHOBIC EFFECT F.
TENWOLDE PR, 2002, P NATL ACAD SCI USA, V99, P6539.
TRUSKETT TM, 2001, J CHEM PHYS, V114, P2401.
URBIC T, 2006, J PHYS CHEM B, V110, P4963, DOI 10.1021/jp055543f.
VAITHEESWARAN S, 2005, J PHYS CHEM B, V109, P6629, DOI 10.1021/jp045591k.
WALLQVIST A, 1995, J PHYS CHEM-US, V99, P2893.
WEEKS JD, 1971, J CHEM PHYS, V55, P5422.
WEEKS JD, 1977, J CHEM PHYS, V67, P3106.
WILLARD AP, 2009, FARADAY DIS IN PRESS.
ZHOU RH, 2004, SCIENCE, V305, P1605.

Cited Reference Count:
66

Times Cited:
0

Publisher:
NATL ACAD SCIENCES; 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA

Subject Category:
Multidisciplinary Sciences

ISSN:
0027-8424

DOI:
10.1073/pnas.0809029105

IDS Number:
388BP

========================================================================

*Record 2 of 4.
*View Full Record: http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000261891200072
*Order Full Text [ ]

Title:
Enhancement of Water Permeation across a Nanochannel by the Structure outside the Channel

Authors:
Gong, XJ; Li, JY; Zhang, H; Wan, RZ; Lu, HJ; Wang, S; Fang, HP

Author Full Names:
Gong, Xiaojing; Li, Jingyuan; Zhang, He; Wan, Rongzheng; Lu, Hangjun; Wang, Shen; Fang, Haiping

Source:
PHYSICAL REVIEW LETTERS 101 (25): Art. No. 257801 DEC 19 2008

Language:
English

Document Type:
Article

Keywords Plus:
CARBON NANOTUBES; MASS-TRANSPORT; AQUAPORIN-1; CONDUCTION; MEMBRANES; MOLECULES; MECHANISM; DYNAMICS; FUTURE

Abstract:
We used molecular dynamics simulation to study the effect of the external structure on water permeation across a single-walled nanochannel. In contrast with the macroscopic scenario, the outside structure greatly affects the water transport across the nanochannel. Remarkably, the ratio of maximal to minimal flux reached a value of about two for different outside structures. These findings are expected to be helpful in design of high-flux nanochannels and provide an insight into the contribution of the lipid membrane to water permeation across biological water channels.

Reprint Address:
Gong, XJ, Chinese Acad Sci, Shanghai Inst Appl Phys, Shanghai 201800, Peoples R China.

Research Institution addresses:
[Gong, Xiaojing; Li, Jingyuan; Wan, Rongzheng; Wang, Shen; Fang, Haiping] Chinese Acad Sci, Shanghai Inst Appl Phys, Shanghai 201800, Peoples R China; [Gong, Xiaojing] Chinese Acad Sci, Suzhou Inst Nanotech & Nanobion, Suzhou 215125, Peoples R China; [Gong, Xiaojing; Wang, Shen] Chinese Acad Sci, Grad Sch, Beijing 100080, Peoples R China; [Zhang, He] Shanghai Jiao Tong Univ, Dept Biol, Shanghai 200240, Peoples R China; [Lu, Hangjun] Zhejiang Normal Univ, Dept Phys, Jinhua 321004, Peoples R China

E-mail Address:
fanghaiping@sinap.ac.cn

Cited References:
*EPAPS, EPRLTAO101079850 EPA.
ALLEN R, 2002, PHYS REV LETT, V89, ARTN 175502.
BECKSTEIN O, 2001, J PHYS CHEM B, V105, P12902, DOI 10.1021/jp012233y.
BRENNER DW, 1990, PHYS REV B, V42, P9458.
CRAIGHEAD H, 2006, NATURE, V442, P387, DOI 10.1038/nature05061.
DARDEN T, 1993, J CHEM PHYS, V98, P10089.
DEGROOT BL, 2001, SCIENCE, V294, P2353.
GALLO P, 2000, J CHEM PHYS, V113, P11324.
HESS B, 2005, GROMACS 3 3.
HOLT JK, 2006, SCIENCE, V312, P1034, DOI 10.1126/science.1126298.
HUMMER G, 2001, NATURE, V414, P188.
JORGENSEN WL, 1983, J CHEM PHYS, V79, P926.
KOGA K, 2001, NATURE, V412, P802.
KOZINSKY B, 2006, PHYS REV LETT, V96, ARTN 166801.
KULLMAN L, 2002, BIOPHYS J, V82, P803.
LEONARD F, 2002, APPL PHYS LETT, V81, P4835, DOI 10.1063/1.1530373.
LI JY, 2007, P NATL ACAD SCI USA, V104, P3687, DOI 10.1073/pnas.0604541104.
LIU J, 1998, SCIENCE, V280, P1253.
LU DY, 2004, NANO LETT, V4, P2383, DOI 10.1021/nl0485511.
MAJUMDER M, 2005, NATURE, V438, P44, DOI 10.1038/43844a.
MURATA K, 2000, NATURE, V407, P599.
NOON WH, 2002, CHEM PHYS LETT, V355, P445.
RAGHUNATHAN AV, 2006, PHYS REV LETT, V97, ARTN 024501.
REITER G, 2006, PHYS REV LETT, V97, ARTN 247801.
SERVICE RF, 2006, SCIENCE, V313, P1088.
SUN L, 2000, J AM CHEM SOC, V122, P12340, DOI 10.1021/ja002429w.
TAJKHORSHID E, 2002, SCIENCE, V296, P525.
TERSOFF J, 1988, PHYS REV LETT, V61, P2879.
WAN RZ, 2005, J AM CHEM SOC, V127, P7166, DOI 10.1021/ja050044d.
WANG BY, 2006, J AM CHEM SOC, V128, P15984, DOI 10.1021/ja066431k.
WHITESIDES GM, 2006, NATURE, V442, P368, DOI 10.1038/nature05058.
ZHOU RH, 2004, SCIENCE, V305, P1605.
ZHU FQ, 2002, BIOPHYS J, V83, P154.
ZHU FQ, 2003, BIOPHYS J, V85, P236.

Cited Reference Count:
34

Times Cited:
0

Publisher:
AMER PHYSICAL SOC; ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA

Subject Category:
Physics, Multidisciplinary

ISSN:
0031-9007

DOI:
10.1103/PhysRevLett.101.257801

IDS Number:
386NZ

========================================================================

*Record 3 of 4.
*View Full Record: http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000262007000010
*Order Full Text [ ]

Title:
Pressure-induced water flow through model nanopores

Authors:
Goldsmith, J; Martens, CC

Author Full Names:
Goldsmith, Jacob; Martens, Craig C.

Source:
PHYSICAL CHEMISTRY CHEMICAL PHYSICS 11 (3): 528-533 2009

Language:
English

Document Type:
Article

Keywords Plus:
MOLECULAR-DYNAMICS; CARBON NANOTUBES; TRANSPORT; DIFFUSION; SURFACES

Abstract:
This paper describes nonequilibrium molecular dynamics simulations of pressure induced transport of liquid water through model nanopores. We consider a simple model for a porous membrane consisting of a slab of water molecules held in a rigid ice structure and penetrated by a pore of nanometer scale dimensions. Both hydrophilic membranes composed of conventional TIP3P water and hydrophobic membranes consisting of modified water with the model partial charges set to zero are treated. Molecular dynamics simulation is employed to investigate the rate of water flow through the pore induced by a pressure difference across the membrane. The results are compared with the predictions of continuum hydrodynamics. We find that the flow rate of water through hydrophilic pores is much less than the continuum predictions, while the flux through hydrophobic pores can significantly exceed the continuum theory. Finally, we show asymmetric behavior in the flux vs. pressure difference for a co!
nical nanopore, which thus acts as a Brownian ratchet.

Reprint Address:
Martens, CC, Univ Calif Irvine, Dept Chem, Irvine, CA 92697 USA.

Research Institution addresses:
[Goldsmith, Jacob; Martens, Craig C.] Univ Calif Irvine, Dept Chem, Irvine, CA 92697 USA

E-mail Address:
cmartens@uci.edu

Cited References:
ALLEN MP, 1987, COMPUTER SIMULATION.
ALLEN R, 2002, PHYS REV LETT, V89, ARTN 175502.
ALLEN R, 2003, J CHEM PHYS, V119, P3905, DOI 10.1063/1.1590956.
ASTUMIAN RD, 1997, SCIENCE, V276, P917.
BECKSTEIN O, 2001, J PHYS CHEM B, V105, P12902, DOI 10.1021/jp012233y.
BEREZHKOVSKII A, 2002, PHYS REV LETT, V89, ARTN 064503.
CAI Q, 2008, PHYS CHEM CHEM PHYS, V10, P2519, DOI 10.1039/b716648f.
CICCOTTI G, 1987, SIMULATION LIQUIDS S.
CRACKNELL RF, 1995, J CHEM SOC FARADAY T, V91, P1377.
FRENKEL D, 2002, UNDERSTANDING MOL SI.
GIOVAMBATTISTA N, 2007, J PHYS CHEM C, V111, P1323.
GORDILLO MC, 2005, J CHEM PHYS, V123, ARTN 054707.
HINDS BJ, 2004, SCIENCE.
HOLT JK, 2006, SCIENCE, V312, P1034, DOI 10.1126/science.1126298.
HUANG CK, 2006, J CHEM PHYS, V124, ARTN 234701.
HUMMER G, 2001, NATURE, V414, P188.
HUMPHREY W, 1996, J MOL GRAPHICS, V14, P33.
JORGENSEN WL, 1983, J CHEM PHYS, V79, P926.
JOSEPH S, 2008, NANO LETT, V8, P452, DOI 10.1021/nl072385q.
KALRA A, 2003, P NATL ACAD SCI USA, V100, P10175.
LIU YC, 2004, LANGMUIR, V20, P6921, DOI 10.1021/la0363251.
PHILLIPS JC, 2005, J COMPUT CHEM, V26, P1781.
POWELL MR, 2008, NAT NANOTECHNOL, V3, P51, DOI 10.1038/nnano.2007.420.
RAGHUNATHAN AV, 2006, PHYS REV LETT, V97, ARTN 024501.
REIMANN P, 2002, PHYS REP, V361, P57265.
SAVARIAR EN, 2008, NAT NANOTECHNOL, V3, P112, DOI 10.1038/nnano.2008.6.
SIWY Z, 2002, PHYS REV LETT, V89, ARTN 198103.
SIWY ZS, 2006, ADV FUNCT MATER, V16, P735, DOI 10.1002/adfm.200500471.
SUN TL, 2005, ACCOUNTS CHEM RES, V38, P644, DOI 10.1021/ar040224c.
TAKABA H, 2007, J CHEM PHYS, V127, ARTN 054703.
TRITTON DJ, 1988, PHYS FLUID DYNAMICS.

Cited Reference Count:
31

Times Cited:
0

Publisher:
ROYAL SOC CHEMISTRY; THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND

Subject Category:
Chemistry, Physical; Physics, Atomic, Molecular & Chemical

ISSN:
1463-9076

DOI:
10.1039/b807823h

IDS Number:
388FZ

========================================================================

*Record 4 of 4.
*View Full Record: http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000262005900012
*Order Full Text [ ]

Title:
Characterization of Nanoparticles in an Aqueous Solution with Bound Water Molecules Using Pulsed Field Gradient Nuclear Magnetic Resonance Spectroscopy

Authors:
Kato, H; Takahashi, K; Saito, T; Kinugasa, S

Author Full Names:
Kato, Haruhisa; Takahashi, Kayori; Saito, Takeshi; Kinugasa, Shinichi

Source:
CHEMISTRY LETTERS 37 (11): 1128-1129 NOV 5 2008

Language:
English

Document Type:
Article

Keywords Plus:
DIFFUSION-COEFFICIENTS; NMR TECHNIQUE; BINDING

Abstract:
The slow diffusion of water molecules in a polystyrene latex (PS-latex) nanoparticle solution was observed using the pulsed field gradient nuclear magnetic resonance (PFG-NMR) method. The measured diameter of the PS-latex nanoparticle was approximately 32 nm, and the slowly diffusing water was attributed to the small amount of water molecules bound strongly by PS-latex particles.

Reprint Address:
Kato, H, Natl Inst Adv Ind Sci & Technol, Natl Metrol Inst Japan, Polymer Stand Sect Japan, Tsukuba Cent 5,Higashi 1-1-1, Tsukuba, Ibaraki 3058565, Japan.

Research Institution addresses:
[Kato, Haruhisa; Takahashi, Kayori; Saito, Takeshi; Kinugasa, Shinichi] Natl Inst Adv Ind Sci & Technol, Natl Metrol Inst Japan, Polymer Stand Sect Japan, Tsukuba, Ibaraki 3058565, Japan

E-mail Address:
h-kato@aist.go.jp

Cited References:
AVRAM L, 2005, J AM CHEM SOC, V127, P5714.
CHEN A, 1998, J AM CHEM SOC, V120, P10258.
HAYAMIZU K, 2004, J MAGN RESON, V167, P328, DOI 10.1016/j.jmr.2004.01.006.
HEDIN N, 2000, LANGMUIR, V16, P7548.
HUMMER G, 2001, NATURE, V414, P188.
KATO H, 2006, J MAGN RESON, V180, P266, DOI 10.1016/j.jmr.2006.03.003.
MATSUMURA Y, 1986, CANCER RES 1, V46, P6387.
OTSUKA H, 2003, ADV DRUG DELIVER REV, V55, P403, DOI 10.1016/S0169-409X(02)00226-0.
SAARINEN TR, 1988, J MAGN RESON, V78, P257.
SEKI H, 2004, ANAL SCI, V20, P1467.
STALLMACH F, 2006, ANGEW CHEM INT EDIT, V45, P2123, DOI 10.1002/anie.200502553.
TAKAHASHI K, 2008, PART PART SYST CHAR, V25, P31, DOI 10.1002/ppsc.200700015.
THESS A, 1996, SCIENCE, V273, P483.

Cited Reference Count:
13

Times Cited:
0

Publisher:
CHEMICAL SOC JAPAN; 1-5 KANDA-SURUGADAI CHIYODA-KU, TOKYO, 101-8307, JAPAN

Subject Category:
Chemistry, Multidisciplinary

ISSN:
0366-7022

DOI:
10.1246/cl.2008.1128

IDS Number:
388FO

========================================================================
*Order Full Text*
All Customers
--------------
Please contact your library administrator, or person(s) responsible for
document delivery, to find out more about your organization's policy for
obtaining the full text of the above articles. If your organization does
not have a current document delivery provider, your administrator can
contact ISI Document Solution at service@isidoc.com, or call 800-603-4367
or 734-459-8565.

IDS Customers
--------------
IDS customers can purchase the full text of an article (having page number,
volume, and issue information) by returning this ENTIRE message as a Reply
to Sender or Forward to orders@isidoc.com. Mark your choices with an X in
the "Order Full Text: []" brackets for each item. For example, [X].

Please enter your account number here:

========================================================================
*Help Desk Contact Information*
If you have any questions, please visit the Thomson Scientific Technical Support Contact Information Web page:
http://www.thomsonscientific.com/support/techsupport
========================================================================

No comments: