Friday, March 27, 2009

ISI Web of Knowledge Alert - Majumder M

ISI Web of Knowledge Citation Alert

Cited Article: Majumder M. Nanoscale hydrodynamics - Enhanced flow in carbon nanotubes
Alert Expires: 18 OCT 2009
Number of Citing Articles: 4 new records this week (4 in this e-mail)
Organization ID: 3b97d1bbc1878baed0ab183d8b03130b
========================================================================
Note: Instructions on how to purchase the full text of an article and Help Desk Contact information are at the end of the e-mail.
========================================================================

*Record 1 of 4.
*View Full Record: http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000264142100013
*Order Full Text [ ]

Title:
Pressurized Liquid in Nanopores: A Modified Laplace-Young Equation

Authors:
Qiao, Y; Liu, L; Chen, X

Author Full Names:
Qiao, Yu; Liu, Ling; Chen, Xi

Source:
NANO LETTERS 9 (3): 984-988 MAR 2009

Language:
English

Document Type:
Article

KeyWords Plus:
CARBON NANOTUBES; WATER; TRANSPORT; INFILTRATION; BEHAVIORS; FIELD; FLOW

Abstract:
In the current study, we analyze the motion of pressurized water molecules in nanopores of a well-crystallized, hydrophobic zeolite using both experiment and molecular dynamics simulation. It is discovered that, contradictory to the prediction of the classic Laplace-Young equation, the required infiltration pressure is highly dependent on the infiltration volume. A modified Laplace-Young equation is developed to take into consideration the effective solid-liquid interfacial tension, the thermal energy exchange, as well as the variation in configuration of confined liquid molecules. The last two factors are significant only when the nanopore diameter is comparable with the liquid molecule size. It is also remarkable that the infiltrated liquid molecules, when confined in the nanoenvironment, could transform from a single-chain conformation to a double-helical structure as the pressure increases, accompanied by an abrupt system free energy change that leads to different pressu!
re-induced transport behaviors.

Reprint Address:
Chen, X, Columbia Univ, Dept Civil Engn & Engn Mech, New York, NY 10027 USA.

Research Institution addresses:
[Liu, Ling; Chen, Xi] Columbia Univ, Dept Civil Engn & Engn Mech, New York, NY 10027 USA; [Qiao, Yu] Univ Calif San Diego, Dept Struct Engn, La Jolla, CA 92093 USA

E-mail Address:
xichen@civil.columbia.edu

Cited References:
BORMAN VD, 2000, J EXP THEOR PHYS+, V91, P170.
BOUGEARD D, 2007, PHYS CHEM CHEM PHYS, V9, P226, DOI 10.1039/b614463m.
CAO GX, 2008, MOL SIMULAT, V34, P1267, DOI 10.1080/08927020802175225.
CAO GX, 2008, PHIL MAG LETT, V88, P371, DOI 10.1080/09500830802050415.
CHEN X, 2006, APPL PHYS LETT, V89, ARTN 241918.
CHEN X, 2008, NANO LETT, V8, P2988, DOI 10.1021/nl802046b.
DEAMER DW, 2000, TRENDS BIOTECHNOL, V18, P147.
EIJKEL JCT, 2005, LAB CHIP, V5, P1202, DOI 10.1039/b509819j.
EROSHENKO V, 2001, J AM CHEM SOC, V123, P8129.
GENNES PGD, 2004, CAPILLARITY WETTING.
HAN AJ, 2006, J AM CHEM SOC, V128, P10348, DOI 10.1021/ja062037a.
HOLT JK, 2006, SCIENCE, V312, P1034, DOI 10.1126/science.1126298.
HONG MH, 2000, APPL PHYS LETT, V77, P2604.
HU GQ, 2007, CHEM ENG SCI, V62, P3443, DOI 10.1016/j.ces.2006.11.058.
HUANG BD, 2005, J CHEM PHYS, V122, ARTN 084708.
HUMMER G, 2001, NATURE, V414, P188.
IBACH H, 2006, PHYS SURFACES INTERF.
JANSEN JC, 1994, ADV ZEOLITE SCI APPL.
KOLESNIKOV AI, 2004, PHYS REV LETT, V93, ARTN 035503.
KONG X, 2006, J APPL PHYS, V100, UNSP 014308.
LEARY SP, 2006, NEUROSURGERY, V58, P805, DOI 10.1227/01.NEU.0000216793.45952.ED.
LIU L, 2008, APPL PHYS LETT, V92, ARTN 101927.
MAJUMDER M, 2005, NATURE, V438, P44, DOI 10.1038/43844a.
MANN DJ, 2003, PHYS REV LETT, V90, ARTN 195503.
MOTT RL, 2005, APPL FLUID MECH.
QIAO Y, 2007, J AM CHEM SOC, V129, P2355, DOI 10.1021/ja067185f.
SHOLL DS, 2006, SCIENCE, V312, P1003, DOI 10.1126/science.1127261.
STEIN D, 2006, P NATL ACAD SCI USA, V103, P15853, DOI 10.1073/pnas.0605900103.
STRIOLO A, 2006, NANO LETT, V6, P633, DOI 10.1021/nl052254u.
SUN H, 1998, COMPUT THEOR POLYM 2, V8, P229.
SUPPLE S, 2003, PHYS REV LETT, V90, ARTN 214501.
VANKONINGSVELD H, 2007, COMPENDIUM ZEOITE FR.
WHITBY M, 2007, NAT NANOTECHNOL, V2, P87, DOI 10.1038/nnano.2006.175.
WHITE CLIM, 2004, ANGEW CHEM INT EDIT, V43, P469, DOI 10.1002/anie.200352364.

Cited Reference Count:
34

Times Cited:
0

Publisher:
AMER CHEMICAL SOC; 1155 16TH ST, NW, WASHINGTON, DC 20036 USA

Subject Category:
Chemistry, Multidisciplinary; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary

ISSN:
1530-6984

DOI:
10.1021/nl8030136

IDS Number:
418IO

========================================================================

*Record 2 of 4.
*View Full Record: http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000264132100013
*Order Full Text [ ]

Title:
Pressurized Flow in a Mesostructured Silica Modified by Silane Groups

Authors:
Punyamurtula, VK; Han, AJ; Qiao, Y

Author Full Names:
Punyamurtula, Venkata K.; Han, Aijie; Qiao, Yu

Source:
JOURNAL OF FLUIDS ENGINEERING-TRANSACTIONS OF THE ASME 131 (4): Art. No. 044501 APR 2009

Language:
English

Document Type:
Article

Author Keywords:
flow through porous media; mesoporous materials; silicon compounds

KeyWords Plus:
PERCOLATION TRANSITION; SORPTION ISOTHERM; NONWETTING LIQUID; WATER; NANOSCALE; SYSTEM

Abstract:
By applying a quasihydrostatic pressure, water or electrolyte solution can be compressed into a surface treated MSU-H mesoporous silica. Based on the pressure-volume curves, thermodynamic and kinetic characteristics of the pressurized flow are analyzed. For pure water based system, continuum theory explains the testing data quite well but fails to capture the rate effect. For electrolyte solution based system, the classic interface theory breaks down, probably due to the unique ion behaviors in the nanoenvironment.

Reprint Address:
Qiao, Y, Univ Calif San Diego, Dept Struct Engn, La Jolla, CA 92093 USA.

Research Institution addresses:
[Punyamurtula, Venkata K.; Han, Aijie; Qiao, Yu] Univ Calif San Diego, Dept Struct Engn, La Jolla, CA 92093 USA

E-mail Address:
yqiao@ucsd.edu

Cited References:
BORMAN VD, 2000, J EXP THEOR PHYS+, V91, P170.
BORMAN VD, 2005, J EXP THEOR PHYS+, V100, P385.
FADEEV AY, 1997, J COLLOID INTERF SCI, V187, P275.
FAY JA, 1994, INTRO FLUID MECH.
HAN A, 2006, J APPL PHYS, V100, ARTN 014308.
HARTLAND S, 2004, SURFACE INTERFACE TE.
KONG X, 2005, APPL PHYS LETT, V86, ARTN 151919.
KONG XG, 2005, J MATER RES, V20, P1042, DOI 10.1557/JMR.2005.0140.
LI JCM, 2000, J ALLOY COMPD, V310, P24.
LIM MH, 1999, CHEM MATER, V11, P3285.
LU G, 2003, ENERGY ABSORPTION ST.
MAJUMDER M, 2005, NATURE, V438, P44, DOI 10.1038/43844a.
MARTIN T, 2002, CHEM COMMUN, P24.
PUNYAMURTULA VK, 2007, ADV ENG MATER, V9, P209, DOI 10.1002/adem.200600177.
PUNYAMURTULA VK, 2007, MATER RES INNOV, V11, P37, DOI 10.1179/143307507X196211.
QIAO Y, 2007, J AM CHEM SOC, V129, P2355, DOI 10.1021/ja067185f.
SANSOM MSP, 2001, NATURE, V414, P156.
SURANI FB, 2005, APPL PHYS LETT, V87, ARTN 163111.
SURANI FB, 2005, APPL PHYS LETT, V87, ARTN 251906.

Cited Reference Count:
19

Times Cited:
0

Publisher:
ASME-AMER SOC MECHANICAL ENG; THREE PARK AVE, NEW YORK, NY 10016-5990 USA

Subject Category:
Engineering, Mechanical

ISSN:
0098-2202

DOI:
10.1115/1.3089542

IDS Number:
418EY

========================================================================

*Record 3 of 4.
*View Full Record: http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000263975000034
*Order Full Text [ ]

Title:
Investigation of Optimal Parameters for Oxide-Assisted Growth of Vertically Aligned Single-Walled Carbon Nanotubes

Authors:
Pint, CL; Pheasant, ST; Parra-Vasquez, ANG; Horton, C; Xu, YQ; Hauge, RH

Author Full Names:
Pint, Cary L.; Pheasant, Sean T.; Parra-Vasquez, A. Nicholas G.; Horton, Charles; Xu, Yaqiong; Hauge, Robert H.

Source:
JOURNAL OF PHYSICAL CHEMISTRY C 113 (10): 4125-4133 MAR 12 2009

Language:
English

Document Type:
Article

KeyWords Plus:
CHEMICAL-VAPOR-DEPOSITION; HIGH-YIELD GROWTH; ARRAY GROWTH; WATER; NUCLEATION; KINETICS; HYDROGEN; CARPETS; SENSORS; FILMS

Abstract:
An investigation into the optimal growth of single-walled carbon nanotubes (SWNTs) in vertical arrays, or carpets, is presented utilizing atomic hydrogen catalyst activation with hot filament chemical vapor deposition. Using acetylene decomposition over Fe catalyst, we study the effect of oxidant-assisted growth using O-2, CO2, and H2O. Whereas trace amounts of O-2 result in the lack of any catalytic activity, CO2 and H2O are found to dramatically enhance the catalyst lifetime. On the basis of the saturation effect of oxidant concentration for both CO2 and H2O, we present this as being due to catalyst stabilization from surface hydroxyl groups, with H2O having the most dominant effect upon carpet growth. Utilizing water-assisted growth, this process is further optimized to yield high-quality single-walled carbon nanotubes. High temperature growth (similar to 775 degrees C) yields the highest-quality SWNTs, whereas controllable growth of double- and few-walled nanotubes can a!
lso be achieved at lower temperatures (550-600 degrees C). Finally, ultralong carpets are demonstrated by utilizing the optimal SWNT growth conditions under an enhanced carbon flux environment.

Reprint Address:
Hauge, RH, Rice Univ, Dept Phys & Astron, Houston, TX 77005 USA.

Research Institution addresses:
[Pint, Cary L.; Hauge, Robert H.] Rice Univ, Dept Phys & Astron, Houston, TX 77005 USA; [Pheasant, Sean T.] Rice Univ, Dept Chem, Houston, TX 77005 USA; [Parra-Vasquez, A. Nicholas G.] Rice Univ, Dept Chem & Biomol Engn, Houston, TX 77005 USA; [Pint, Cary L.; Pheasant, Sean T.; Parra-Vasquez, A. Nicholas G.; Horton, Charles; Hauge, Robert H.] Rice Univ, Richard E Smalley Inst Nanoscale Sci & Technol, Houston, TX 77005 USA; [Xu, Yaqiong] Cornell Univ, Dept Phys, Ithaca, NY 14853 USA

E-mail Address:
hauge@rice.edu

Cited References:
AMAMA PB, 2009, NANO LETT, V9, P44, DOI 10.1021/nl801876h.
BACHILO SM, 2002, SCIENCE, V298, P2361, DOI 10.1126/science.1078727.
BETHUNE DS, 1993, NATURE, V363, P605.
BOWER C, 2000, APPL PHYS LETT, V77, P2767.
CHAKRABARTI S, 2006, JPN J APPL PHYS 2, V45, L720, DOI 10.1143/JJAP.45.L720.
CORRY C, 2008, J PHYS CHEM B, V112, P1427.
DALTON AB, 2004, J MATER CHEM, V14, P1, DOI 10.1039/b312092a.
ERES G, 2004, APPL PHYS LETT, V84, P1759, DOI 10.1063/1.1668325.
ERES G, 2005, J PHYS CHEM B, V109, P16684, DOI 10.1021/jp051531i.
FAN SS, 1999, SCIENCE, V283, P512.
FUTABA DN, 2005, PHYS REV LETT, V95, P6104.
FUTABA DN, 2006, NAT MATER, V5, P987, DOI 10.1038/nmat1782.
GE L, 2007, P NATL ACAD SCI USA, V104, P10792.
HARUTYUNYAN AR, 2008, PHYS REV LETT, V100, ARTN 195502.
HATA K, 2004, SCIENCE, V306, P1362.
JORIO A, 2003, NEW J PHYS, V5, ARTN 139.
KONG J, 2000, SCIENCE, V287, P622.
LARJO J, 2001, APPL OPTICS, V40, P765.
MAJUMDER M, 2005, NATURE, V438, P44, DOI 10.1038/43844a.
MURAKAMI Y, 2004, CHEM PHYS LETT, V385, P298, DOI 10.1016/j.cplett.2003.12.095.
NASIBULIN AG, 2006, CHEM PHYS LETT, V417, P179, DOI 10.1016/j.cplett.2005.10.022.
NASIBULIN AG, 2006, J NANOSCI NANOTECHNO, V6, P1233, DOI 10.1166/jnn.2006.340.
NODA S, 2007, JPN J APPL PHYS 2, V46, L399, DOI 10.1143/JJAP.46.L399.
OKAZAKI T, 2006, CHEM PHYS LETT, V420, P286, DOI 10.1016/j.cplett.2005.11.128.
PARK KC, 2008, J PHYS CHEM SOLIDS, V69, P2481, DOI 10.1016/j.jpcs.2008.05.006.
PHEASANT ST, 2007, THESIS RICE U.
PINT C, 2008, J NANOSCI NANOTECHNO, V8, P6158, DOI 10.1166/jnn.2008.SW26.
PINT CL, 2008, NANO LETT, V8, P1879, DOI 10.1021/nl0804295.
PURETZKY AA, 2005, APPL PHYS A-MATER, V81, P223, DOI 10.1007/s00339-005-3256-7.
PURETZKY AA, 2008, NANOTECHNOLOGY, V19, ARTN 055605.
SETHI S, 2008, NANO LETT, V8, P822, DOI 10.1021/nl0727765.
TSYBOULSKI DA, UNPUB.
WEN Q, 2007, NANOTECHNOLOGY, V18, ARTN 215610.
WOOD JR, 2000, APPL PHYS LETT, V76, P2883.
WOOD RF, 2007, PHYS REV B, V75, ARTN 235446.
XU YQ, 2006, APPL PHYS LETT, V89, ARTN 123116.
XU YQ, 2006, J AM CHEM SOC, V128, P6560, DOI 10.1021/ja060944+.
YAKOBSON BI, 1997, AM SCI, V85, P324.
ZHANG CM, 2008, FRONT MAT SCI CHINA, V2, P37.
ZHANG GY, 2005, P NATL ACAD SCI USA, V102, P16141, DOI 10.1073/pnas.0507064102.
ZHONG GF, 2005, CHEM VAPOR DEPOS, V11, P127, DOI 10.1002/cvde.200404197.
ZHONG GF, 2007, J PHYS CHEM B, V111, P1907, DOI 10.1021/jp067776s.

Cited Reference Count:
42

Times Cited:
0

Publisher:
AMER CHEMICAL SOC; 1155 16TH ST, NW, WASHINGTON, DC 20036 USA

Subject Category:
Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary

ISSN:
1932-7447

DOI:
10.1021/jp8070585

IDS Number:
415ZM

========================================================================

*Record 4 of 4.
*View Full Record: http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000263997300005
*Order Full Text [ ]

Title:
TURBULENCE STRUCTURE FOR PLANE POISEUILLE-COUETTE FLOW AND IMPLICATIONS FOR DRAG REDUCTION OVER SURFACES WITH SLIP

Authors:
Spencer, NB; Lee, LL; Parthasarathy, RN; Papavassiliou, DV

Author Full Names:
Spencer, Nicholas B.; Lee, Lloyd L.; Parthasarathy, Ramkumar N.; Papavassiliou, Dimitrios V.

Source:
CANADIAN JOURNAL OF CHEMICAL ENGINEERING 87 (1): 38-46 FEB 2009

Language:
English

Document Type:
Article

Author Keywords:
direct numerical simulation; turbulence; drag reduction; velocity slip

KeyWords Plus:
LOW-REYNOLDS-NUMBER; CHANNEL FLOW; HEAT-TRANSFER; VELOCITY; SIMULATION; LIQUID; WALL

Abstract:
Direct numerical simulations were used to simulate plane channel and plane Poiseuille-Couette flows. For Poiseuille-Couette flow, the walls of the channel were moving with a specified velocity. This is equivalent to forcing a slip velocity at the wall of the channel, and such flow behaviour can be viewed as the effect due to an ultra-hydrophobic wall. It was found that the location of the zero Reynolds stress value shifted towards the wall moving in the streamwise direction. The near-wall eddies were found to be longer and weaker than for the plane-Poiseuille channel flow. It appears that such an eddy structure can lead to turbulence drag reduction.

Reprint Address:
Papavassiliou, DV, Univ Oklahoma, Sch Chem Biol & Mat Engn, 100 E Boyd St,SEC T-335, Norman, OK 73019 USA.

Research Institution addresses:
[Spencer, Nicholas B.; Papavassiliou, Dimitrios V.] Univ Oklahoma, Sch Chem Biol & Mat Engn, Norman, OK 73019 USA; [Lee, Lloyd L.] Calif State Univ, Pomona, CA USA; [Parthasarathy, Ramkumar N.] Univ Oklahoma, Sch Aerosp & Mech Engn, Norman, OK 73019 USA; [Papavassiliou, Dimitrios V.] Univ Oklahoma, Sarkeys Energy Ctr, Norman, OK 73019 USA

E-mail Address:
dupapava@ou.edu

Cited References:
BIRD RB, 1960, TRANSPORT PHENOMENA.
ELTELBANY MMM, 1980, J FLUID MECH, V100, P1.
ELTELBANY MMM, 1981, J FLUID MECH, V111, P283.
FUKAGATA K, 2006, PHYS FLUIDS, V18, ARTN 051703.
GOGTE S, 2005, PHYS FLUIDS, V17, ARTN 051701.
GUNTHER A, 1998, EXP FLUIDS, V25, P503.
HANRATTY TJ, 1997, SELF SUSTAINING MECH, P83.
HOUSIADAS KD, 2003, PHYS FLUIDS, V15, P2369, DOI 10.1063/1.1589484.
HOUSIADAS KD, 2005, KOREA-AUST RHEOL J, V17, P131.
KIM J, 1987, J FLUID MECH, V177, P133.
KITOH O, 2005, J FLUID MECH, V539, P199, DOI 10.1017/S0022112005005641.
KURODA A, DNS DATABASE TRBULEN.
LAUGA E, 2003, J FLUID MECH, V489, P55, DOI 10.1017/S0022112003004695.
LE PM, 2005, AICHE J, V51, P2402, DOI 10.1002/aic.10507.
LE PM, 2006, J HEAT TRANS-T ASME, V128, P53, DOI 10.1115/1.2130404.
LOMBARDI P, 1996, PHYS FLUIDS, V8, P1643.
LYONS SL, 1991, INT J NUMER METH FL, V13, P999.
MAJUMDER M, 2005, NATURE, V438, P44, DOI 10.1038/43844a.
MIN T, 2003, J FLUID MECH, V492, P91, DOI 10.1017/S0022112003005597.
MIN TG, 2004, PHYS FLUIDS, V16, L55, DOI 10.1063/1.1755723.
NA Y, 2001, FLOW TURBUL COMBUST, V66, P495.
NAKABAYASHI K, 2004, J FLUID MECH, V507, P43.
NETO C, 2005, REP PROG PHYS, V68, P2859, DOI 10.1088/0034-4885/68/12/R05.
OU J, 2004, PHYS FLUIDS, V16, P4635, DOI 10.1063/1.1812011.
OU J, 2005, PHYS FLUIDS, V17, ARTN 103606.
PAPAVASSILIOU DV, 1997, INT J HEAT FLUID FL, V18, P55.
POPE SB, 2000, TURBULENT FLOWS, P393.
ROBINSON SK, 1991, ANNU REV FLUID MECH, V23, P601.
THURLOW EM, 2000, PHYS FLUIDS, V12, P865.
TRETHEWAY DC, 2002, PHYS FLUIDS, V14, L9.
VORONOV RS, 2006, J CHEM PHYS, V124, ARTN 204701.
VORONOV RS, 2007, CHEM PHYS LETT, V441, P273, DOI 10.1016/j.cplett.2007.05.013.
WARLIOLIC MD, 1999, J FLUID MECH, V388, P1.
WEISPFENNIG K, 1999, PHYS FLUIDS, V11, P1262.
ZAKIN JL, 1998, REV CHEM ENG, V14, P253.
ZHOU JG, 1996, PHYS FLUIDS, V8, P288.
ZHU YX, 2001, PHYS REV LETT, V87, ARTN 096105.

Cited Reference Count:
37

Times Cited:
0

Publisher:
JOHN WILEY & SONS INC; 111 RIVER ST, HOBOKEN, NJ 07030 USA

Subject Category:
Engineering, Chemical

ISSN:
0008-4034

DOI:
10.1002/cjce.20136

IDS Number:
416HT

========================================================================
*Order Full Text*
All Customers
--------------
Please contact your library administrator, or person(s) responsible for
document delivery, to find out more about your organization's policy for
obtaining the full text of the above articles. If your organization does
not have a current document delivery provider, your administrator can
contact ISI Document Solution at service@isidoc.com, or call 800-603-4367
or 734-459-8565.

IDS Customers
--------------
IDS customers can purchase the full text of an article (having page number,
volume, and issue information) by returning this ENTIRE message as a Reply
to Sender or Forward to orders@isidoc.com. Mark your choices with an X in
the "Order Full Text: []" brackets for each item. For example, [X].

Please enter your account number here:

========================================================================
*Help Desk Contact Information*
If you have any questions, please visit the Thomson Scientific Technical Support Contact Information Web page:
http://www.thomsonscientific.com/support/techsupport
========================================================================

No comments: