Friday, March 27, 2009

ISI Web of Knowledge Alert - Hummer, G

ISI Web of Knowledge Citation Alert

Cited Article: Hummer, G. Water conduction through the hydrophobic channel of a carbon nanotube
Alert Expires: 22 OCT 2009
Number of Citing Articles: 7 new records this week (7 in this e-mail)
Organization ID: 3b97d1bbc1878baed0ab183d8b03130b
========================================================================
Note: Instructions on how to purchase the full text of an article and Help Desk Contact information are at the end of the e-mail.
========================================================================

*Record 1 of 7.
*View Full Record: http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000264142100013
*Order Full Text [ ]

Title:
Pressurized Liquid in Nanopores: A Modified Laplace-Young Equation

Authors:
Qiao, Y; Liu, L; Chen, X

Author Full Names:
Qiao, Yu; Liu, Ling; Chen, Xi

Source:
NANO LETTERS 9 (3): 984-988 MAR 2009

Language:
English

Document Type:
Article

KeyWords Plus:
CARBON NANOTUBES; WATER; TRANSPORT; INFILTRATION; BEHAVIORS; FIELD; FLOW

Abstract:
In the current study, we analyze the motion of pressurized water molecules in nanopores of a well-crystallized, hydrophobic zeolite using both experiment and molecular dynamics simulation. It is discovered that, contradictory to the prediction of the classic Laplace-Young equation, the required infiltration pressure is highly dependent on the infiltration volume. A modified Laplace-Young equation is developed to take into consideration the effective solid-liquid interfacial tension, the thermal energy exchange, as well as the variation in configuration of confined liquid molecules. The last two factors are significant only when the nanopore diameter is comparable with the liquid molecule size. It is also remarkable that the infiltrated liquid molecules, when confined in the nanoenvironment, could transform from a single-chain conformation to a double-helical structure as the pressure increases, accompanied by an abrupt system free energy change that leads to different pressu!
re-induced transport behaviors.

Reprint Address:
Chen, X, Columbia Univ, Dept Civil Engn & Engn Mech, New York, NY 10027 USA.

Research Institution addresses:
[Liu, Ling; Chen, Xi] Columbia Univ, Dept Civil Engn & Engn Mech, New York, NY 10027 USA; [Qiao, Yu] Univ Calif San Diego, Dept Struct Engn, La Jolla, CA 92093 USA

E-mail Address:
xichen@civil.columbia.edu

Cited References:
BORMAN VD, 2000, J EXP THEOR PHYS+, V91, P170.
BOUGEARD D, 2007, PHYS CHEM CHEM PHYS, V9, P226, DOI 10.1039/b614463m.
CAO GX, 2008, MOL SIMULAT, V34, P1267, DOI 10.1080/08927020802175225.
CAO GX, 2008, PHIL MAG LETT, V88, P371, DOI 10.1080/09500830802050415.
CHEN X, 2006, APPL PHYS LETT, V89, ARTN 241918.
CHEN X, 2008, NANO LETT, V8, P2988, DOI 10.1021/nl802046b.
DEAMER DW, 2000, TRENDS BIOTECHNOL, V18, P147.
EIJKEL JCT, 2005, LAB CHIP, V5, P1202, DOI 10.1039/b509819j.
EROSHENKO V, 2001, J AM CHEM SOC, V123, P8129.
GENNES PGD, 2004, CAPILLARITY WETTING.
HAN AJ, 2006, J AM CHEM SOC, V128, P10348, DOI 10.1021/ja062037a.
HOLT JK, 2006, SCIENCE, V312, P1034, DOI 10.1126/science.1126298.
HONG MH, 2000, APPL PHYS LETT, V77, P2604.
HU GQ, 2007, CHEM ENG SCI, V62, P3443, DOI 10.1016/j.ces.2006.11.058.
HUANG BD, 2005, J CHEM PHYS, V122, ARTN 084708.
HUMMER G, 2001, NATURE, V414, P188.
IBACH H, 2006, PHYS SURFACES INTERF.
JANSEN JC, 1994, ADV ZEOLITE SCI APPL.
KOLESNIKOV AI, 2004, PHYS REV LETT, V93, ARTN 035503.
KONG X, 2006, J APPL PHYS, V100, UNSP 014308.
LEARY SP, 2006, NEUROSURGERY, V58, P805, DOI 10.1227/01.NEU.0000216793.45952.ED.
LIU L, 2008, APPL PHYS LETT, V92, ARTN 101927.
MAJUMDER M, 2005, NATURE, V438, P44, DOI 10.1038/43844a.
MANN DJ, 2003, PHYS REV LETT, V90, ARTN 195503.
MOTT RL, 2005, APPL FLUID MECH.
QIAO Y, 2007, J AM CHEM SOC, V129, P2355, DOI 10.1021/ja067185f.
SHOLL DS, 2006, SCIENCE, V312, P1003, DOI 10.1126/science.1127261.
STEIN D, 2006, P NATL ACAD SCI USA, V103, P15853, DOI 10.1073/pnas.0605900103.
STRIOLO A, 2006, NANO LETT, V6, P633, DOI 10.1021/nl052254u.
SUN H, 1998, COMPUT THEOR POLYM 2, V8, P229.
SUPPLE S, 2003, PHYS REV LETT, V90, ARTN 214501.
VANKONINGSVELD H, 2007, COMPENDIUM ZEOITE FR.
WHITBY M, 2007, NAT NANOTECHNOL, V2, P87, DOI 10.1038/nnano.2006.175.
WHITE CLIM, 2004, ANGEW CHEM INT EDIT, V43, P469, DOI 10.1002/anie.200352364.

Cited Reference Count:
34

Times Cited:
0

Publisher:
AMER CHEMICAL SOC; 1155 16TH ST, NW, WASHINGTON, DC 20036 USA

Subject Category:
Chemistry, Multidisciplinary; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary

ISSN:
1530-6984

DOI:
10.1021/nl8030136

IDS Number:
418IO

========================================================================

*Record 2 of 7.
*View Full Record: http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000264142100014
*Order Full Text [ ]

Title:
Anomalous Hydration Shell Order of Na+ and K+ inside Carbon Nanotubes

Authors:
Shao, Q; Zhou, J; Lu, LH; Lu, XH; Zhu, YD; Jiang, SY

Author Full Names:
Shao, Qing; Zhou, Jian; Lu, Linghong; Lu, Xiaohua; Zhu, Yudan; Jiang, Shaoyi

Source:
NANO LETTERS 9 (3): 989-994 MAR 2009

Language:
English

Document Type:
Article

KeyWords Plus:
MOLECULAR-DYNAMICS SIMULATIONS; SELECTIVE ION CONDUCTION; POTASSIUM CHANNELS; MASS-TRANSPORT; GAS-TRANSPORT; ATOMIC BASIS; WATER; MEMBRANES; TEMPERATURE; NANOPORES

Abstract:
We performed molecular dynamics simulations of the hydration of Na+ and K+ in infinitely long single-walled armchair carbon nanotubes (CNTs) at 298 K. Simulation results Indicate that the preferential orientation of water molecules in coordination shells of these two cations presents an anomalous change In the CNTs and causes a diameter-dependent variation for the interaction energy between the cation and water molecules In Its coordination shell. In the five CNTs of this work, it is energetically favorable for confining a hydrated K+ inside the two narrow CNTs with diameters of 0.60 and 0.73 nm, whereas the situation is reverse inside the wide CNTs with diameters of 0.87, 1.0, and 1.28 nm. This finding is Important for CNT applications in ionic systems that control the selectivity and the Ionic flow.

Reprint Address:
Lu, XH, Nanjing Univ Technol, State Key Lab Mat Oriented Chem Engn, Nanjing 210009, Peoples R China.

Research Institution addresses:
[Shao, Qing; Lu, Linghong; Lu, Xiaohua; Zhu, Yudan] Nanjing Univ Technol, State Key Lab Mat Oriented Chem Engn, Nanjing 210009, Peoples R China; [Zhou, Jian] S China Univ Technol, Sch Chem & Chem Engn, Ghangzhou 510640, Peoples R China; [Jiang, Shaoyi] Univ Washington, Dept Chem Engn, Seattle, WA 98195 USA

E-mail Address:
xhlu@njut.edu.cn

Cited References:
AQVIST J, 1990, J PHYS CHEM-US, V94, P8021.
ASTHAGIRI D, 2002, BIOPHYS J, V82, P1176.
BECKSTEIN O, 2004, J AM CHEM SOC, V126, P14694, DOI 10.1021/ja045271e.
BERENDSEN HJC, 1984, J CHEM PHYS, V81, P3684.
CAPENER CE, 2002, J PHYS CHEM B, V106, P4543.
CARILLOTRIPP M, 2004, PHYS REV LETT, V93, UNSP 168104.
CHAN KY, 2004, MOL SIMULAT, V30, P81, DOI 10.1080/0892702031000152235.
CORRY C, 2008, J PHYS CHEM B, V112, P1427.
FORNASIERO F, 2008, P NATL ACAD SCI USA, V105, P17250, DOI 10.1073/pnas.0710437105.
GORDILLO MC, 2000, CHEM PHYS LETT, V329, P341.
HILLE B, 2001, ION CHANNELS EXCITAB, P814.
HOLT JK, 2004, NANO LETT, V4, P2245, DOI 10.1021/nl048876h.
HOLT JK, 2006, SCIENCE, V312, P1034, DOI 10.1126/science.1126298.
HUMMER G, 2001, NATURE, V414, P188.
JIANG YX, 2002, NATURE, V417, P523.
JOSEPH S, 2008, NANO LETT, V8, P452, DOI 10.1021/nl072385q.
KIM S, 2007, NANO LETT, V7, P2806, DOI 10.1021/nl071414u.
LAKATOS G, 2007, J CHEM PHYS, V126, UNSP 024703(1-15).
LENG YS, 2006, J CHEM PHYS, V125, UNSP 104701(1-9).
LI JY, 2007, P NATL ACAD SCI USA, V104, P3687, DOI 10.1073/pnas.0604541104.
LINDAHL E, 2001, J MOL MODEL, V7, P306.
LIU HM, 2006, J CHEM PHYS, V125, UNSP 084713(1-14).
LONGHURST MJ, 2007, NANO LETT, V7, P3324, DOI 10.1021/nl071537e.
LYNDENBELL RM, 1996, J CHEM PHYS, V105, P9266.
MACKINNON R, 2004, ANGEW CHEM INT EDIT, V43, P4265, DOI 10.1002/anie.200400662.
MACKINNON R, 2004, BIOSCIENCE REP, V24, P75.
MALANI A, 2006, CHEM PHYS LETT, V431, P88, DOI 10.1016/j.cplett.2006.09.071.
NEWSOME DA, 2006, NANO LETT, V6, P2150, DOI 10.1021/nl061181r.
NOY A, 2007, NANO TODAY, V2, P22.
PETER C, 2005, BIOPHYS J, V89, P2222, DOI 10.1529/biophysj.105.065946.
RASAIAH JC, 2000, J AM CHEM SOC, V122, P11182.
SHANNON MA, 2008, NATURE, V452, P301, DOI 10.1038/nature06599.
SHAO Q, 2008, PHYS CHEM CHEM PHYS, V10, P1896, DOI 10.1039/b719033f.
SHOLL DS, 2006, SCIENCE, V312, P1003, DOI 10.1126/science.1127261.
TANG YW, 2004, J PHYS CHEM B, V108, P18204, DOI 10.1021/jp0465985.
TOM D, 1993, J CHEM PHYS, V98, P10089.
VARMA S, 2007, BIOPHYS J, V93, P1093, DOI 10.1529/biophysj.107.107482.
WANG C, 2004, NANO LETT, V4, P345, DOI 10.1021/nl034952p.
WANG J, 2004, PHYS CHEM CHEM PHYS, V6, P829, DOI 10.1039/b313307a.
WANG ZK, 2007, NANO LETT, V7, P697, DOI 10.1021/nl062853g.
ZHOU J, 2002, J FLUID PHASE EQUILI, V197, P257.

Cited Reference Count:
41

Times Cited:
0

Publisher:
AMER CHEMICAL SOC; 1155 16TH ST, NW, WASHINGTON, DC 20036 USA

Subject Category:
Chemistry, Multidisciplinary; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary

ISSN:
1530-6984

DOI:
10.1021/nl803044k

IDS Number:
418IO

========================================================================

*Record 3 of 7.
*View Full Record: http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000264111200033
*Order Full Text [ ]

Title:
Effect of Cross-Linking on the Diffusion of Water, Ions, and Small Molecules in Hydrogels

Authors:
Wu, YB; Joseph, S; Aluru, NR

Author Full Names:
Wu, Yanbin; Joseph, Sony; Aluru, N. R.

Source:
JOURNAL OF PHYSICAL CHEMISTRY B 113 (11): 3512-3520 MAR 19 2009

Language:
English

Document Type:
Article

KeyWords Plus:
FLUORESCENCE CORRELATION SPECTROSCOPY; POLY(ETHYLENE GLYCOL) HYDROGELS; SMALL-ANGLE SCATTERING; AQUEOUS-SOLUTION; DYNAMICS SIMULATIONS; SOLUTE DIFFUSION; POLYMER-SOLUTIONS; FORCE-FIELD; STRUCTURAL-PROPERTIES; DIACRYLATE HYDROGELS

Abstract:
The present study reports on molecular dynamics investigations of chemically cross-linked poly(ethylene glycol) hydrogels with the aim of exploring the diffusion properties of water, ions, and rhodamine within the polymer at the molecular level. The water structure and diffusion properties were studied at various cross-linking densities with molecular weights of the chains ranging from 572 to 3400. As the cross-linking density is increased, the water diffusion decreases and the slowdown in diffusion is more severe at the polymer-water interface. The water diffusion at various cross-linking, densities is correlated with the water hydrogen bonding dynamics. The diffusion of ions and rhodamine also decreased as the cross-linking density is increased. The variation of diffusion coefficient with cross-linking density is related to the variation of water content at different cross-linking densities. Comparison of simulation results and obstruction scaling theory for hydrogels show!
ed similar trends.

Reprint Address:
Aluru, NR, Univ Illinois, Beckman Inst Adv Sci & Technol, Dept Mech Sci & Engn, Urbana, IL 61801 USA.

Research Institution addresses:
[Wu, Yanbin; Joseph, Sony; Aluru, N. R.] Univ Illinois, Beckman Inst Adv Sci & Technol, Dept Mech Sci & Engn, Urbana, IL 61801 USA

E-mail Address:
aluru@illinois.edu

Cited References:
AMSDEN B, 1998, MACROMOLECULES, V31, P8382.
AMSDEN B, 1999, MACROMOLECULES, V32, P874.
AMSDEN B, 2002, POLYMER, V43, P1623.
ANDERSSON M, 1997, INT J PHARM, V157, P199.
ANDREATTA D, 2005, J AM CHEM SOC, V127, P7270, DOI 10.1021/ja044177v.
BAGCHI B, 2005, CHEM REV, V105, P3197, DOI 10.1021/cr020661+.
BEDROV D, 1998, J PHYS CHEM B, V102, P5683.
BEDROV D, 1999, J PHYS CHEM B, V103, P3791.
BERENDSEN HJC, 1987, J PHYS CHEM-US, V91, P6269.
BHATTACHARYYA K, 2000, J PHYS CHEM A, V104, P10603.
BIZZARRI AR, 2002, J PHYS CHEM B, V106, P6617.
BORODIN O, 2001, MACROMOLECULES, V34, P5687.
BYRNE ME, 2002, ADV DRUG DELIVER REV, V54, P149.
CHIESSI E, 2007, J PHYS CHEM B, V111, P2820, DOI 10.1021/jp0671143.
CHUICHAY P, 2006, J MOL MODEL, V12, P885, DOI 10.1007/s00894-005-0053-3.
CICU P, 2000, J CHEM PHYS, V112, P8267.
CRUISE GM, 1998, BIOMATERIALS, V19, P1287.
CUKIER RI, 1984, MACROMOLECULES, V17, P252.
CULBERTSON MJ, 2007, ANAL CHEM, V79, P4031, DOI 10.1021/ac062013m.
DATTA A, 2007, THESIS LOUISANA STAT.
DESCHENES LA, 2002, J CHEM PHYS, V116, P5850.
FENIMORE PW, 2004, P NATL ACAD SCI USA, V101, P14408, DOI 10.1073/pnas.0405573101.
FLYNN GL, 1974, J PHARM SCI, V63, P479.
FUJIYOSHI Y, 2002, CURR OPIN STRUC BIOL, V12, P509.
GABEL F, 2002, Q REV BIOPHYS, V35, P327, DOI 10.1017/S0033583502003840.
GAGNON MP, 2004, BIOPHYS J 1, V86, P125.
GALLO P, 2000, J CHEM PHYS, V113, P11324.
HANNOUN BJM, 1986, BIOTECHNOL BIOENG, V28, P829.
HANSSON T, 2002, CURR OPIN STRUC BIOL, V12, P190.
HOOVER WG, 1985, PHYS REV A, V319, P1695.
HUA L, 2006, J PHYS CHEM B, V110, P3704, DOI 10.1021/jp055399y.
HUMMER G, 2001, NATURE, V414, P188.
JANG SS, 2007, J PHYS CHEM B, V111, P1729, DOI 10.1021/jp0656330.
JOHANSSON L, 1991, MACROMOLECULES, V24, P6024.
JOHNSON EM, 1996, BIOPHYS J, V70, P1017.
JU H, 2007, B J MEMBR SCI, V307, P260.
KAROLIN J, 2002, MEAS SCI TECHNOL, V13, P21.
KOCH MHJ, 2003, Q REV BIOPHYS, V36, P147, DOI 10.1017/S0033583503003871.
KONESHAN S, 1998, J AM CHEM SOC, V120, P12041.
LANGER R, 2003, AICHE J, V49, P2990.
LEE KY, 2001, CHEM REV, V101, P1869.
LIN HQ, 2005, MACROMOLECULES, V38, P8381, DOI 10.1021/ma0510136.
LIN HQ, 2006, SCIENCE, V311, P639, DOI 10.1126/science.1118079.
LINDAHL E, 2001, J MOL MODEL, V7, P306.
LOBO VMM, 2001, J MOL LIQ, V94, P179.
LUSTIG SR, 1988, J APPL POLYM SCI, V36, P735.
LUZAR A, 1996, NATURE, V379, P55.
LUZAR A, 1996, PHYS REV LETT, V76, P928.
MACKERELL AD, 2000, BIOPOLYMERS, V56, P257.
MARUCCI M, 2007, J PHYS D APPL PHYS, V40, P2870, DOI 10.1088/0022-3727/40/9/031.
MASARO L, 1999, PROG POLYM SCI, V24, P731.
MASHL RJ, 2003, NANO LETT, V3, P589, DOI 10.1021/nl0340226.
MIJOVIC J, 2004, J PHYS CHEM B, V108, P2557, DOI 10.1021/jp036181j.
MILLS R, 1989, SELF DIFFUSION ELECT.
NETZ PA, 1998, J PHYS CHEM B, V102, P4875.
NIGHTINGALE ER, 1959, J PHYS CHEM-US, V63, P1381.
NILSSON L, 2005, P NATL ACAD SCI USA, V102, P13867, DOI 10.1073/pnas.0504181102.
NOSE S, 2002, MOL PHYS, V100, P191.
OGSTON AG, 1958, T FARADAY SOC, V54, P1754.
PADMAVATHI NC, 1996, MACROMOLECULES, V29, P1976.
PAL S, 2006, J PHYS CHEM B, V110, P26396, DOI 10.1021/jp065690t.
PAL SK, 2003, P NATL ACAD SCI USA, V100, P8113, DOI 10.1073/pnas.1433066100.
PARADOSSI G, 2003, J PHYS CHEM B, V107, P8363, DOI 10.1021/jp034542p.
PARRINELLO M, 1981, J APPL PHYS, V52, P7182.
PATRA M, 2004, J COMPUT CHEM, V25, P678, DOI 10.1002/jcc.10417.
PEPPAS NA, 1983, J MEMBRANE SCI, V15, P275.
PEPPAS NA, 2000, ANNU REV BIOMED ENG, V2, P9.
PHILLIPS RJ, 1989, AICHE J, V35, P1761.
RUSSELL RJ, 2001, POLYMER, V42, P4893.
SCHULTZ SG, 1961, J GEN PHYSIOL, V44, P1189.
SCHUSTER J, 2000, SINGLE MOL, V1, P299.
SMITH GD, 1993, J PHYS CHEM-US, V97, P12752.
SMITH GD, 2002, MACROMOLECULES, V35, P5712.
SONODA MT, 2007, J PHYS CHEM B, V111, P11948, DOI 10.1021/jp0749120.
STARR FW, 2000, PHYS REV E A, V62, P579.
STRINGER JL, 1996, J CONTROL RELEASE, V42, P195.
TAMAI Y, 1996, MACROMOLECULES, V29, P6750.
TAMAI Y, 1998, CHEM PHYS LETT, V285, P127.
TAMAI Y, 1998, FLUID PHASE EQUILIBR, V144, P441.
TAN GX, 2008, POLYM BULL, V61, P91, DOI 10.1007/s00289-008-0932-8.
TANAKA N, 1998, POLYMER, V39, P4703.
UNDERHILL GH, 2007, BIOMATERIALS, V28, P256, DOI 10.1016/j.biomaterials.2006.08.043.
VAIANA AC, 2003, J COMPUT CHEM, V24, P632, DOI 10.1002/jcc.10190.
VALENTE AJM, 2002, EUR POLYM J, V38, P13.
WATKINS AW, 2005, MACROMOLECULES, V38, P1326, DOI 10.1021/ma0475232.
WENG LH, 2002, MACROMOL RAPID COMM, V23, P968.
WIDENGREN J, 1995, J PHYS CHEM-US, V99, P13368.
WINTER R, 2002, BBA-PROTEIN STRUCT M, V1595, P160.
WON CY, 2007, J AM CHEM SOC, V129, P2748, DOI 10.1021/ja0687318.
YASUDA H, 1969, MAKROMOL CHEM, V126, P177.
YASUNAGA H, 1993, POLYM GELS NETW, V1, P83.
YASUNAGA H, 1997, ANN REP NMR SPECTR, V34, P40.
ZHENG J, 2004, LANGMUIR, V20, P8931, DOI 10.1021/la036345n.

Cited Reference Count:
93

Times Cited:
0

Publisher:
AMER CHEMICAL SOC; 1155 16TH ST, NW, WASHINGTON, DC 20036 USA

Subject Category:
Chemistry, Physical

ISSN:
1520-6106

DOI:
10.1021/jp808145x

IDS Number:
417XG

========================================================================

*Record 4 of 7.
*View Full Record: http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000263974800019
*Order Full Text [ ]

Title:
"Ersatz" and "Hybrid" NMR Spectral Estimates Using the Filter Diagonalization Method

Authors:
Ridge, CD; Shaka, AJ

Author Full Names:
Ridge, Clark D.; Shaka, A. J.

Source:
JOURNAL OF PHYSICAL CHEMISTRY A 113 (10): 2036-2052 MAR 12 2009

Language:
English

Document Type:
Article

KeyWords Plus:
HYDROGEN-BOND DYNAMICS; CARBON NANOTUBES; WATER PERMEATION; MOLECULAR-DYNAMICS; HYDROPHOBIC NANOPORES; REVERSE MICELLES; ELECTRIC-FIELD; LIQUID WATER; TRANSPORT; CHANNEL

Abstract:
The filter diagonalization method (FDM) is an efficient and elegant way to make a spectral estimate purely in terms of Lorentzian peaks. As NMR spectral peaks of liquids conform quite well to this model, the FDM spectral estimate can be accurate with far fewer time domain points than conventional discrete Fourier transform (DFT) processing. However, noise is not efficiently characterized by a finite number of Lorentzian peaks, or by any other analytical form, for that matter. As a result, noise can affect the FDM spectrum in different ways than it does the DFT spectrum, and the effect depends on the dimensionality of the spectrum. Regularization to suppress (or control) the influence of noise to give an "ersatz", or EFDM, spectrum is shown to sometimes miss weak features, prompting a more conservative implementation of filter diagonalization. The spectra obtained, called "hybrid" or HFDM spectra, are acquired by using regularized FDM to obtain an "infinite time" spectral est!
imate and then adding to it the difference between the DFT of the data and the finite time FDM estimate, over the same time interval. HFDM has a number of advantages compared to the EFDM spectra, where all features must be Lorentzian. They also show better resolution than DFT spectra. The HFDM spectrum is a reliable and robust way to try to extract more information from noisy, truncated data records and is less sensitive to the choice of regularization parameter. In multidimensional NMR of liquids, HFDM is a conservative way to handle the problems of noise, truncation, and spectral peaks that depart significantly from the model of a multidimensional Lorentzian peak.

Reprint Address:
Shaka, AJ, Univ Calif Irvine, Dept Chem, Irvine, CA 92617 USA.

Research Institution addresses:
[Ridge, Clark D.; Shaka, A. J.] Univ Calif Irvine, Dept Chem, Irvine, CA 92617 USA

E-mail Address:
ajshaka@uci.edu

Cited References:
ALLEN MP, 1987, COMPUTER SIMULATION.
ALLEN R, 2002, PHYS REV LETT, V89, ARTN 175502.
ALLEN R, 2003, J CHEM PHYS, V119, P3905, DOI 10.1063/1.1590956.
ALLEN R, 2003, J PHYS-CONDENS MAT, V15, S297.
BALL P, 1999, LIFES MATRIX BIOGRAP.
BECKSTEIN O, 2001, J PHYS CHEM B, V105, P12902, DOI 10.1021/jp012233y.
BECKSTEIN O, 2003, P NATL ACAD SCI USA, V100, P7063, DOI 10.1073/pnas.1136844100.
BECKSTEIN O, 2004, PHYS BIOL, V1, P42.
BEREZHKOVSKII A, 2002, PHYS REV LETT, V89, ARTN 064503.
BERRY RS, 2000, PHYS CHEM.
CHANDA J, 2006, J PHYS CHEM B, V110, P23443, DOI 10.1021/jp065203+.
CRINGUS D, 2007, J PHYS CHEM B, V111, P14193, DOI 10.1021/jp0723158.
DEGROOT BL, 2001, SCIENCE, V294, P2353.
DZUBIELLA J, 2004, J CHEM PHYS, V120, P5001, DOI 10.1063/1.1665656.
FEBLES M, 2006, J AM CHEM SOC, V128, P10008, ARTN JA063223J.
FRANKS F, 1981, WATER COMPREHENSIVE.
GARDILLO M, 2000, CHEM PHYS LETT, V329, P341.
GIOVAMBATTISTA N, 2007, J PHYS CHEM C, V111, P1323.
GOLDSMITH J, PHYS CHEM CHEM UNPUB.
HUANG BD, 2005, J CHEM PHYS, V122, ARTN 084708.
HUMMER G, 2001, NATURE, V414, P188.
HUMPHREY W, 1996, J MOL GRAPHICS, V14, P33.
JINESH KB, 2008, PHYS REV LETT, V101, ARTN 036101.
JOSEPH S, 2003, NANO LETT, V3, P1399, DOI 10.1021/nl0346326.
KALRA A, 2003, P NATL ACAD SCI USA, V100, P10175.
KOGA K, 2002, PHYSICA A, V314, P462.
KOLESNIKOV AI, 2004, PHYS REV LETT, V93, ARTN 035503.
KOROBOV MV, 2007, J PHYS CHEM C, V111, P7330, DOI 10.1021/jp0683420.
KUMAR R, 2007, J CHEM PHYS, V126, ARTN 204107.
LIU YC, 2004, LANGMUIR, V20, P6921, DOI 10.1021/la0363251.
LUZAR A, 1996, PHYS REV LETT, V76, P928.
LUZAR A, 2000, CHEM PHYS, V258, P267.
LYUBARTSEV AP, 1996, J PHYS CHEM-US, V100, P16410.
MALENKOV GG, 2006, J STRUCT CHEM, V47, S5.
MANIWA Y, 2005, CHEM PHYS LETT, V401, P534, DOI 10.1016/j.cplett.2004.11.112.
MASHL RJ, 2003, NANO LETT, V3, P589, DOI 10.1021/nl0340226.
MATSUMOTO M, 2007, J CHEM PHYS, V126, ARTN 054503.
MODIG K, 2003, PHYS REV LETT, V90, ARTN 075502.
NAGUIB N, 2004, NANO LETT, V4, P2237, DOI 10.1021/nl0484907.
NOON WH, 2002, CHEM PHYS LETT, V355, P445.
PHILLIPS JC, 2005, J COMPUT CHEM, V26, P1781.
PILETIC IR, 2006, J PHYS CHEM A, V110, P4985, DOI 10.1021/jp061065c.
QIAO R, 2005, COLLOID SURFACE A, V267, P103, DOI 10.1016/j.colsurfa.2005.06.067.
RAGHUNATHAN AV, 2006, PHYS REV LETT, V97, ARTN 024501.
STARR FW, 2000, PHYS REV E A, V62, P579.
SUN TL, 2005, ACCOUNTS CHEM RES, V38, P644, DOI 10.1021/ar040224c.
TAIT MJ, 1971, NATURE, V230, P91.
TAJKHORSHID E, 2002, SCIENCE, V296, P525.
TAN HS, 2005, PHYS REV LETT, V94, ARTN 057405.
VAITHEESWARAN S, 2004, J CHEM PHYS, V121, P7955, DOI 10.1063/1.1796271.
VAITHEESWARAN S, 2004, P NATL ACAD SCI USA, V101, P17002, DOI 10.1073/pnas.0407968101.
VANDERSPOEL D, 2006, J PHYS CHEM B, V110, P4393, DOI 10.1021/jp0572535.
VIDOSSICH P, 2004, PROTEINS, V55, P924.
WAGHE A, 2002, J CHEM PHYS, V117, P10789, DOI 10.1063/1.1519861.
WANG J, 2004, PHYS CHEM CHEM PHYS, V6, P829, DOI 10.1039/b313307a.
WERNET P, 2004, SCIENCE, V304, P995, DOI 10.1126/science.1096205.
WHITBY M, 2007, NAT NANOTECHNOL, V2, P87, DOI 10.1038/nnano.2006.175.
YANG L, 2007, J CHEM PHYS, V126, ARTN 084706.
ZHU FQ, 2003, BIOPHYS J, V85, P236.
ZHU FQ, 2004, BIOPHYS J 1, V86, P50.

Cited Reference Count:
60

Times Cited:
0

Publisher:
AMER CHEMICAL SOC; 1155 16TH ST, NW, WASHINGTON, DC 20036 USA

Subject Category:
Chemistry, Physical; Physics, Atomic, Molecular & Chemical

ISSN:
1089-5639

DOI:
10.1021/jp808666f

IDS Number:
415ZK

========================================================================

*Record 5 of 7.
*View Full Record: http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000263974800025
*Order Full Text [ ]

Title:
Water-Benzene Interactions: An Effective Fragment Potential and Correlated Quantum Chemistry Study

Authors:
Slipchenko, LV; Gordon, MS

Author Full Names:
Slipchenko, Lyudmila V.; Gordon, Mark S.

Source:
JOURNAL OF PHYSICAL CHEMISTRY A 113 (10): 2092-2102 MAR 12 2009

Language:
English

Document Type:
Article

KeyWords Plus:
MOLECULAR-ORBITAL METHODS; SELF-CONSISTENT-FIELD; DIP INFRARED-SPECTROSCOPY; BASIS-SET CONVERGENCE; GAUSSIAN-BASIS SETS; PI-PI-INTERACTIONS; AB-INITIO; WAVE-FUNCTIONS; COUPLED OSCILLATORS; INTERNAL-ROTATION

Abstract:
Structures and binding in small water-benzene complexes (1-8 water molecules and 1-2 benzene molecules) are studied using the general effective fragment potential (EFP) method. The lowest energy conformers of the clusters were found using a Monte Carlo technique. The binding energies in the smallest clusters (dimers, trimers, and tetramers) were also evaluated with second order perturbation theory (MP2) and coupled cluster theory (CCSD(T)). The EFP method accurately predicts structures and binding energies in the water-benzene complexes. Benzene is polarizable and consequently participates in hydrogen bond networking of water. Since the water-benzene interactions are only slightly weaker than water-water interactions, structures with different numbers of water-water, benzene-water, and benzene-benzene bonds often have very similar binding energies. This is a challenge for computational methods.

Reprint Address:
Gordon, MS, Iowa State Univ, Dept Chem, Ames, IA 50011 USA.

Research Institution addresses:
[Gordon, Mark S.] Iowa State Univ, Dept Chem, Ames, IA 50011 USA; Iowa State Univ, Ames Lab, Ames, IA 50011 USA

Cited References:
ADAMOVIC I, 2005, MOL PHYS, V103, P379, DOI 10.1080/00268970512331317246.
ADAMOVIC I, 2006, J PHYS CHEM A, V110, P10267, DOI 10.1021/jp060607n.
ALEXANDER DM, 1959, J PHYS CHEM-US, V63, P1021.
AMOS RD, 1985, J PHYS CHEM-US, V89, P2186.
ATWOOD JL, 1991, NATURE, V349, P683.
BARON M, 2006, J PHYS CHEM A, V110, P7122, DOI 10.1021/jp055908.
BOWMAN JM, 1978, J CHEM PHYS, V68, P608.
BYTAUTAS L, 2005, J CHEM PHYS, P122.
CHABAN GM, 1999, J CHEM PHYS, V111, P1823.
CHEN W, 1996, J CHEM PHYS, V105, P11081.
CHENG BM, 1995, CHEM PHYS LETT, V232, P364.
CLARK T, 1983, J COMPUT CHEM, V4, P294.
COHEN M, 1979, CHEM PHYS LETT, V60, P445.
COURTY A, 1998, J PHYS CHEM A, V102, P6590.
CURTISS LA, 1991, J CHEM PHYS, V94, P7221.
CURTISS LA, 1998, J CHEM PHYS, V109, P7764.
DAY PN, 2000, J CHEM PHYS, V112, P2063.
DUNNING TH, 1989, J CHEM PHYS, V90, P1007.
FELLER D, 1999, J PHYS CHEM A, V103, P7558.
FREDERICKS SY, 1997, THEOR CHEM ACC, V96, P51.
FRISCH MJ, 1984, J CHEM PHYS, V80, P3265.
GERBER RB, 1979, CHEM PHYS LETT, V68, P195.
GORDON MS, 2001, J PHYS CHEM A, V105, P293.
GORDON MS, 2005, THEORY APPL COMPUTAT, CH41.
GORDON MS, 2007, ANN REP COMPUT CHEM, V3, P177.
GOTCH AJ, 1992, J CHEM PHYS, V96, P3388.
GRUENLOH CJ, 1997, SCIENCE, V276, P1678.
GRUENLOH CJ, 1998, J CHEM PHYS, V109, P6601.
GUTOWSKY HS, 1993, J CHEM PHYS, V99, P4883.
HALKIER A, 1998, CHEM PHYS LETT, V286, P243.
HEHRE WJ, 1972, J CHEM PHYS, V56, P2257.
HILL AE, 1922, J AM CHEM SOC, V44, P1163.
HUMMER G, 2001, NATURE, V414, P188.
JEDLOVSZKY P, 2005, FARADAY DISCUSS, V129, P35, DOI 10.1039/b405509h.
JENSEN F, 2000, THEOR CHEM ACC, V104, P484.
JENSEN JH, 1996, MOL PHYS, V89, P1313.
KENDALL RA, 1992, J CHEM PHYS, V96, P6796.
KIM J, 1999, J CHEM PHYS, V110, P9128.
KRISHNAN R, 1980, J CHEM PHYS, V72, P650.
KUTZELNIGG W, 1992, J CHEM PHYS, V96, P4484.
KUTZELNIGG W, 1994, INT J QUANTUM CHEM, V51, P447.
LI H, 2006, J CHEM PHYS, P124.
MCKEE ML, 1981, J AM CHEM SOC, V103, P4673.
MEYER EA, 2003, ANGEW CHEM INT EDIT, V42, P1210.
MOLLER C, 1934, PHYS REV, V46, P618.
NJEGIC B, 2006, J CHEM PHYS, P125.
PEDULLA JM, 1998, CHEM PHYS LETT, V291, P78.
POLAK J, 1973, CAN J CHEM, V51, P4018.
POPLE JA, 1989, J CHEM PHYS, V90, P5622.
PRIBBLE RN, 1994, FARADAY DISCUSS, V97, P229.
PRIBBLE RN, 1994, SCIENCE, V265, P75.
PRIBBLE RN, 1995, J CHEM PHYS, V103, P531.
RAGHAVACHARI K, 1989, CHEM PHYS LETT, V157, P479.
SCHERAGA HA, 2007, ANNU REV PHYS CHEM, V58, P57, DOI 10.1146/annurev.physchem.58.032806.104614.
SCHMIDT MW, 1993, J COMPUT CHEM, V14, P1347.
SCHWENKE DW, 1985, J CHEM PHYS, V82, P2418.
SINNOKROT MO, 2002, J AM CHEM SOC, V124, P10887, DOI 10.1021/ja025896h.
SLIPCHENKO LV, UNPUB.
SLIPCHENKO LV, 2007, J COMPUT CHEM, V28, P276, DOI 10.1002/jcc.20520.
SMITH T, 2008, J PHYS CHEM IN PRESS.
STONE AJ, 1996, THEORY INTERMOLECULA.
SUZUKI S, 1992, SCIENCE, V257, P942.
TARAKESHWAR P, 1999, J CHEM PHYS, V111, P5838.
TAUER TP, 2005, J PHYS CHEM A, V109, P10475, DOI 10.1021/jp0553479.
TSUZUKI S, 2000, J AM CHEM SOC, V122, P11450.
WEBB SP, 1999, J PHYS CHEM A, V103, P1265.
XANTHEAS SS, 1994, J CHEM PHYS, V100, P7523.
YAGI K, 2004, J CHEM PHYS, V121, P1383, DOI 10.1063/1.1764501.

Cited Reference Count:
68

Times Cited:
0

Publisher:
AMER CHEMICAL SOC; 1155 16TH ST, NW, WASHINGTON, DC 20036 USA

Subject Category:
Chemistry, Physical; Physics, Atomic, Molecular & Chemical

ISSN:
1089-5639

DOI:
10.1021/jp808845b

IDS Number:
415ZK

========================================================================

*Record 6 of 7.
*View Full Record: http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000263974800026
*Order Full Text [ ]

Title:
Structure and Dynamics of Water Confined in Single-Wall Nanotubes

Authors:
Nanok, T; Artrith, N; Pantu, P; Bopp, PA; Limtrakul, J

Author Full Names:
Nanok, Tanin; Artrith, Nongnuch; Pantu, Piboon; Bopp, Philippe A.; Limtrakul, Jumras

Source:
JOURNAL OF PHYSICAL CHEMISTRY A 113 (10): 2103-2108 MAR 12 2009

Language:
English

Document Type:
Article

KeyWords Plus:
CARBON NANOTUBES; CHANNEL; PERMEATION; NANOPORES

Abstract:
The structure and dynamics of water confined in model single-wall carbon- and boron-nitride nanotubes (called SWCNT and SWBNNT, respectively) of different diameters have been investigated by molecular dynamics (MD) simulations at room temperature. The simulations were performed on periodically extended nanotubes filled with an amount of water that was determined by soaking a section of the nanotube in a water box in an NpT simulation (1 atm, 298 K). All MD production simulations were performed in the canonical (NVT) ensemble at a temperature of 298 K. Water was described by the extended simple point charge (SPC/E) model. The wall-water interactions were varied, within reasonable limits, to study the effect of a modified hydrophobicity of the pore walls. We report distribution functions for the water in the tubes in spherical and cylindrical coordinates and then look at the single-molecule dynamics, in particular self-diffusion. While this motion is slowed down in narrow tube!
s, in keeping with previous findings (Liu et al. J. Chem. Phys. 2005, 123, 234701-234707; Liu and Wang. Phys. Rev. 2005, 72, 085420/1-085420/4; Liu et a]. Langmuir 2005, 21, 12025-12030) bulk-water like self-diffusion coefficients are found in wider tubes, more or less independently of the wall-water interaction. There may, however, be an anomaly in the self-diffusion for the SWBNNT.

Reprint Address:
Limtrakul, J, Kasetsart Univ, Lab Computat & Appl Chem, Dept Chem, Fac Sci, Bangkok 10900, Thailand.

Research Institution addresses:
[Nanok, Tanin; Artrith, Nongnuch; Pantu, Piboon; Limtrakul, Jumras] Kasetsart Univ, Lab Computat & Appl Chem, Dept Chem, Fac Sci, Bangkok 10900, Thailand; [Nanok, Tanin; Artrith, Nongnuch; Pantu, Piboon; Limtrakul, Jumras] Kasetsart Univ, Ctr Nanotechnol, Bangkok 10900, Thailand; [Nanok, Tanin; Artrith, Nongnuch; Pantu, Piboon; Limtrakul, Jumras] Kasetsart Univ, NANOTEC Ctr Excellence, Natl Nanotechnol Ctr, Bangkok 10900, Thailand; [Bopp, Philippe A.] Univ Bordeaux 1, Dept Chem, F-33405 Talence, France

E-mail Address:
fscijrl@ku.ac.th

Cited References:
*ACC INC, 2007, MAT STUD 4 2 V.
ALLEN R, 2003, J CHEM PHYS, V119, P3905, DOI 10.1063/1.1590956.
BECKSTEIN O, 2001, J PHYS CHEM B, V105, P12902, DOI 10.1021/jp012233y.
BERENDSEN HJC, 1987, J PHYS CHEM-US, V91, P6269.
BIANCO A, 2005, CURR OPIN CHEM BIOL, V9, P674, DOI 10.1016/j.cbpa.2005.10.006.
CHOU CC, 2008, NANO LETT, V8, P437, DOI 10.1021/nl0723634.
GUILLOT B, 2002, J MOL LIQ, V101, P219.
HUMMER G, 2001, NATURE, V414, P188.
JOSEPH S, 2008, NANO LETT, V8, P452, DOI 10.1021/nl072385q.
KOGA K, 2000, NATURE, V408, P564.
KOLESNIKOV AI, 2004, PHYS REV LETT, V93, ARTN 035503.
LIJIMA S, 1991, NATURE, V354, P56.
LIU Y, 2005, PHYS REV B, V72, P85420.
LIU YC, 2005, J CHEM PHYS, V123, UNSP 234701-234707.
LIU YC, 2005, LANGMUIR, V21, P12025, DOI 10.1021/la0517181.
MASHL RJ, 2003, NANO LETT, V3, P589, DOI 10.1021/nl0340226.
OCONNELL MJ, 2006, CARBON NANOTUBES PRO.
PRICE WS, 1999, J PHYS CHEM A, V103, P448.
SMITH W, 2006, DL POLY 2 0 USER MAN.
SUI HX, 2001, NATURE, V414, P872.
TAJKHORSHID E, 2002, SCIENCE, V296, P525.
WAGHE A, 2002, J CHEM PHYS, V117, P10789, DOI 10.1063/1.1519861.
WANG ZL, 2000, J PHYS CHEM SOLIDS, V61, P1025.
WON CY, 2007, J AM CHEM SOC, V129, P2748, DOI 10.1021/ja0687318.
WON CY, 2008, J PHYS CHEM C, V12, P1812.

Cited Reference Count:
25

Times Cited:
0

Publisher:
AMER CHEMICAL SOC; 1155 16TH ST, NW, WASHINGTON, DC 20036 USA

Subject Category:
Chemistry, Physical; Physics, Atomic, Molecular & Chemical

ISSN:
1089-5639

DOI:
10.1021/jp8088676

IDS Number:
415ZK

========================================================================

*Record 7 of 7.
*View Full Record: http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000264217800035
*Order Full Text [ ]

Title:
Dynamic control of protein conformation transition in chromatographic separation based on hydrophobic interactions Molecular dynamics simulation

Authors:
Zhang, L; Lu, DN; Liu, Z

Author Full Names:
Zhang, Lin; Lu, Diannan; Liu, Zheng

Source:
JOURNAL OF CHROMATOGRAPHY A 1216 (12): 2483-2490 MAR 20 2009

Language:
English

Document Type:
Article

Author Keywords:
Hydrophobic interaction chromatography; Reversed-phase liquid chromatography; Dynamic elution; Protein unfolding; Aggregation

KeyWords Plus:
PHASE LIQUID-CHROMATOGRAPHY; GLOBULAR-PROTEINS; FOLDING KINETICS; LATTICE PROTEIN; AGGREGATION; MODEL; SURFACE; STABILITY; LYSOZYME; RENATURATION

Abstract:
Conformational transitions of a protein in hydrophobic interaction based chromatography, including hydrophobic interaction chromatography (HIC) and reversed-phase liquid chromatography (RPLC), and their impact on the separation process and performance were probed by molecular dynamics simulation of a 46-bead beta-barrel coarse-grained model protein in a confined pore, which represents the porous adsorbent. The transition of the adsorbed protein from the native conformation to an unfolded one occurred as a result of strong hydrophobic interactions with the pore surface, which reduced the formation of protein aggregates. The conformational transition was also displayed in the simulation once an elution buffer characterized by weaker hydrophobicity was introduced to strip protein from pore surface. The discharged proteins that underwent conformational transition were prone to aggregation; thus, an unsatisfactory yield of the native protein was obtained. An orthogonal experiment!
revealed that in addition to the strengths of the protein-protein and protein-adsorbent hydrophobic interactions, the elution time required to reduce the above-mentioned interactions also determined the yield of native protein by HIC and RPLC. Stepwise elution, characterized by sequential reduction of the hydrophobic interactions between the protein and adsorbent, was presented as a dynamic strategy for tuning conformational transitions to favor the native conformation and reduce the formation of protein aggregates during the elution process. The yield of the native protein obtained by this dynamic operation strategy was higher than that obtained by steady-state elution. The simulation study qualitatively reproduced the experimental observations and provided molecular insight that would be helpful for designing and optimizing HIC and RPLC separation of proteins. (c) 2009 Elsevier B.V. All rights reserved.

Reprint Address:
Liu, Z, Tsinghua Univ, Dept Chem Engn, Beijing 100084, Peoples R China.

Research Institution addresses:
[Zhang, Lin; Lu, Diannan; Liu, Zheng] Tsinghua Univ, Dept Chem Engn, Beijing 100084, Peoples R China

E-mail Address:
liuzheng@mail.tsinghua.edu.cn

Cited References:
ALLEN MP, 1989, COMPUTER SIMULATION.
BERENDSEN HJC, 1995, COMPUT PHYS COMMUN, V91, P43.
BOND PJ, 2006, J AM CHEM SOC, V128, P2697, DOI 10.1021/ja0569104.
CELLMER T, 2005, BIOTECHNOL BIOENG, V89, P78, DOI 10.1002/bit.20302.
CHI EY, 2003, PHARMACEUT RES, V20, P1325.
EISENBERG D, 2006, ACCOUNTS CHEM RES, V39, P568, DOI 10.1021/ar0500618.
FANG KT, 2001, DESIGN ORTHOGONAL UN.
FAUSNAUGH JL, 1984, J CHROMATOGR, V317, P141.
GENG XD, 2002, SCI CHINA SER B, V32, P460.
GENG XD, 2007, J CHROMATOGR B, V849, P69, DOI 10.1016/j.jchromb.2006.10.068.
GEORGIOU G, 1994, PROTEIN SCI, V3, P1953.
GU ZY, 2001, J CHROMATOGR A, V918, P311.
GUO ZY, 1992, J CHEM PHYS, V97, P525.
HEVEHAN DL, 1997, BIOTECHNOL BIOENG, V54, P221.
HONEYCUTT JD, 1990, P NATL ACAD SCI USA, V87, P3526.
HUMMER G, 2001, NATURE, V414, P188.
INGRAHAM RH, 1985, J CHROMATOGR, V327, P77.
JAHN TR, 2005, FEBS J, V272, P5962, DOI 10.1111/j.1742-4658.2005.05021.x.
JANG HB, 2004, BIOPHYS J 1, V86, P31.
JANSON J, 1998, PROTEIN PURIFICATION.
KATO Y, 1984, J CHROMATOGR, V292, P418.
KLATTE SJ, 1996, J PHYS CHEM-US, V100, P5931.
KLIMOV DK, 1998, FOLD DES, V3, P481.
KLIMOV DK, 2002, P NATL ACAD SCI USA, V99, P8019.
LINDAHL E, 2001, J MOL MODEL, V7, P306.
LU DN, 2006, BIOPHYS J, V90, P3224, DOI 10.1529/biophysj.105.071761.
LU DN, 2008, J PHYS CHEM B, V112, P2686, DOI 10.1021/jp076940o.
MCNAY JL, 1999, J CHROMATOGR A, V849, P135.
MCNAY JLM, 2001, BIOTECHNOL BIOENG, V76, P233.
NGUYEN HD, 2002, BIOTECHNOL BIOENG, V80, P823, DOI 10.1002/bit.10448.
PATRO SY, 1994, BIOPHYS J, V66, P1274.
PRUSINER SB, 1997, SCIENCE, V278, P245.
QIN ZJ, 2007, BIOCHEMISTRY-US, V46, P3521, DOI 10.1021/bi061716v.
RAFFAINI G, 2003, LANGMUIR, V19, P3403, DOI 10.1021/la026853h.
RAMAN B, 1996, J BIOL CHEM, V271, P17067.
ROBERSON ED, 2006, SCIENCE, V314, P781, DOI 10.1126/science.1132813.
SAYLE RA, 1995, TRENDS BIOCHEM SCI, V20, P374.
SHALTIEL S, 1984, METHOD ENZYMOL, V104, P69.
SHEA JE, 1998, J CHEM PHYS, V109, P2895.
SKOLNICK J, 1988, P NATL ACAD SCI USA, V85, P5057.
SLUSHER JT, 1999, J PHYS CHEM B, V103, P1354.
SOKOL JM, 2003, J CHROMATOGR A, V1007, P55, DOI 10.1016/S0021-9673(03)00979-8.
SPEED MA, 1996, NAT BIOTECHNOL, V14, P1283.
STEVENS RC, 2000, STRUCTURE, V8, P177.
VEITSHANS T, 1997, FOLD DES, V2, P1.
WU SL, 1986, J CHROMATOGR, V371, P3.
XIAO YZ, 2007, BIOTECHNOL BIOENG, V96, P80, DOI 10.1002/bit.21186.
XIAO YZ, 2007, J CHROMATOGR A, V1157, P197, DOI 10.1016/j.chroma.2007.05.009.
YAROVSKY I, 1995, ANAL CHEM, V67, P2145.
YAROVSKY I, 1997, J PHYS CHEM B, V101, P10962.
ZHANG L, 2008, BIOPHYS CHEM, V133, P71, DOI 10.1016/j.bpc.2007.12.008.
ZHANG YL, 1998, BIOCHEM MOL BIOL INT, V44, P949.
ZHOU J, 2003, LANGMUIR, V19, P3472, DOI 10.1021/la026871z.

Cited Reference Count:
53

Times Cited:
0

Publisher:
ELSEVIER SCIENCE BV; PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS

Subject Category:
Biochemical Research Methods; Chemistry, Analytical

ISSN:
0021-9673

DOI:
10.1016/j.chroma.2009.01.038

IDS Number:
419KH

========================================================================
*Order Full Text*
All Customers
--------------
Please contact your library administrator, or person(s) responsible for
document delivery, to find out more about your organization's policy for
obtaining the full text of the above articles. If your organization does
not have a current document delivery provider, your administrator can
contact ISI Document Solution at service@isidoc.com, or call 800-603-4367
or 734-459-8565.

IDS Customers
--------------
IDS customers can purchase the full text of an article (having page number,
volume, and issue information) by returning this ENTIRE message as a Reply
to Sender or Forward to orders@isidoc.com. Mark your choices with an X in
the "Order Full Text: []" brackets for each item. For example, [X].

Please enter your account number here:

========================================================================
*Help Desk Contact Information*
If you have any questions, please visit the Thomson Scientific Technical Support Contact Information Web page:
http://www.thomsonscientific.com/support/techsupport
========================================================================

No comments: