Friday, March 6, 2009

ISI Web of Knowledge Alert - Hummer, G

ISI Web of Knowledge Citation Alert

Cited Article: Hummer, G. Water conduction through the hydrophobic channel of a carbon nanotube
Alert Expires: 22 OCT 2009
Number of Citing Articles: 3 new records this week (3 in this e-mail)
Organization ID: 3b97d1bbc1878baed0ab183d8b03130b
========================================================================
Note: Instructions on how to purchase the full text of an article and Help Desk Contact information are at the end of the e-mail.
========================================================================

*Record 1 of 3.
*View Full Record: http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000263370200129
*Order Full Text [ ]

Title:
Removal of chromium from aqueous solution by using oxidized multiwalled carbon nanotubes

Authors:
Hu, J; Chen, CL; Zhu, XX; Wang, XK

Author Full Names:
Hu, Jun; Chen, Changlun; Zhu, Xiaoxiang; Wang, Xiangke

Source:
JOURNAL OF HAZARDOUS MATERIALS 162 (2-3): 1542-1550 MAR 15 2009

Language:
English

Document Type:
Article

Author Keywords:
Carbon nanotubes; Chromium; Wastewater; Adsorption

KeyWords Plus:
ACTIVATED CARBON; WASTE-WATER; CR(VI) REMOVAL; ADSORPTION; KINETICS; NANOPARTICLES; PRODUCT

Abstract:
The batch removal of hexavalent chromium (Cr(VI)) from aqueous solution by using oxidized multiwalled carbon nanotubes (MWCNTs) was studied under ambient conditions. The effect of pH, initial concentration of Cr(VI), MWCNT content, contact time and ionic strength on the removal of Cr(VI) was also investigated. The removal was favored at low pH with maximum removal at pH Q. The adsorption kinetics was modeled by first-order reversible kinetics, pseudo-first-order kinetics, pseudo-second-order kinetics, and intraparticle diffusion models, respectively. The rate constants for all these kinetic models were calculated, and the results indicate that pseudo-second-order kinetics model was well suitable to model the kinetic adsorption of Cr(VI). The removal of chromium mainly depends on the occurrence of redox reaction of adsorbed Cr(VI) on the surface of oxidized MWCNTs to the formation of Cr(III), and subsequent the sorption of Cr(III) on MWCNTs appears as the leading mechanism fo!
r chromium uptake to MWCNTs. The presence of Cr(III) and Cr(VI) on oxidized MWCNTs was confirmed by the X-ray photoelectron spectroscopic analysis. The application of Langmuir and Freundlich isotherms are applied to fit the adsorption data of Cr(VI). Equilibrium data were well described by the typical Langmuir adsorption isotherm. Overall, the study demonstrated that MWCNTs can effectively remove Cr(VI) from aqueous solution under a wide range of experimental conditions, without significant Cr(III) release. (C) 2008 Elsevier B.V. All rights reserved,

Reprint Address:
Wang, XK, Chinese Acad Sci, Inst Plasma Phys, POB 1126, Hefei 230031, Peoples R China.

Research Institution addresses:
[Hu, Jun; Chen, Changlun; Wang, Xiangke] Chinese Acad Sci, Inst Plasma Phys, Hefei 230031, Peoples R China; [Zhu, Xiaoxiang] Jiangsu Prov Radiat Environm Monitoring & Managem, Nanjing 210036, Peoples R China

E-mail Address:
xkwang@ipp.ac.cn

Cited References:
ARUN K, 1984, J ENV ENG, V110, P110.
BOEHM HP, 2002, CARBON, V40, P145.
CHAMBERS A, 1998, J PHYS CHEM B, V102, P4253.
CHEGROUCHE S, 1997, WATER RES, V31, P1733.
CHEN CL, 2006, IND ENG CHEM RES, V45, P9144, DOI 10.1021/ie060791z.
CHEN JP, 2001, CARBON, V39, P1491.
CLESCERI LS, 1998, STANDARD METHODS EXA.
DI ZC, 2006, CHEMOSPHERE, V62, P861, DOI 10.1016/j.chemosphere.2004.06.044.
DINATALE F, 2007, J HAZARD MATER, V145, P381, DOI 10.1016/j.jhazmat.2006.11.028.
FANG J, 2007, ENVIRON SCI TECHNOL, V41, P4748, DOI 10.1021/es061969b.
FELLENBERY G, 2000, CHEM POLLUTION.
FUGETSU B, 2004, ENVIRON SCI TECHNOL, V38, P6890, DOI 10.1021/es049554i.
HO YS, 1995, THESIS U BIRMINGHAM.
HO YS, 1998, T ICHEME B, V76, P183.
HO YS, 1999, PROCESS SAF ENVIRON, V77, P165.
HU J, 2005, WATER RES, V39, P4528, DOI 10.1016/j.watres.2005.05.051.
HUMMER G, 2001, NATURE, V414, P188.
IMAI A, 1990, WATER RES, V24, P1143.
KHEZAMI L, 2005, J HAZARD MATER, V123, P223, DOI 10.1016/j.jhazmat.2005.04.012.
KOWALSHI Z, 1994, J HAZARD MATER, V39, P137.
KRATOCHVIL D, 1998, ENVIRON SCI TECHNOL, V32, P2693.
LAZARIDIS NK, 2003, WATER RES, V37, P2875, DOI 10.1016/S0043-1354(03)00119-2.
LIJIMA S, 1991, NATURE, V354, P56.
NAMASIVAYAM C, 1999, CARBON, V37, P79.
PARK SJ, 2002, J COLLOID INTERF SCI, V249, P458.
RAJI C, 1998, WATER RES, V32, P3772.
REGIL EO, 2003, J COLLOID INTERF SCI, V263, P391.
RENGARAJ S, 2003, J HAZARD MATER, V102, P257, DOI 10.1016/S0304-3894(03)00209-7.
RINZLER AG, 1998, APPL PHYS A-MATER, V67, P29.
TAN XL, 2008, RADIOCHIM ACTA, V96, P23, DOI 10.1524/ract.2008.1457.
WANG XK, 2005, ENVIRON SCI TECHNOL, V39, P2856, DOI 10.1021/es048287d.
WEBER WJ, 1962, P INT C WAT POLL S, V2, P231.
WENG CH, 1997, WATER SCI TECHNOL, V35, P55.
YANG K, 2006, ENVIRON SCI TECHNOL, V40, P5804, DOI 10.1021/es061081.

Cited Reference Count:
34

Times Cited:
0

Publisher:
ELSEVIER SCIENCE BV; PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS

Subject Category:
Engineering, Environmental; Engineering, Civil; Environmental Sciences

ISSN:
0304-3894

DOI:
10.1016/j.jhazmat.2008.06.058

IDS Number:
407MY

========================================================================

*Record 2 of 3.
*View Full Record: http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000263371000066
*Order Full Text [ ]

Title:
Effect of Salt on the Dynamics of Aqueous Solution of Hydrophobic Solutes: A Molecular Dynamics Simulation Study

Authors:
Choudhury, N

Author Full Names:
Choudhury, Niharendu

Source:
JOURNAL OF CHEMICAL AND ENGINEERING DATA 54 (2): 542-547 FEB 2009

Language:
English

Document Type:
Article

KeyWords Plus:
FREE-ENERGY; ELECTROLYTE SOLUTIONS; COMPUTER-SIMULATION; HEAT-CAPACITY; TEMPERATURE-DEPENDENCE; PRESSURE-DEPENDENCE; LENGTH SCALES; MEAN FORCE; WATER; ENTROPY

Abstract:
The effect of salt concentration on the dynamics of the aqueous solution of small hydrophobic solutes is presented. We have performed molecular dynamics simulation in an isothermal-isobaric ensemble of methane in water without and with sodium chloride of different concentrations at standard temperature and pressure. Mean square displacements of methane, water, and ions have been calculated from the analysis of simulation trajectories, and diffusion constants have been obtained from slope of the respective mean square displacement (MSD) plot. Translational mobilities of these molecules are shown to decrease with the increase of salt concentration. Whether any correlation exists between the translational dynamics and the structure of constituent particles in the solution has been investigated. Analysis of the methane-methane radial distribution function reveals that the decreasing mobility of methane molecules is a consequence of the increasing hydrophobic interaction between !
methane molecules as the concentration of the salt increases. For ions also, the same correlation is observed, whereas in the case of water decreasing mobility is not directly related with its structure.

Reprint Address:
Choudhury, N, Bhabha Atom Res Ctr, Chem Grp, Theoret Chem Sect, Bombay 400085, Maharashtra, India.

Research Institution addresses:
Bhabha Atom Res Ctr, Chem Grp, Theoret Chem Sect, Bombay 400085, Maharashtra, India

E-mail Address:
nihcho@barc.gov.in

Cited References:
ALLEN MP, 1987, COMPUTER SIMULATION.
ASHBAUGH HS, 2006, REV MOD PHYS, V78, P159, DOI 10.1103/RevModPhys.78.159.
BALL P, 2003, NATURE, V423, P25, DOI 10.1038/423025a.
BALL P, 2008, CHEM REV, V108, P78.
BENNAIM B, 1980, HYDROPHOBIC INTERACT.
BERENDSEN HJC, 1987, J PHYS CHEM-US, V91, P6269.
BIZZARRI AR, 2000, PHYS REV E B, V62, P3991.
CACACE MG, 1997, Q REV BIOPHYS, V30, P241.
CHANDLER D, 2005, NATURE, V437, P640, DOI 10.1038/nature04162.
CHOUDHURY N, 2005, J AM CHEM SOC, V127, P3556, DOI 10.1021/ja0441817.
CHOUDHURY N, 2007, J AM CHEM SOC, V129, P4847, DOI 10.1021/ja069242a.
CHOUDHURY N, 2007, J PHYS CHEM B, V111, P10474, DOI 10.1021/jp073571n.
CHOUDHURY N, 2007, J PHYS CHEM C, V111, P2565, DOI 10.1021/jp066883j.
CHOUDHURY N, 2008, J PHYS CHEM B, V112, P6296, DOI 10.1021/jp801852v.
COLLINS KD, 1985, Q REV BIOPHYS, V18, P323.
DOCHERTY H, 2006, J CHEM PHYS, V125, UNSP 074510.
DOCHERTY H, 2007, J PHYS CHEM B, V111, P8993, DOI 10.1021/jp0678249.
FUJITA T, 2007, CHEM PHYS LETT, V434, P42, DOI 10.1016/j.cplett.2006.11.112.
GHOSH T, 2001, J AM CHEM SOC, V123, P10997.
GHOSH T, 2002, J CHEM PHYS, V116, P2480.
GHOSH T, 2003, J PHYS CHEM B, V107, P612, DOI 10.1021/jp0220175.
GHOSH T, 2005, J PHYS CHEM B, V109, P642, DOI 10.1021/jp0475638.
GUILLOT B, 1993, J CHEM PHYS, V99, P8075.
HOFMEISTER F, 1888, ARCH EXP PATHOL PH, V25, P1.
HUMMER G, 1996, P NATL ACAD SCI USA, V93, P8951.
HUMMER G, 1998, J PHYS CHEM B, V102, P10469.
HUMMER G, 1998, P NATL ACAD SCI USA, V95, P1552.
HUMMER G, 2001, NATURE, V414, P188.
JONES S, 1996, P NATL ACAD SCI USA, V93, P13.
JONSSON M, 2006, J PHYS CHEM B, V110, P8782, DOI 10.1021/jp0604241.
KAUZMANN W, 1959, ADV PROTEIN CHEM, V14, P1.
KIM JS, 2008, J PHYS CHEM B, V112, P1729, DOI 10.1021/jp076710+.
LUM K, 1999, J PHYS CHEM B, V103, P4570.
LYUBARTSEV AP, 1998, J CHEM PHYS, V108, P227.
MANCERA RL, 1998, CHEM PHYS LETT, V296, P459.
MOGHADDAM MS, 2005, J AM CHEM SOC, V127, P303, DOI 10.1021/ja040165y.
PANGALI C, 1979, J CHEM PHYS, V71, P2975.
PERKYNS J, 1996, J PHYS CHEM-US, V100, P1323.
PRATT LR, 1977, J CHEM PHYS, V67, P3683.
PRATT LR, 2002, CHEM REV, V102, P2671, DOI 10.1021/cr000692+.
RASCHKE TM, 2001, P NATL ACAD SCI USA, V98, P5965.
RICK SW, 1997, J PHYS CHEM B, V101, P10488.
RICK SW, 2000, J PHYS CHEM B, V104, P6884.
ROCCHI C, 1998, PHYS REV E B, V57, P3315.
SHIMIZU S, 2001, J AM CHEM SOC, V123, P2083.
SLOAN ED, 2003, NATURE, V426, P353, DOI 10.1038/nature02135.
SMITH DE, 1992, J AM CHEM SOC, V114, P5875.
SMITH DE, 1993, J CHEM PHYS, V98, P6445.
SOUTHALL NT, 2002, BIOPHYS CHEM, V101, P295.
SOUTHALL NT, 2002, J PHYS CHEM B, V106, P521, DOI 10.1021/jp015514e.
TANFORD C, 1973, HYDROPHOBIC EFFECT F.
THOMAS AS, 2008, J AM CHEM SOC, V129, P14887.
TIMASHEFF SN, 1998, ADV PROTEIN CHEM, V51, P355.
VANDERWAALS JH, 1959, ADV CHEM PHYS, V2, P1.
VONHIPPEL PH, 1969, STRUCTURE STABILITY, V2, P323.
ZANGI R, 2006, J PHYS CHEM B, V110, P22736, DOI 10.1021/jp064475+.
ZHANG J, 2006, MOL SIMULAT, V32, P1279, DOI 10.1080/0892702061039598.

Cited Reference Count:
57

Times Cited:
0

Publisher:
AMER CHEMICAL SOC; 1155 16TH ST, NW, WASHINGTON, DC 20036 USA

Subject Category:
Chemistry, Multidisciplinary; Engineering, Chemical

ISSN:
0021-9568

DOI:
10.1021/je8004886

IDS Number:
407NG

========================================================================

*Record 3 of 3.
*View Full Record: http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000263529300011
*Order Full Text [ ]

Title:
Molecular Dynamics Simulation of Fullerene C-60 in Ethanol Solution

Authors:
Cao, Z; Peng, YX; Li, S; Liu, L; Yan, TY

Author Full Names:
Cao, Zhen; Peng, Yuxing; Li, Shu; Liu, Lei; Yan, Tianying

Source:
JOURNAL OF PHYSICAL CHEMISTRY C 113 (8): 3096-3104 FEB 26 2009

Language:
English

Document Type:
Article

KeyWords Plus:
HYDROGEN-BOND KINETICS; CARBON NANOTUBES; HYDROPHOBIC SOLUTES; LIQUID ETHANOL; SOLVATION SHELLS; HYDRATION SHELLS; AQUEOUS-SOLUTION; WATER-STRUCTURE; FORCE-FIELD; CLUSTERS

Abstract:
An ethanol solution containing one or two fullerene C-60 molecules was studied via molecular dynamics simulation. We found that the ethanol molecules form several solvation shells around the central fullerene molecule. Radial distribution functions (RDFs) and hydrogen-bond analyses were employed to detect the structure of the ethanol molecules in the solvation shells. The ethanol molecules in the first solvation shell tend to have their nonpolar alkyl groups exposed to the C-60 surface while the polar hydroxyl groups point outward to maintain a hydrogen-bond network with a clathrate-like structure. Such orientation of the ethanol molecules in the first solvation shell modulates the orientation of the ethanol molecules in the second solvation shell to have the hydroxyl groups pointing inward. The potential of mean force (PMF) between two C-60 molecules in ethanol solution showed that C-60 molecules tend to aggregate in the ethanol solution. There is no ethanol molecule in the!
intersolute area if the distance between the centers of mass of two C-60 molecules is shorter than 10.2 angstrom. The ethanol molecules near the intersolute area tend to have their methyl groups penetrating into the intersolute region if the distance between two C-60 molecules is short, although the hydroxyl,groups have smaller volume. We analyzed the dynamic properties of the ethanol molecules in different solvation shells and found that the relaxation is much slower than that of water solution of C-60 molecules. In addition, the relaxation of the first solvation shell is slower than that in other solvation shells. The lifetime of the hydrogen-bond in the first solvation shell is also longer than that in other solvation shells while the reorientation of the hydrogen-bonded ethanol pair contributes little to break the hydrogen-bonds.

Reprint Address:
Yan, TY, Nankai Univ, Inst Comp Sci, Tianjin 300071, Peoples R China.

Research Institution addresses:
[Yan, Tianying] Nankai Univ, Inst Comp Sci, Tianjin 300071, Peoples R China; [Cao, Zhen; Peng, Yuxing; Li, Shu; Liu, Lei] Nankai Univ, Inst New Energy Mat Chem, Dept Chem Mat, Tianjin 300071, Peoples R China

E-mail Address:
tyan@nankai.edu.cn

Cited References:
ALARGOVA RG, 2001, J AM CHEM SOC, P123.
ANDRIEVSKY GV, 2002, CHEM PHYS LETT, V364, P8.
BERENDSEN HJC, 1984, J CHEM PHYS, V81, P3684.
BOND AM, 2001, J PHYS CHEM B, V105, P1687.
BRANT J, 2005, ENVIRON SCI TECHNOL, V39, P6343, DOI 10.1021/es050090d.
CHANDLER D, 2005, NATURE, V437, P640, DOI 10.1038/nature04162.
CHANDLER D, 2007, NATURE, V445, P831, DOI 10.1038/445831a.
CHEN J, 2001, J PHYS CHEM B, V105, P2525.
CHOUDHURY N, 2005, J AM CHEM SOC, V127, P3556, DOI 10.1021/ja0441817.
CHOUDHURY N, 2005, J PHYS CHEM B, V109, P6422, DOI 10.1021/jp045439i.
CHOUDHURY N, 2006, J CHEM PHYS, V125, ARTN 034502.
CHOUDHURY N, 2006, J PHYS CHEM B, V110, P8459, DOI 10.1021/jp056909r.
CHOUDHURY N, 2007, J AM CHEM SOC, V129, P4847, DOI 10.1021/ja069242a.
CHOUDHURY N, 2007, J PHYS CHEM B, V111, P10474, DOI 10.1021/jp073571n.
CHOUDHURY N, 2007, J PHYS CHEM C, V111, P2565, DOI 10.1021/jp066883j.
CORNELL WD, 1995, J AM CHEM SOC, V117, P5179.
DARDEN T, 1993, J CHEM PHYS, V98, P10089.
DEGUCHI S, 2001, LANGMUIR, V17, P6013.
DEGUCHI S, 2006, ADV MATER, V18, P729, DOI 10.1002/adma.200502487.
FRIEDMAN SH, 1993, J AM CHEM SOC, V115, P6506.
HERNANDEZROJAS J, 2006, J PHYS CHEM B, V110, P13357, DOI 10.1021/jp0572582.
HEYMANN D, 1996, CARBON, V34, P627.
HOTTA T, 2005, J PHYS CHEM B, V109, P18600, DOI 10.1021/jp0526039.
HOWARD CA, 2007, J PHYS CHEM C, V111, P5640, DOI 10.1021/jp066743+.
HUANG DM, 2001, J PHYS CHEM B, V105, P6704.
HUMMER G, 2001, NATURE, V414, P188.
INNOCENZI P, 2001, CHEM MATER, V13, P3126.
JEDLOVSZKY P, 1998, J CHEM PHYS, V108, P8528.
JORGENSEN WL, 1981, J AM CHEM SOC, V103, P345.
JORGENSEN WL, 1996, J AM CHEM SOC, V118, P11225.
KHABASHESKU VN, 2002, ACCOUNTS CHEM RES, V35, P1087, DOI 10.1021/ar020146y.
KIM H, 2008, J CHEM THEORY COMPUT, V4, P335, DOI 10.1021/ct700211y.
KOLESNIKOV AI, 2004, PHYS REV LETT, V93, ARTN 035503.
KOSZTOLANYI T, 2003, J CHEM PHYS, V118, P4546, DOI 10.1063/1.1543143.
KROPMAN MF, 2001, SCIENCE, V291, P2118.
LI LW, 2005, J CHEM PHYS, V123, ARTN 204504.
LI LW, 2005, PHYS REV E 1, V71, ARTN 011502.
LI LW, 2006, J PHYS CHEM B, V110, P10509, DOI 10.1021/jp060718m.
LI Z, 2006, J CHEM PHYS, V125, P10452.
LINDAHL E, 2001, J MOL MODEL, V7, P306.
LOPARO JJ, 2004, PHYS REV B, V70, ARTN 180201.
LUDWIG R, 2005, ANGEW CHEM INT EDIT, V44, P811, DOI 10.1002/anie.200460899.
LUM K, 1999, J PHYS CHEM B, V103, P4570.
LUZAR A, 1996, NATURE, V379, P55.
LUZAR A, 1996, PHYS REV LETT, V76, P928.
MAIBAUM L, 2004, J PHYS CHEM B, V108, P6778, DOI 10.1021/jp037487t.
MALASPINA T, 2007, J PHYS CHEM B, V111, P11935, DOI 10.1021/jp0746244.
MINAKATA S, 2008, J AM CHEM SOC, V130, P1536, DOI 10.1021/ja077114w.
NAKAMURA E, 2003, ACCOUNTS CHEM RES, V36, P807, DOI 10.1012/ar030027y.
NEL A, 2006, SCIENCE, V311, P622, DOI 10.1126/science.1114397.
NOON WH, 2002, P NATL ACAD SCI U S2, V99, P6466, DOI 10.1073/pnas.022532599.
PADRO JA, 1997, J MOL STRUCT, V416, P243.
PRATT LR, 2002, CHEM REV, V102, P2671, DOI 10.1021/cr000692+.
RASCHKE TM, 2005, P NATL ACAD SCI USA, V102, P6777, DOI 10.1073/pnas.0500225102.
RYCKAERT JP, 1977, J COMPUT PHYS, V23, P327.
SAIZ L, 1997, J PHYS CHEM B, V101, P78.
SAIZ L, 1999, MOL PHYS, V97, P897.
SATHISH M, 2007, J AM CHEM SOC, V129, P13816, DOI 10.1021/ja076251q.
SHIM Y, 2008, J PHYS CHEM B, V112, P11028, DOI 10.1021/jp802595r.
STILLINGER FH, 1973, J SOLUTION CHEM, V2, P141.
SUN YP, 2002, ACCOUNTS CHEM RES, V35, P1096, DOI 10.1021/er010160v.
TANFORD C, 1978, SCIENCE, V200, P1012.
TOKUYAMA H, 1993, J AM CHEM SOC, V115, P7918.
VOITYUK AA, 2008, J PHYS CHEM C, V112, P1672, DOI 10.1021/jp075209e.
WEISS DR, 2008, J PHYS CHEM B, V112, P2981, DOI 10.1021/jp076416h.
XU HF, 2001, J PHYS CHEM B, V105, P11929.
XU HF, 2002, J PHYS CHEM B, V106, P2054.
ZHANG CJ, 2005, FLUID PHASE EQUILIBR, V231, P1, DOI 10.1016/j.fluid.2005.03.018.
ZHENG M, 2003, NAT MATER, V2, P338, DOI 10.1038/nmat877.
ZICHI DA, 1986, J CHEM PHYS, V84, P2814.

Cited Reference Count:
70

Times Cited:
0

Publisher:
AMER CHEMICAL SOC; 1155 16TH ST, NW, WASHINGTON, DC 20036 USA

Subject Category:
Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary

ISSN:
1932-7447

DOI:
10.1021/jp805894g

IDS Number:
409TS

========================================================================
*Order Full Text*
All Customers
--------------
Please contact your library administrator, or person(s) responsible for
document delivery, to find out more about your organization's policy for
obtaining the full text of the above articles. If your organization does
not have a current document delivery provider, your administrator can
contact ISI Document Solution at service@isidoc.com, or call 800-603-4367
or 734-459-8565.

IDS Customers
--------------
IDS customers can purchase the full text of an article (having page number,
volume, and issue information) by returning this ENTIRE message as a Reply
to Sender or Forward to orders@isidoc.com. Mark your choices with an X in
the "Order Full Text: []" brackets for each item. For example, [X].

Please enter your account number here:

========================================================================
*Help Desk Contact Information*
If you have any questions, please visit the Thomson Scientific Technical Support Contact Information Web page:
http://www.thomsonscientific.com/support/techsupport
========================================================================

No comments: