Thursday, January 29, 2009

ISI Web of Knowledge Alert - Hummer, G

ISI Web of Knowledge Citation Alert (Solaris 2.1)

Cited Article: Hummer, G. Water conduction through the hydrophobic channel of a carbon nanotube
Alert Expires: 22 OCT 2009
Number of Citing Articles: 5 new records this week (5 in this e-mail)
Organization ID: 3b97d1bbc1878baed0ab183d8b03130b
========================================================================
Note: Instructions on how to purchase the full text of an article and Help Desk Contact information are at the end of the e-mail.
========================================================================

*Record 1 of 5.
*View Full Record: http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000262391400005
*Order Full Text [ ]

Title:
Thermodynamic Analysis for Synthesis of Advanced Materials

Authors:
Liu, C; Ji, Y; Shao, Q; Feng, X; Lu, X

Author Full Names:
Liu, C.; Ji, Y.; Shao, Q.; Feng, X.; Lu, X.

Source:
MOLECULAR THERODYNAMICS OF COMPLEX SYSTEMS 131: 193-270 2009

Language:
English

Document Type:
Review

Author Keywords:
Advanced materials; Electrolyte; Interface; Molecular simulation; Thermodynamics

Keywords Plus:
WALLED CARBON NANOTUBES; POTASSIUM-SULFATE CRYSTALS; ACTIVITY-COEFFICIENTS; DISSOLUTION KINETICS; SUPERCRITICAL WATER; AQUEOUS-SOLUTIONS; LOW-TEMPERATURE; ION-EXCHANGE; LIQUID WATER; STRUCTURAL-CHARACTERIZATION

Abstract:
In this paper, thermodynamic modeling for materials-oriented chemical engineering systems were investigated in order to solve critical scientific problems, such as the material structure, chemical properties, thermodynamic properties, and transfer behaviors on the interfaces or under confined circumstances. On the basis of the theory and approaches of chemical engineering, and the principles of chemical engineering thermodynamics and transfer processes, molecular simulations were combined with modern physical characterization methods to study thermodynamic modeling in materials-oriented chemical engineering processes.

Reprint Address:
Lu, X, Nanjing Univ Technol, Coll Chem & Chem Engn, State Key Lab Mat Oriented Chem Engn, Nanjing 210009, Peoples R China.

Research Institution addresses:
[Liu, C.; Ji, Y.; Shao, Q.; Feng, X.; Lu, X.] Nanjing Univ Technol, Coll Chem & Chem Engn, State Key Lab Mat Oriented Chem Engn, Nanjing 210009, Peoples R China

E-mail Address:
xhlu@njut.edu.cn

Cited References:
ANDERSSON S, 1960, NATURE, V187, P499.
ANDERSSON S, 1961, ACTA CHEM SCAND, V15, P663.
ARMSTRONG AR, 2004, ANGEW CHEM INT EDIT, V43, P2286, DOI 10.1002/anie.200353571.
BAO NZ, 2002, FLUID PHASE EQUILIBR, V193, P229.
BAO NZ, 2004, AICHE J, V50, P1568.
BAO NZ, 2004, ENVIRON SCI TECHNOL, V38, P2729.
BERGFORS TM, 1999, PROTEIN CRYSTALLIZAT.
BERRY DA, 1997, AICHE J, V43, P1737.
BOVINGTON CH, 1970, T FARADAY SOC, V66, P2088.
BURGESS J, 1978, METAL IONS SOLUTION.
BURTON WK, 1951, PHILOS T R SOC A, V243, P299.
BYRAPPA K, 2001, HDB HYDROTHERMAL TEC.
CHARLIER JC, 2002, ACCOUNTS CHEM RES, V35, P1063, DOI 10.1021/ar010166k.
CHEN YF, 2003, MATER CHEM PHYS, V81, P39, DOI 10.1016/S0254-0584(03)00100-7.
CHENG FQ, 2006, IND ENG CHEM RES, V45, P6266, DOI 10.1021/ie0513649.
CISTERNAS LA, 1993, IND ENG CHEM RES, V32, P1993.
COMPOINT M, 2005, PHYS CHEM CHEM PHYS, V7, P4138.
CRISS CM, 1964, J AM CHEM SOC, V86, P5385.
DENIS M, 2004, J CHEM PHYS, V121, P1466.
DING H, 2004, ACTA CHIM SINICA, V62, P1287.
FELLER SE, 2002, BIOPHYS J, V82, P1396.
FENG X, 1999, ACTA MAT COMP SINICA, V16, P1.
FENG X, 2000, GAOXIAO HUAXUE GONGC, V14, P583.
FENG X, 2006, WEAR, V261, P1208, DOI 10.1016/j.wear.2006.03.005.
FITCH B, 1970, IND ENG CHEM, V62, P6.
FRISCH MJ, 1998, GAUSSIAN 98.
FUJIKI Y, 1982, YOGYO-KYOKAI-SHI, V90, P19.
GARSIDE J, 1968, T I CHEM ENG-LOND, V46, T11.
GARSIDE J, 1974, IND ENG CHEM FUND, V13, P299.
GORDILLO MC, 2000, CHEM PHYS LETT, V329, P341.
GORDILLO MC, 2001, CHEM PHYS LETT, V341, P250.
GORDILLO MC, 2003, PHYS REV B, V67, ARTN 205425.
GREENBERG JP, 1989, GEOCHIM COSMOCHIM AC, V53, P2503.
GUEGAN R, 2005, CHEM PHYS, V317, P236, DOI 10.1016/j.chemphys.2005.04.034.
HALICIOGLU T, 2002, NANO LETTERS, V2, P573.
HARADA H, 1992, 5084422, US.
HARADA H, 1995, NIPPON SERAM KYO GAK, V103, P155.
HARVIE CE, 1980, GEOCHIM COSMOCHIM AC, V44, P981.
HE M, 2003, J CHEM ENG JPN, V36, P1259.
HE M, 2004, CHEM COMMUN, P2202, DOI 10.1039/b408609k.
HE M, 2004, J MATER SCI, V39, P3745.
HE M, 2007, J AM CERAM SOC, V90, P319, DOI 10.1111/j.1551-2916.2006.01404.x.
HINDS BJ, 2004, SCIENCE, V303, P5654.
HIRSCH A, 2002, ANGEW CHEM INT EDIT, V41, P1853.
HOFMANN D, 1998, J MEMBRANE SCI, V144, P145.
HUANG LL, 2006, PHYS CHEM CHEM PHYS, V8, P3836, DOI 10.1039/b604585p.
HUMMER G, 2001, NATURE, V414, P188.
JI XY, 1997, J CHEM IND ENG CHINA, V48, P532.
JI XY, 2002, IND ENG CHEM RES, V41, P2040.
JORGENSEN WL, 1986, J PHYS CHEM-US, V90, P1276.
JOSEPH S, 2003, NANO LETT, V3, P1399, DOI 10.1021/nl0346326.
KALLAY N, 1997, J COLLOID INTERF SCI, V188, P68.
KANEKO K, 2000, CARBON, V38, P287.
KHAKONOV AI, 1974, J PHYS CHEM-US, V48, P1552.
KIM S, 1996, IND ENG CHEM RES, V35, P1078.
KOBAYASHI I, 1993, 05009462, JP.
KOGA K, 2001, NATURE, V412, P802.
KOGA K, 2002, PHYSICA A, V314, P462.
KONG J, 2000, SCIENCE, V287, P5453.
KRALJ D, 1997, J CRYST GROWTH, V177, P248.
KUSIK CL, 1979, AICHE J, V25, P759.
LENCKA MM, 1993, CHEM MATER, V5, P61.
LENCKA MM, 1993, J AM CERAM SOC, V76, P2649.
LENCKA MM, 1995, J AM CERAM SOC, V78, P2609.
LINKE WF, 1965, SOLUBILITIES INORGAN.
LIU C, 1999, SCIENCE, V286, P1127.
LIU C, 2004, CHINESE J CHEM ENG, V12, P128.
LIU C, 2005, CRYST GROWTH DES, V5, P1399, DOI 10.1021/cg049602a.
LU JZ, 2001, J APPL POLYM SCI, V82, P368.
LU X, 1996, FLUID PHASE EQUILIBR, V116, P201.
LU XH, 1988, FLUID PHASE EQUILIBR, V43, P137.
LU XH, 1993, AICHE J, V39, P1527.
LU XH, 1996, IND ENG CHEM RES, V35, P1777.
LUZAR A, 1996, NATURE, V379, P55.
MARCUS Y, 1985, LON SOLVATION.
MARTI J, 2002, CHEM PHYS LETT, V354, P227.
MARTI J, 2002, CHEM PHYS LETT, V365, P536.
MASHL RJ, 2003, NANO LETT, V3, P589, DOI 10.1021/nl0340226.
MIHIC SJ, 1997, NATURE, V389, P385.
MOHAN R, 2002, CHEM ENG SCI, V57, P4277.
MULLIN JW, 1997, CRYSTALLIZATION.
MYDLARZ J, 1989, CHEM ENG SCI, V44, P1391.
NIYOGI S, 2002, ACCOUNTS CHEM RES, V35, P1105, DOI 10.1021/ar010155r.
NOON WH, 2002, CHEM PHYS LETT, V355, P445.
OELKERS EH, 1991, GEOCHIM COSMOCHIM AC, V55, P1235.
OHKUBO T, 1999, CHEM PHYS LETT, V312, P191.
OHTA N, 1980, YOGYO KYOKAISHI, V88, P1.
PABALAN RT, 1999, ACTIVITY COEFFICIENT, P435.
PALWE BG, 1984, CHEM ENG SCI, V39, P903.
PANTAROTTO D, 2003, J AM CHEM SOC, V125, P6160, DOI 10.1021/ja034342r.
PATRA M, 2006, BIOPHYS J, V90, P1121, DOI 10.1529/biophysj.105.062364.
PITZER KS, 1984, P NATL ACAD SCI USA, V81, P1268.
PITZER KS, 1991, ACTIVITY COEFFICIENT.
PORTNEY NG, 2006, ANAL BIOANAL CHEM, V384, P620, DOI 10.1007/s00216-005-0247-7.
PRAUSNITZ JM, 1980, COMPUTER CALCULATION.
RABENAU H, 1969, PHILIPS TECHN REV, V30, P89.
RAFAL M, 1994, MODELS ELECTROLYTE S.
REN H, 2003, J BIOL CHEM, V278, P48815, DOI 10.1074/jbc.M302097200.
RIVERA JL, 2002, NANO LETT, V2, P1427, DOI 10.1021/nl0257566.
RUOFF RS, 1993, J PHYS CHEM-US, V97, P3379.
SALEM MR, 1994, J MATER SCI, V29, P6463.
SASAKI T, 1985, INORG CHEM, V24, P2265.
SAZONOVA V, 2004, NATURE, V431, P284, DOI 10.1038/nature02905.
SCRIVENS WA, 1993, J CHEM SOC CHEM COMM, P1207.
SHIMIZU T, 1979, YOGYO KYOKAISHI, V87, P565.
SLIWINSKABARTKOWIAK M, 2001, PHYS CHEM CHEM PHYS, V3, P1179.
SMITH JM, 1975, INTRO CHEM ENG THERM.
SNOW ES, 2005, SCIENCE, V307, P1942, DOI 10.1126/science.1109128.
SOEHNEL O, 1985, DENSITIES AQUEOUS SO.
STRIOLO A, 2006, NANO LETT, V6, P633, DOI 10.1021/nl052254u.
SUN Q, 1999, SEA LAKE CHEM IND, V28, P24.
SUN YP, 2002, ACCOUNTS CHEM RES, V35, P1096, DOI 10.1021/er010160v.
TAGUCHI Y, 2002, J CHEM ENG JPN, V35, P1038.
TAJIMA M, 1988, 63064998, JP.
TAKABA H, 2000, J PHYS CHEM B, V104, P6353.
TASIS D, 2006, CHEM REV, V106, P1105, DOI 10.1021/cr050569o.
THALLAPALLY PK, 2005, ANGEW CHEM INT EDIT, V44, P3848, DOI 10.1002/anie.200500749.
THOMSEN K, 1998, CHEM ENG SCI, V53, P1551.
VAITHEESWARAN S, 2004, J CHEM PHYS, V121, P7955, DOI 10.1063/1.1796271.
VALYASHKO VM, 1987, ZH NEORG KHIM+, V32, P2811.
VANE LM, 2005, J CHEM TECHNOL BIOT, V80, P603.
WALTHER JH, 2001, J PHYS CHEM B, V105, P9980.
WANG J, 2004, PHYS CHEM CHEM PHYS, V6, P829, DOI 10.1039/b313307a.
XIE K, 1997, INORG CHEM IND, V1, P16.
YAN LM, 1998, J CHEM IND ENG TECHN, V19, P28.
YAO ZL, 2003, J AM CHEM SOC, V125, P16015, DOI 10.1021/ja037564y.
YU L, 2005, MATER CHEM PHYS, V93, P342, DOI 10.1016/j.matchemphys.2005.03.021.
ZHANG QX, 2002, J CHEM PHYS, V117, P808.
ZHENG J, 2005, J CHEM PHYS, V122, ARTN 214702.
ZHOU J, 2002, FLUID PHASE EQUILIBR, V194, P257.
ZHOU QL, 2000, BIOCHEMISTRY-US, V39, P14920.
ZHU FQ, 2003, BIOPHYS J, V85, P236.
ZHU Y, 2003, MOL SIMULAT, V29, P767, DOI 10.1080/0892702031000121824.
ZIMMERLI U, 2005, NANO LETT, V5, P1017, DOI 10.1021/nl0503126.

Cited Reference Count:
134

Times Cited:
0

Publisher:
SPRINGER-VERLAG BERLIN; HEIDELBERGER PLATZ 3, D-14197 BERLIN, GERMANY

ISSN:
0081-5993

DOI:
10.1007/430_2008_4

IDS Number:
BIR94

========================================================================

*Record 2 of 5.
*View Full Record: http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000262258800018
*Order Full Text [ ]

Title:
THz Investigations of Condensed Phase Blomolecular Systems

Authors:
Zhang, HL; Siegrist, K; Douglas, KO; Gregurick, SK; Plusquellic, DF

Author Full Names:
Zhang, Hailiang; Siegrist, Karen; Douglas, Kevin O.; Gregurick, Susan K.; Plusquellic, David F.

Source:
METHODS IN NANO CELL BIOLOGY 90: 417-+ 2008

Language:
English

Document Type:
Review

Keywords Plus:
TERAHERTZ SPECTROSCOPY; VIBRATIONAL-MODES; AB-INITIO; WATER; DYNAMICS; MOLECULES; PROTEIN; PORES; FIELD; IONS

Abstract:
Terahertz (THz) spectroscopic investigations of crystalline dipeptide nanotubes are discussed in the frequency region from 0.6 (2 cm(-1)) to 3 THz (100 cm(-1)). The THz region provides access to collective modes of biomolecular systems and is therefore sensitive to the large scale motions important for understanding the impact of environmental stimuli in biomolecular systems. The focus of this chapter is on THz spectral changes observed in this region when crystals of alanyl isoleucine (AI) and isoleucyl alanine (IA) nanotubes are exposed to water. Of biological significance is the water permeability through hydrophobic pore regions as exemplified in the disparate behavior of these two dipeptide nanotubes. AI is known from X-ray studies and confirmed here to act reversibly to the exchange of water while IA does not accept water into its pore region. Both quantum chemical and classical calculations are performed to better understand the subtle balance that determines guest mo!
lecule absorption and conduction through these hydrophobic channels. Examination of the vibrational character of the THz modes with and without water suggests water mode coupling/decoupling with collective modes of the nanotube may play an important role in the permeability dynamics.

Reprint Address:
Zhang, HL, Univ Maryland Baltimore Cty, Dept Chem & Biochem, Baltimore, MD 21250 USA.

Research Institution addresses:
[Zhang, Hailiang; Douglas, Kevin O.] Univ Maryland Baltimore Cty, Dept Chem & Biochem, Baltimore, MD 21250 USA; [Siegrist, Karen] Johns Hopkins Appl Phys Lab, Electroopt & Infrared Syst & Technol Grp, Laurel, MD 20723 USA; [Douglas, Kevin O.; Plusquellic, David F.] NIST, Phys Lab, Biophys Grp, Gaithersburg, MD 20899 USA

Cited References:
ALLEN TW, 1999, J CHEM PHYS, V111, P7985.
ALLIS DG, 2007, CHEM PHYS LETT, V440, P203, DOI 10.1016/j.cplett.2007.04.032.
BECKSTEIN O, 2004, PHYS BIOL, V1, P42.
BROOKS BR, 1983, J COMPUT CHEM, V4, P217.
DEGROOT BL, 2001, SCIENCE, V294, P2353.
DELLEY B, 1990, J CHEM PHYS, V92, P508.
DELLEY B, 2000, J CHEM PHYS, V113, P7756.
EBBINGHAUS S, 2007, P NATL ACAD SCI USA, V104, P20749, DOI 10.1073/pnas.0709207104.
EBBINGHAUS S, 2008, J AM CHEM SOC, V130, P2374, DOI 10.1021/ja0746520.
EWALD PP, 1921, ANN PHYS-BERLIN, V64, P253.
GORBITZ CH, 1996, ACTA CRYSTALLOGR C 7, V52, P1764.
GORBITZ CH, 2002, ACTA CRYSTALLOGR B 5, V58, P849, DOI 10.1107/S0108768102012314.
GORBITZ CH, 2003, NEW J CHEM, V27, P1789, DOI 10.1039/b305984g.
GREGURICK SK, 1997, J PHYS CHEM B, V101, P8595.
GREGURICK SK, 1999, J PHYS CHEM B, V103, P3476.
GREGURICK SK, 2002, J PHYS CHEM A, V106, P8696, DOI 10.1021/jp025633+.
HEUGEN U, 2006, P NATL ACAD SCI USA, V103, P12301, DOI 10.1073/pnas.0604897103.
HEYDEN M, 2008, J AM CHEM SOC, V130, P5773, DOI 10.1021/ja00781083.
HUMMER G, 2001, NATURE, V414, P188.
JEPSEN PU, 2007, CHEM PHYS LETT, V442, P275, DOI 10.1016/j.cplett.2007.05.112.
KORTER TM, 2004, CHEM PHYS LETT, V385, P45, DOI 10.1016/j.cplett.2003.12.060.
LYNDENBELL RM, 1996, J CHEM PHYS, V105, P9266.
MACKERELL AD, 1998, ENCY COMPUTATIONAL C, V1.
MACKERELL AD, 1998, J PHYS CHEM B, V102, P3586.
MACKERELL AD, 2000, BIOPOLYMERS, V56, P257.
MASSON JB, 2006, P NATL ACAD SCI USA, V103, P4808, DOI 10.1073/pnas.0510945103.
MCINTOSH KA, 1995, APPL PHYS LETT, V67, P3844.
MELINGER JS, 2006, APPL PHYS LETT, V89, ARTN 251110.
MELINGER JS, 2007, J PHYS CHEM A, V111, P10977.
MENDIS R, 2001, OPT LETT, V26, P846.
PERDEW JP, 1986, PHYS REV B, V33, P8800.
PINE AS, 1996, J MOL SPECTROSC, V175, P37.
PLUSQUELLIC DF, 2003, TERAHERTZ SENSING TE, V2, P385.
PLUSQUELLIC DF, 2007, CHEMPHYSCHEM, V8, P2412, DOI 10.1002/cphc.200700332.
POMES R, 1998, BIOPHYS J, V75, P33.
PRESTON GM, 1992, SCIENCE, V256, P385.
SANSOM MSP, 1997, BIOPHYS J, V73, P2404.
SIEGRIST K, 2006, J AM CHEM SOC, V128, P5764, DOI 10.1021/ja058176u.
VERGHESE S, 2001, IEEE T MICROW THEORY, V49, P1032.
WHITMIRE SE, 2003, BIOPHYS J, V85, P1269.
WILSON EB, 1955, MOL VIBRATIONS THEOR.
ZHANG H, 2008, J AM CHEM S IN PRESS.

Cited Reference Count:
42

Times Cited:
0

Publisher:
ELSEVIER ACADEMIC PRESS INC; 525 B STREET, SUITE 1900, SAN DIEGO, CA 92101-4495 USA

ISSN:
0091-679X

DOI:
10.1016/S0091-679X(08)00818-2

IDS Number:
BIR53

========================================================================

*Record 3 of 5.
*View Full Record: http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000262225100132
*Order Full Text [ ]

Title:
Effective viscosity of glycerin in a nanoporous silica gel

Authors:
Han, AJ; Lu, WY; Punyamurtula, VK; Chen, X; Surani, FB; Kim, T; Qiao, Y

Author Full Names:
Han, Aijie; Lu, Weiyi; Punyamurtula, Venkata K.; Chen, Xi; Surani, Falgun B.; Kim, Taewan; Qiao, Yu

Source:
JOURNAL OF APPLIED PHYSICS 104 (12): Art. No. 124908 DEC 15 2008

Language:
English

Document Type:
Article

Author Keywords:
gels; nanoporous materials; organic compounds; silicon compounds; surface tension; viscosity

Keywords Plus:
CARBON NANOTUBE; WATER; INFILTRATION; PRESSURE; CHANNEL

Abstract:
The infiltration of glycerin in a lyophobic nanoporous silica gel is investigated experimentally, and the effective interfacial tension and viscosity are discussed. While the simple superposition principle can be employed for the analysis of interfacial tension, in a nanopore the effective liquid viscosity is no longer a material constant. It is highly dependent on the pore size and the loading rate, much smaller than its bulk counterpart.

Reprint Address:
Han, AJ, Univ Calif San Diego, Dept Struct Engn, La Jolla, CA 92093 USA.

Research Institution addresses:
[Han, Aijie; Lu, Weiyi; Punyamurtula, Venkata K.; Qiao, Yu] Univ Calif San Diego, Dept Struct Engn, La Jolla, CA 92093 USA; [Kim, Taewan; Qiao, Yu] Univ Calif San Diego, Program Mat Sci & Engn, La Jolla, CA 92093 USA; [Surani, Falgun B.] Univ Akron, Dept Civil Engn, Akron, OH 44325 USA; [Chen, Xi] Columbia Univ, Dept Civil Engn & Engn Mech, New York, NY 10027 USA

E-mail Address:
yqiao@ucsd.edu

Cited References:
BORMAN VD, 2005, J EXP THEOR PHYS+, V100, P385.
EIJKEL JCT, 2005, MICROFLUID NANOFLUID, V1, P249, DOI 10.1007/s10404-004-0012-9.
FAY JA, 1994, INTRO FLUID MECH.
GIDDINGS JC, 1991, UNIFIED SEPARATION S.
HAN A, 2007, J PHYS D APPL PHYS, V40, P5743, DOI 10.1088/0022-3727/40/18/035.
HUMMER G, 2001, NATURE, V414, P188.
KALRA A, 2003, P NATL ACAD SCI USA, V100, P10175.
KONG X, 2005, APPL PHYS LETT, V86, ARTN 151919.
KONG X, 2005, PHIL MAG LETT, V85, P331, DOI 10.1080/09500830500071135.
KONG XG, 2005, J MATER RES, V20, P1042, DOI 10.1557/JMR.2005.0140.
KRUK M, 2001, CHEM MATER, V13, P3169.
KUMAR M, 1994, P R SOC LONDON, V444, P573.
LI JCM, 2000, J ALLOY COMPD, V310, P24.
LIU YC, 2005, LANGMUIR, V21, P12025, DOI 10.1021/la0517181.
POLARZ S, 2002, J NANOSCI NANOTECHNO, V2, P581, DOI 10.1166/jnn.2002.151.
QIAO Y, 2007, J AM CHEM SOC, V129, P2355, DOI 10.1021/ja067185f.
SRIRAMAN S, 2005, PHYS REV LETT, V95, ARTN 130603.
SURANI FB, 2005, APPL PHYS LETT, V87, ARTN 163111.
SURANI FB, 2006, J APPL PHYS, V100, ARTN 034311.
TERASAKI O, 2002, STUD SURF SCI CATAL, V141, P27.
WAN RZ, 2005, J AM CHEM SOC, V127, P7166, DOI 10.1021/ja050044d.
WHITE FM, 2005, VISCOUS FLUID FLOW.

Cited Reference Count:
22

Times Cited:
0

Publisher:
AMER INST PHYSICS; CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA

Subject Category:
Physics, Applied

ISSN:
0021-8979

DOI:
10.1063/1.3020535

IDS Number:
391HT

========================================================================

*Record 4 of 5.
*View Full Record: http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000262324600022
*Order Full Text [ ]

Title:
Enhanced Polymer Melts Flow though Nanoscale Channels under Vibration

Authors:
Kong, J; Xu, Y; Yung, KL; Xie, YC; He, L

Author Full Names:
Kong, Jie; Xu, Yan; Yung, Kai-Leung; Xie, Yunchuan; He, Lan

Source:
JOURNAL OF PHYSICAL CHEMISTRY C 113 (2): 624-629 JAN 15 2009

Language:
English

Document Type:
Article

Keywords Plus:
MOLECULAR-DYNAMICS SIMULATION; WALLED CARBON NANOTUBES; WATER; NANOCHANNELS; BEHAVIOR; NANOCRYSTALS; CAPILLARIES; CONDUCTION; NANOFIBERS; INTERFACE

Abstract:
The enhanced poly(epsilon-caprolactone) melts flow behaviors though nanoscale channels under vibration were observed. The effect of vibration on the nanoflow is dependent on the vibration frequency of piezoelectric transducer that generates the vibration fields. The flow rate of poly(epsilon-caprolactone) melts in nanochannels increases with the increase of vibration frequency within the range from 2.0 to 14.0 kHz. The observed enhanced flow through nanochannels under vibration is a new nanoscale phenomenon, which is potential in vibration-assisted nanofluidic, nanoimprint lithography, and micro-/nanoinjection molding etc.

Reprint Address:
Kong, J, Hong Kong Polytech Univ, Dept Ind & Syst Engn, Kowloon, Hong Kong, Peoples R China.

Research Institution addresses:
[Kong, Jie; Xu, Yan; Yung, Kai-Leung; Xie, Yunchuan; He, Lan] Hong Kong Polytech Univ, Dept Ind & Syst Engn, Kowloon, Hong Kong, Peoples R China; [Kong, Jie] NW Polytech Univ, Sch Sci, Dept Appl Chem, Xian 710072, Peoples R China

E-mail Address:
mfkongjie@hotmail.com

Cited References:
ALVAREZPUEBLA R, 2007, J PHYS CHEM C, V111, P6720, DOI 10.1021/jp070906s.
AMIRAV L, 2008, J PHYS CHEM C, V112, P13105, DOI 10.1021/jp801651g.
BLAKE TD, 2006, J COLLOID INTERF SCI, V299, P1, DOI 10.1016/j.jcis.2006.03.051.
CHANDRA D, 2008, SOFT MATTER, V4, P979, DOI 10.1039/b717711a.
CUI Y, 2004, NANO LETT, V4, P1093, DOI 10.1021/nl049488i.
DONG XC, 2008, J PHYS CHEM C, V112, P9891, DOI 10.1021/jp7121714.
EGGERS J, 2004, J COLLOID INTERF SCI, V280, P537, DOI 10.1016/j.jcis.2004.07.001.
GAO Y, 2008, J PHYS CHEM C, V112, P8215, DOI 10.1021/jp711601f.
HE GJ, 2006, J APPL POLYM SCI, V102, P1834, DOI 10.1002/app.24082.
HENNRICH F, 2007, J PHYS CHEM B, V111, P1932, DOI 10.1021/jp065262n.
HOLT JK, 2006, SCIENCE, V312, P1034, DOI 10.1126/science.1126298.
HUMMER G, 2001, NATURE, V414, P188.
JAI C, 2006, NANO LETT, V6, P2554, DOI 10.1021/nl0619599.
JIANG YB, 2006, J CHEM ENG JPN, V39, P14.
KIM BM, 2005, NANO LETT, V5, P873, DOI 10.1021/nl050278v.
KIM E, 1996, J AM CHEM SOC, V118, P5722.
KUMAR N, 2007, J PHYS CHEM B, V111, P4581, DOI 10.1021/jp068509p.
LI NH, 2006, NANO LETT, V6, P2626, DOI 10.1021/nl0603395.
LIANG XG, 2007, NANO LETT, V7, P3774, DOI 10.1021/nl072253x.
LIN HJ, 2007, J PHYS CHEM C, V111, P13348, DOI 10.1021/jp0737000.
LONGHURST MJ, 2007, NANO LETT, V7, P3324, DOI 10.1021/nl071537e.
MAJUMDER M, 2005, NATURE, V438, P44, DOI 10.1038/43844a.
MARTIC G, 2002, LANGMUIR, V18, P7971, DOI 10.1021/la020068n.
MARTIN CR, 2003, J PHYS CHEM B, V107, P4261, DOI 10.1021/jp034055+.
MOON SI, 2003, MACROMOLECULES, V36, P4253, DOI 10.1021/ma0300239.
NIU Z, 2007, NANO LETT, V7, P3729, DOI 10.1021/nl072134h.
PARK MJ, 2007, NANO LETT, V7, P3547, DOI 10.1021/nl0726171.
PETORAL RM, 2006, J PHYS CHEM B, V110, P23410, DOI 10.1021/jp064075m.
RANABOTHU SR, 2005, J COLLOID INTERF SCI, V288, P213, DOI 10.1016/j.jcis.2005.02.074.
SEEVARATNAM GK, 2007, PHYS FLUIDS, V19, ARTN 012103.
SEFIANE K, 2008, J COLLOID INTERF SCI, V138, P101.
SHIKHMURZAEV YD, 2004, J COLLOID INTERF SCI, V280, P539, DOI 10.1016/j.jcis.2004.06.104.
VANTASSEL JJ, 2007, J PHYS CHEM C, V111, P3358.
VIRJI S, 2006, J PHYS CHEM B, V110, P22266, DOI 10.1021/jp063166g.
VLASSIOUK I, 2008, NANO LETT, V8, P1978, DOI 10.1021/nl800949k.
WANG XF, 2005, POLYMER, V46, P4853, DOI 10.1016/j.polymer.2005.03.058.
WHITBY M, 2007, NAT NANOTECHNOL, V2, P97.
YAN Z, 2002, J APPL POLYM SCI, V85, P1587.
YUNG KL, 2005, J CHEM PHYS, V123, ARTN 246101.
YUNG KL, 2005, POLYMER, V46, P11881, DOI 10.1016/j.polymer.2005.09.08.
YUNG KL, 2006, POLYMER, V47, P4454, DOI 10.1016/j.polymer.2006.04.028.
YUNG KL, 2007, POLYMER, V48, P7645, DOI 10.1016/j.polymer.2007.11.013.
ZHANG MF, 2006, NANO LETT, V6, P1075, DOI 10.1021/nl060407n.
ZHAO ZJ, 2008, J PHYS CHEM B, V112, P7515, DOI 10.1021/jp800836d.

Cited Reference Count:
44

Times Cited:
0

Publisher:
AMER CHEMICAL SOC; 1155 16TH ST, NW, WASHINGTON, DC 20036 USA

Subject Category:
Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary

ISSN:
1932-7447

DOI:
10.1021/jp809164k

IDS Number:
392TH

========================================================================

*Record 5 of 5.
*View Full Record: http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000262324600039
*Order Full Text [ ]

Title:
Bidirectional Transport of Guest Molecules through the Nanoporous Tunnel Structure of a Solid Inclusion Compound

Authors:
Marti-Rujas, J; Desmedt, A; Harris, KDM; Guillaume, F

Author Full Names:
Marti-Rujas, Javier; Desmedt, Arnaud; Harris, Kenneth D. M.; Guillaume, Francois

Source:
JOURNAL OF PHYSICAL CHEMISTRY C 113 (2): 736-743 JAN 15 2009

Language:
English

Document Type:
Article

Keywords Plus:
CONFOCAL RAMAN MICROSPECTROMETRY; ELASTIC NEUTRON-SCATTERING; CARBON NANOTUBE MEMBRANES; AQUAPORIN WATER CHANNELS; SELECTIVE ION CONDUCTION; POTASSIUM CHANNELS; SELF-DIFFUSION; NOBEL LECTURE; ATOMIC BASIS; UREA

Abstract:
Confocal Raman microspectrometry is used to probe, for the first time, the transport of guest molecules along the one-dimensional tunnels in a crystalline urea inclusion compound under conditions of guest exchange in which new guest molecules are introduced simultaneously at both ends of the urea tunnel structure. We focus on the system comprising 1,8-dibromooctane as the original type of guest and pentadecane as the new type of guest, and results are presented for experiments in which the guest exchange process is probed both ex situ and in situ. The Raman data, recorded as a function of position along the tunnel direction and, in the case of the in situ experiments, as a function of time, demonstrate that pentadecane guest molecules enter the tunnels at both ends of the crystal and that transport of guest molecules occurs in both directions along the crystal. Mechanistic aspects of this bidirectional transport process are discussed, particularly in relation to the correspo!
nding process for unidirectional transport of guest molecules in urea inclusion compounds reported previously.

Reprint Address:
Harris, KDM, Cardiff Univ, Sch Chem, Pk Pl, Cardiff CF10 3AT, S Glam, Wales.

Research Institution addresses:
[Marti-Rujas, Javier; Harris, Kenneth D. M.] Cardiff Univ, Sch Chem, Cardiff CF10 3AT, S Glam, Wales; [Desmedt, Arnaud; Guillaume, Francois] Univ Bordeaux, UMR 5255, ISM, Grp Spect Mol, F-33405 Talence, France

E-mail Address:
harriskdm@cardiff.ac.uk; f.guillaume@ism.u-bordeauxl.fr

Cited References:
AGRE P, 2004, ANGEW CHEM INT EDIT, V43, P4278, DOI 10.1002/anie.200460804.
AGRE P, 2004, BIOSCIENCE REP, V24, P127, DOI 10.1007/s10540-005-2577-2.
ALIEV AE, 1994, J MATER CHEM, V4, P35.
AUERBACH SM, 2000, INT REV PHYS CHEM, V19, P155.
BEERDSEN E, 2006, J PHYS CHEM B, V110, P14529, DOI 10.1021/jp062867a.
BORGNIA M, 1999, ANNU REV BIOCHEM, V68, P1015.
BRUNEEL JL, 2002, J RAMAN SPECTROSC, V33, P815, DOI 10.1002/jrs.915.
DAMEN TC, 1966, PHYS REV, V142, P570.
DUBBELDAM D, 2007, MOL SIMULAT, V33, P305, DOI 10.1080/08927020601156418.
EISENBERG B, 1998, ACCOUNTS CHEM RES, V31, P117.
ELBAGHDADI A, 1995, J RAMAN SPECTROSC, V26, P155.
FETTERLY LC, 1964, NONSTOICHIOMETRIC CO, P491.
GEORGE AR, 1995, J MOL GRAPH MODEL, V13, P138.
GUILLAUME F, 1999, J CHIM PHYS PCB, V96, P1295.
HARRIS KDM, 1990, J CHEM SOC FARADAY T, V86, P2985.
HARRIS KDM, 1997, CHEM SOC REV, V26, P279.
HARRIS KDM, 2007, SUPRAMOL CHEM, V19, P47, DOI 10.1080/10610270600977706.
HOD O, 2003, P NATL ACAD SCI USA, V100, P14661, DOI 10.1073/pnas.2436170100.
HOLLINGSWORTH MD, 1996, COMPREHENSIVE SUPRAM, V6, P177.
HOLLINGSWORTH MD, 2002, SCIENCE, V295, P2410.
HUANG C, 2008, PHYS CHEM CHEM PHYS, V10, P186, DOI 10.1039/b709575a.
HUMMER G, 2001, NATURE, V414, P188.
JOBIC H, 2007, MICROPOR MESOPOR MAT, V102, P21, DOI 10.1016/j.micromeso.2006.12.034.
KALRA A, 2003, P NATL ACAD SCI USA, V100, P10175.
KARGER J, 1992, DIFFUSION ZEOLITES O.
KHAN AA, 1999, CHEM PHYS LETT, V307, P320.
LEE KH, 2004, J PHYS CHEM B, V108, P9861, DOI 10.1021/jp036791j.
LEE SB, 2002, J AM CHEM SOC, V124, P11850, DOI 10.1021/ja027494f.
LEFORT R, 1996, PHYS REV LETT, V77, P4027.
LUTZ C, 2003, PHYS REV LETT, V93, UNSP 026001.
MACKINNON R, 2003, FEBS LETT, V555, P62, DOI 10.1016/S0014-5793(03)01104-9.
MACKINNON R, 2004, ANGEW CHEM INT EDIT, V43, P4265, DOI 10.1002/anie.200400662.
MACKINNON R, 2004, BIOSCIENCE REP, V24, P75.
MAHDYARFAR A, 1993, J CHEM SOC CHEM COMM, P51.
MARTIRUJAS J, 2004, J AM CHEM SOC, V126, P11124, DOI 10.1021/ja040117d.
MARTIRUJAS J, 2006, J PHYS CHEM B, V110, P10708, DOI 10.1021/jp060738o.
MARTIRUJAS J, 2006, MOL CRYST LIQ CRYST, V456, P139, DOI 10.1080/15421400600788633.
MARTIRUJAS J, 2007, J PHYS CHEM B, V111, P12339, DOI 10.1021/jp076532k.
NEDNOOR P, 2005, CHEM MATER, V17, P3595, DOI 10.1021/cm047844s.
NELSON PH, 1999, J CHEM PHYS, V110, P9235.
OLLIVIER J, 1998, EUROPHYS LETT, V43, P546.
PAPADOPOULOS GK, 2004, J PHYS CHEM B, V108, P12748, DOI 10.1021/jp.049265g.
PECCHIA A, 2004, REP PROG PHYS, V67, P1497, DOI 10.1088/0034-4885/67/8/R04.
RASAIAH JC, 2008, ANNU REV PHYS CHEM, V59, P713.
RENNIE AJO, 1990, P R SOC A, V430, P615.
SCHMICKER D, 1995, PHYS REV LETT, V74, P734.
SMART SP, 1994, J CHEM SOC FARADAY T, V90, P1313.
SMITH AE, 1952, ACTA CRYSTALLOGR, V5, P224.
STRIOLO A, 2006, NANO LETT, V6, P633, DOI 10.1021/nl052254u.
TAKEMOTO K, 1984, INCLUSION COMPOUNDS, V2, P47.
THOMAS JM, 1999, ANGEW CHEM INT EDIT, V38, P3588.
VALIULLIN R, 2004, J CHEM PHYS, V120, P11804, DOI 10.1063/1.1753572.
WEI CY, 2003, PHYS REV LETT, V91, ARTN 235901.

Cited Reference Count:
53

Times Cited:
0

Publisher:
AMER CHEMICAL SOC; 1155 16TH ST, NW, WASHINGTON, DC 20036 USA

Subject Category:
Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary

ISSN:
1932-7447

DOI:
10.1021/jp806380p

IDS Number:
392TH

========================================================================
*Order Full Text*
All Customers
--------------
Please contact your library administrator, or person(s) responsible for
document delivery, to find out more about your organization's policy for
obtaining the full text of the above articles. If your organization does
not have a current document delivery provider, your administrator can
contact ISI Document Solution at service@isidoc.com, or call 800-603-4367
or 734-459-8565.

IDS Customers
--------------
IDS customers can purchase the full text of an article (having page number,
volume, and issue information) by returning this ENTIRE message as a Reply
to Sender or Forward to orders@isidoc.com. Mark your choices with an X in
the "Order Full Text: []" brackets for each item. For example, [X].

Please enter your account number here:

========================================================================
*Help Desk Contact Information*
If you have any questions, please visit the Thomson Scientific Technical Support Contact Information Web page:
http://www.thomsonscientific.com/support/techsupport
========================================================================

No comments: