Friday, October 9, 2009

ISI Web of Knowledge Alert - Hummer, G

ISI Web of Knowledge Citation Alert

Cited Article: Hummer, G. Water conduction through the hydrophobic channel of a carbon nanotube
Alert Expires: 22 OCT 2009
Number of Citing Articles: 7 new records this week (7 in this e-mail)
Organization ID: 3b97d1bbc1878baed0ab183d8b03130b
========================================================================
Note: Instructions on how to purchase the full text of an article and Help Desk Contact information are at the end of the e-mail.
========================================================================

*Record 1 of 7.
*View Full Record: http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000270139000050
*Order Full Text [ ]

Title:
Quantized Ionic Conductance in Nanopores

Authors:
Zwolak, M; Lagerqvist, J; Di Ventra, M

Author Full Names:
Zwolak, Michael; Lagerqvist, Johan; Di Ventra, Massimiliano

Source:
PHYSICAL REVIEW LETTERS 103 (12): Art. No. 128102 SEP 18 2009

Language:
English

Document Type:
Article

KeyWords Plus:
TRANSVERSE ELECTRONIC TRANSPORT; POLYNUCLEOTIDE MOLECULES; DNA; CHANNEL; DISCRIMINATION; DYNAMICS; SIMULATION; WATER

Abstract:
Ionic transport in nanopores is a fundamentally and technologically important problem in view of its occurrence in biological processes and its impact on novel DNA sequencing applications. Using molecular dynamics simulations we show that ion transport may exhibit strong nonlinearities as a function of the pore radius reminiscent of the conductance quantization steps as a function of the transverse cross section of quantum point contacts. In the present case, however, conductance steps originate from the break up of the hydration layers that form around ions in aqueous solution. We discuss this phenomenon and the conditions under which it should be experimentally observable.

Reprint Address:
Zwolak, M, Los Alamos Natl Lab, Div Theoret, MS B213, Los Alamos, NM 87545 USA.

Research Institution addresses:
[Zwolak, Michael] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA; [Lagerqvist, Johan; Di Ventra, Massimiliano] Univ Calif San Diego, Dept Phys, La Jolla, CA 92093 USA

Cited References:
AKESON M, 1999, BIOPHYS J, V77, P3227.
BONTHUIS DJ, 2006, PHYS REV LETT, V97, ARTN 128104.
CHANDRASEKHAR J, 1984, J AM CHEM SOC, V106, P903.
DEAMER DW, 2002, ACCOUNTS CHEM RES, V35, P817, DOI 10.1021/ar000138m.
DIVENTRA M, 2008, ELECT TRANSPORT NANO.
GRACHEVA ME, 2006, NANOTECHNOLOGY, V17, P3160, DOI 10.1088/0957-4484/17/13/014.
HENG JB, 2005, BELL LABS TECH J, V10, P5, DOI 10.1002/bltj.20102.
HILLE B, 2001, ION CHANNELS EXCITAB.
HUMMER G, 2001, NATURE, V414, P188.
IGNACZAK A, 1999, ELECTROCHIM ACTA, V45, P659.
JOSEPH S, 2003, NANO LETT, V3, P1399, DOI 10.1021/nl0346326.
KAMENEV A, 2006, PHYSICA A, V359, P129, DOI 10.1016/j.physa.2005.05.097.
KASIANOWICZ JJ, 1996, P NATL ACAD SCI USA, V93, P13770.
LAGERQVIST J, 2006, NANO LETT, V6, P779, DOI 10.1021/nl0601076.
LAGERQVIST J, 2007, BIOPHYS J, V93, P2384, DOI 10.1529/biophysj.106.102269.
LAGERQVIST J, 2007, PHYS REV E 1, V76, ARTN 013901.
LIANG XG, 2008, NANO LETT, V8, P1472, DOI 10.1021/nl080473k.
MELLER A, 2000, P NATL ACAD SCI USA, V97, P1079.
OHTAKI H, 1993, CHEM REV, V93, P1157.
PETER C, 2005, BIOPHYS J, V89, P2222, DOI 10.1529/biophysj.105.065946.
TEBER S, 2005, J STAT MECH-THEO JUL, ARTN P07001.
VERCOUTERE W, 2001, NAT BIOTECHNOL, V19, P248.
YANG L, 2007, J CHEM PHYS, V126, P84706, ARTN 084706.
YANG ZZ, 2005, J PHYS CHEM A, V109, P3517, DOI 10.1021/jp051106p.
ZHANG J, 2005, PHYS REV LETT, V95, ARTN 148101.
ZWOLAK M, 2005, NANO LETT, V5, P421, DOI 10.1021/nl048289w.
ZWOLAK M, 2008, REV MOD PHYS, V80, P141, DOI 10.1103/RevModPhys.80.141.

Cited Reference Count:
27

Times Cited:
0

Publisher:
AMER PHYSICAL SOC; ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA

Subject Category:
Physics, Multidisciplinary

ISSN:
0031-9007

DOI:
10.1103/PhysRevLett.103.128102

IDS Number:
498KO

========================================================================

*Record 2 of 7.
*View Full Record: http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000270138700028
*Order Full Text [ ]

Title:
Effect of induced electric field on single-file reverse osmosis

Authors:
Suk, ME; Aluru, NR

Author Full Names:
Suk, M. E.; Aluru, N. R.

Source:
PHYSICAL CHEMISTRY CHEMICAL PHYSICS 11 (38): 8614-8619 2009

Language:
English

Document Type:
Article

KeyWords Plus:
BORON-NITRIDE NANOTUBE; WATER PERMEATION; MOLECULAR SIMULATION; CARBON NANOTUBES; ELECTROLYTE-SOLUTIONS; ION-TRANSPORT; SLAB GEOMETRY; DYNAMICS; ELCTROOSMOSIS; CHANNEL

Abstract:
We investigated the effect of the electric field on single-file reverse osmosis (RO) water flux using molecular dynamics simulations. The electric field is generated by introducing oppositely charged biomolecules to the salt solution and pure water chambers attached to the nanopore. Simulation results indicate that an electric field in the direction of RO enhances the water flux while in the direction opposite to RO it suppresses the water flux. When the RO water flux is enhanced, the single-file water dipoles are aligned in the direction of the electric field. The addition of an electric field in the direction of RO led to a flux of 3 water molecules ns(-1) by constantly maintaining water dipole vectors in the direction of the electric field, and this water flux is superimposed on the pressure driven water flux.

Reprint Address:
Aluru, NR, Univ Illinois, Beckman Inst Adv Sci & Technol, Dept Mech Sci & Engn, Urbana, IL 61801 USA.

Research Institution addresses:
[Suk, M. E.; Aluru, N. R.] Univ Illinois, Beckman Inst Adv Sci & Technol, Dept Mech Sci & Engn, Urbana, IL 61801 USA

E-mail Address:
aluru@illinois.edu

Cited References:
BEREZHKOVSKII A, 2002, PHYS REV LETT, V89, UNSP 064503.
BOSTICK D, 2003, BIOPHYS J, V85, P97.
BRODKA A, 2002, J CHEM PHYS, V117, P8208, DOI 10.1063/1.1513151.
DARDEN T, 1993, J CHEM PHYS, V98, P10089.
DEGROOT BL, 2002, BIOPHYS J, V82, P2934.
DEGROOT BL, 2005, CURR OPIN STRUC BIOL, V15, P176, DOI 10.1016/j.sbi.2005.02.003.
DZUBIELLA J, 2004, J CHEM PHYS, V120, P5001, DOI 10.1063/1.1665656.
DZUBIELLA J, 2005, J CHEM PHYS, V122, ARTN 234706.
GONG XJ, 2007, NAT NANOTECHNOL, V2, P709, DOI 10.1038/nnano.2007.320.
GUO GY, 2007, PHYS REV B, V75, ARTN 245403.
HILLIE T, 2007, NAT NANOTECHNOL, V2, P663, DOI 10.1038/nnano.2007.350.
HOLT JK, 2006, SCIENCE, V312, P1034, DOI 10.1126/science.1126298.
HUANG CK, 2006, J CHEM PHYS, V124, ARTN 234701.
HUMMER G, 2001, NATURE, V414, P188.
JOSEPH S, 2008, NANO LETT, V8, P452, DOI 10.1021/nl072385q.
JOSEPH S, 2008, PHYS REV LETT, V101, ARTN 064502.
KANG JW, 2004, J PHYS-CONDENS MAT, V16, P3901, DOI 10.1088/0953-8984/16/23/010.
KJELLANDER R, 1998, J ELECTROANAL CHEM, V450, P233.
KONESHAN S, 1998, J PHYS CHEM B, V102, P4193.
LINDAHL E, 2001, J MOL MODEL, V7, P306.
MADHUSUDAN R, 1998, FLUID PHASE EQUILIBR, V150, P97.
MAJUMDER M, 2005, NATURE, V438, P44, DOI 10.1038/43844a.
MURAD S, 1997, MOL PHYS, V90, P671.
MURAD S, 1998, MOL PHYS, V95, P401.
OOSTENBRINK C, 2004, J COMPUT CHEM, V25, P1656, DOI 10.1002/jcc.20090.
RAGHUNATHAN AV, 2006, APPL PHYS LETT, V89, ARTN 064107.
RAGHUNATHAN AV, 2006, PHYS REV LETT, V97, ARTN 024501.
ROUX B, 1991, BIOPHYS J, V59, P961.
SHANNON MA, 2008, NATURE, V452, P301, DOI 10.1038/nature06599.
SUK ME, 2008, APPL PHYS LETT, V92, ARTN 133120.
VAITHEESWARAN S, 2004, J CHEM PHYS, V121, P7955, DOI 10.1063/1.1796271.
WON CY, 2006, J CHEM PHYS, V125, ARTN 114701.
WON CY, 2007, J AM CHEM SOC, V129, P2748, DOI 10.1021/ja0687318.
WON CY, 2008, J PHYS CHEM C, V112, P1812, DOI 10.1021/jp076747u.
YAN H, 2001, FLUID PHASE EQUILIBR, V183, P279.
YEH IC, 1999, J CHEM PHYS, V111, P3155.
ZHENG J, 2005, J CHEM PHYS, V122, ARTN 214702.
ZHU FQ, 2004, PHYS REV LETT, V93, ARTN 224501.

Cited Reference Count:
38

Times Cited:
0

Publisher:
ROYAL SOC CHEMISTRY; THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND

Subject Category:
Chemistry, Physical; Physics, Atomic, Molecular & Chemical

ISSN:
1463-9076

DOI:
10.1039/b903541a

IDS Number:
498KL

========================================================================

*Record 3 of 7.
*View Full Record: http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000270136900096
*Order Full Text [ ]

Title:
Thermally Responsive Fluid Behaviors in Hydrophobic Nanopores

Authors:
Liu, L; Zhao, JB; Culligan, PJ; Qiao, Y; Chen, X

Author Full Names:
Liu, Ling; Zhao, Jianbing; Culligan, Patricia J.; Qiao, Yu; Chen, Xi

Source:
LANGMUIR 25 (19): 11862-11868 OCT 6 2009

Language:
English

Document Type:
Article

KeyWords Plus:
CARBON NANOTUBES; MOLECULAR-DYNAMICS; INFILTRATION PRESSURE; LIQUID WATER; SILICA-GEL; SURFACE; SIMULATION; SCALE; TEMPERATURE; NANOSCALE

Abstract:
A fundamental understanding of the thermal effects on nanofluid behaviors is critical for developing and designing innovative thermally responsive nanodevices. Using molecular dynamics (MD) simulation and experiment, we investigate the temperature-dependent intrusion/adsorption of water molecules into hydrophobic nanopores (carbon nanotubes and nanoporous carbon) and the underlying mechanisms. The critical infiltration pressure is reduced for elevated temperature or increased pore size. The variation of wettability is related to the thermally responsive fluid characteristics, Such as the surface tension and contact angle, which arise from the variations of multiple atomic variables including the confined water density, hydrogen bond, and dipole orientation. With thermal perturbation, most of these physical quantities are found to be more significantly influenced in the confined nanoenvironment than in the bulk. By utilizing the prominent thermal effect at the nanoscale, the !
feasibility and prospective efficiency of employing nanofluidics for energy storage, actuation, and thermal monitoring are discussed.

Reprint Address:
Chen, X, Columbia Univ, Dept Earth & Environm Engn, MC 4711, New York, NY 10027 USA.

Research Institution addresses:
[Liu, Ling; Zhao, Jianbing; Culligan, Patricia J.; Chen, Xi] Columbia Univ, Dept Earth & Environm Engn, New York, NY 10027 USA; [Qiao, Yu] Univ Calif San Diego, Dept Struct Engn, La Jolla, CA 92093 USA

E-mail Address:
xichen@columbia.edu

Cited References:
ALEXIADIS A, 2008, CHEM REV, V108, P5014, DOI 10.1021/cr078140f.
BERENDSEN HJC, 1987, J PHYS CHEM-US, V91, P6269.
BOJAN MJ, 1987, LANGMUIR, V3, P1123.
CAILLIEZ F, 2008, PHYS CHEM CHEM PHYS, V10, P4817, DOI 10.1039/b807471b.
CHEN X, 2006, APPL PHYS LETT, V89, ARTN 241918.
CHEN X, 2008, NANO LETT, V8, P2988, DOI 10.1021/nl802046b.
CORNELL WD, 1995, J AM CHEM SOC, V117, P5179.
DARHUBER AA, 2003, APPL PHYS LETT, V82, P657, DOI 10.1063/1.1537512.
DESBIENS N, 2005, ANGEW CHEM INT EDIT, V44, P5310, DOI 10.1002/anie.200501250.
EROSHENKO V, 2001, J AM CHEM SOC, V123, P8129.
GAO YH, 2002, NATURE, V415, P599.
GORDILLO MC, 2000, CHEM PHYS LETT, V329, P341.
HAN A, 2007, APPL PHYS LETT, V91, ARTN 173123.
HAN A, 2008, CHEM ENG J, V139, P426, DOI 10.1016/j.cej.2007.12.002.
HAN AJ, 2007, CHEM LETT, V36, P882.
HAN AJ, 2008, J APPL PHYS, V104, ARTN 124908.
HOOVER WG, 1985, PHYS REV A, V31, P1695.
HUMMER G, 2001, NATURE, V414, P188.
JOSEPH S, 2008, NANO LETT, V8, P452, DOI 10.1021/nl072385q.
KATAOKA DE, 1999, NATURE, V402, P794.
KOGA K, 2001, NATURE, V412, P802.
LEE J, 2007, NANO TODAY, V2, P48.
LIU L, 2008, APPL PHYS LETT, V92, ARTN 101927.
LIU L, 2009, PHYS CHEM CHEM PHYS, V11, P6520, DOI 10.1039/b905641f.
LIU L, 2009, PHYS REV LETT, V102, ARTN 184501.
LUZAR A, 1996, NATURE, V379, P55.
PRATAP V, 2008, LANGMUIR, V24, P5185, DOI 10.1021/la7036839.
QIAO Y, 2007, J AM CHEM SOC, V129, P2355, DOI 10.1021/ja067185f.
QIAO Y, 2009, NANO LETT, V9, P984, DOI 10.1021/nl8030136.
SAMMARCO TS, 1999, AICHE J, V45, P350.
SOULARD M, 2004, STUD SURF SCI CA A-C, V154, P1830.
THOMAS JA, 2008, J CHEM PHYS, V128, ARTN 084715.
WAGNER W, 2002, J PHYS CHEM REF DATA, V31, P387.
WALTHER JH, 2001, J PHYS CHEM B, V105, P9980.
WANG J, 2004, PHYS CHEM CHEM PHYS, V6, P829, DOI 10.1039/b313307a.
WEAST RC, 1981, HDB CHEM PHYS.
WERDER T, 2001, NANO LETT, V1, P697, DOI 10.1021/nl015640u.
WERDER T, 2003, J PHYS CHEM B, V107, P1345, DOI 10.1021/jp0268112.
WON CY, 2006, J CHEM PHYS, V125, ARTN 114701.
YIN H, 2007, J AM CHEM SOC, V129, P7369, DOI 10.1021/ja070456h.
ZANGI R, 2008, J PHYS CHEM B, V112, P8634, DOI 10.1021/jp802135c.

Cited Reference Count:
41

Times Cited:
0

Publisher:
AMER CHEMICAL SOC; 1155 16TH ST, NW, WASHINGTON, DC 20036 USA

Subject Category:
Chemistry, Multidisciplinary; Chemistry, Physical; Materials Science, Multidisciplinary

ISSN:
0743-7463

DOI:
10.1021/la901516j

IDS Number:
498JV

========================================================================

*Record 4 of 7.
*View Full Record: http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000270097400039
*Order Full Text [ ]

Title:
Static and alternating electric field and distance-dependent effects on carbon nanotube-assisted water self-diffusion across lipid membranes

Authors:
Garate, JA; English, NJ; MacElroy, JMD

Author Full Names:
Garate, Jose-Antonio; English, Niall J.; MacElroy, J. M. D.

Source:
JOURNAL OF CHEMICAL PHYSICS 131 (11): Art. No. 114508 SEP 21 2009

Language:
English

Document Type:
Article

KeyWords Plus:
MOLECULAR-DYNAMICS SIMULATION; LIQUID WATER; CHANNEL; CONDUCTION

Abstract:
Water-self-diffusion through single-walled carbon nanotubes (SWCNTs) inserted normal to a phospholipid membrane has been studied using equilibrium and nonequilibrium molecular dynamics simulations in the presence of static and alternating electrical fields. Four different SWCNTs were investigated: (5,5), (6,6), (8,8), and (11,11) and also three arrays of four (6,6) SWCNTs separated by 15, 20, and 25 angstrom, respectively. The (5,5) system shows interesting behavior, where an increase in the applied field frequency in the z direction decreases the water permeation rates, reaching values at higher frequencies similar to zero-field conditions. The (6,6) arrays simulations demonstrated that there is a friction effect, when the nanotubes are closely packed, which retards the movement of the individual water files. (C) 2009 American Institute of Physics. [doi: 10.1063/1.3227042]

Reprint Address:
English, NJ, Univ Coll Dublin, SEC Strateg Res Cluster, UCD Sch Chem & Bioproc Engn, Dublin 4, Ireland.

Research Institution addresses:
[English, Niall J.] Univ Coll Dublin, SEC Strateg Res Cluster, UCD Sch Chem & Bioproc Engn, Dublin 4, Ireland; Univ Coll Dublin, Ctr Synth & Chem Biol, UCD Sch Chem & Bioproc Engn, Dublin 4, Ireland

E-mail Address:
niall.english@ucd.ie

Cited References:
ALLEN MP, 1987, COMPUTER SIMULATION.
BEREZHKOVSKII A, 2002, PHYS REV LETT, V89, UNSP 064503.
BRITZ DA, 2006, CHEM SOC REV, V35, P637, DOI 10.1039/b507451g.
DARDEN T, 1993, J CHEM PHYS, V98, P10089.
ENDO M, 2008, CARBON NANOTUBES, V111, P13.
ENGLISH NJ, 2003, J CHEM PHYS, V119, P11806, DOI 10.1063/1.1624363.
FELLER SE, 1995, J CHEM PHYS, V103, P4613.
GARATE JA, 2009, MOL SIMULAT, V35, P3, DOI 10.1080/08927020802353491.
GONG XJ, 2007, NAT NANOTECHNOL, V2, P709, DOI 10.1038/nnano.2007.320.
GREST GS, 1986, PHYS REV A, V33, P3628.
HUMMER G, 2001, NATURE, V414, P188.
HUMPHREY W, 1996, J MOL GRAPHICS, V14, P33.
IIJIMA S, 1991, NATURE, V354, P56.
JORGENSEN WL, 1983, J CHEM PHYS, V79, P926.
KAM NWS, 2005, P NATL ACAD SCI USA, V102, P11600, DOI 10.1073/pnas.0502680102.
KARLA A, 2004, P NATL ACAD SCI USA, V100, P10175.
LI JY, 2007, P NATL ACAD SCI USA, V104, P3687, DOI 10.1073/pnas.0604541104.
LIU B, 2009, NANO LETT, V9, P1386, DOI 10.1021/nl8030339.
MACKERELL AD, 1998, J PHYS CHEM B, V102, P3586.
MARTYNA GJ, 1992, J CHEM PHYS, V101, P1990.
PHILLIPS JC, 2005, J COMPUT CHEM, V26, P1781.
RYCKAERT JP, 1977, J COMPUT PHYS, V23, P327.
SIGALOV G, 2008, NANO LETT, V8, P56, DOI 10.1021/nI071890k.
SVISHCHEV IM, 1996, J AM CHEM SOC, V118, P649.
TAJKHORSHID E, 2005, HDB MAT MODELING.
TUCKERMAN ME, 1990, J CHEM PHYS, V97, P1992.
XU D, 1996, J PHYS CHEM-US, V100, P12108.
ZHU FQ, 2003, BIOPHYS J, V85, P236.

Cited Reference Count:
28

Times Cited:
0

Publisher:
AMER INST PHYSICS; CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA

Subject Category:
Physics, Atomic, Molecular & Chemical

ISSN:
0021-9606

DOI:
10.1063/1.3227042

IDS Number:
497XG

========================================================================

*Record 5 of 7.
*View Full Record: http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000270097400060
*Order Full Text [ ]

Title:
How hydrophobic hydration responds to solute size and attractions: Theory and simulations

Authors:
Athawale, MV; Jamadagni, SN; Garde, S

Author Full Names:
Athawale, Manoj V.; Jamadagni, Sumanth N.; Garde, Shekhar

Source:
JOURNAL OF CHEMICAL PHYSICS 131 (11): Art. No. 115102 SEP 21 2009

Language:
English

Document Type:
Article

KeyWords Plus:
SCALED-PARTICLE THEORY; CARBON NANOTUBE; LENGTH SCALES; WATER; NONPOLAR; LIQUIDS; ASSOCIATION; INTERFACES; MOLECULES; PROTEINS

Abstract:
We focus on the hydration of a methane and spherical single and multisite C60 and C180 solutes over a range of solute-water attractions to quantify the vicinal water structure and their hydration thermodynamics using extensive molecular dynamics simulations and theory. We show that water structure near larger solutes is more sensitive to solute-water attractions compared to that near smaller ones. To understand the sensitivity, we separate the solute-water potential of mean force into a direct solute-water interaction and an indirect or solvent contribution [omega(r)]. In the absence of omega(r), water density in the solute vicinity would increase exponentially with solute-water interactions. Instead, omega(r) becomes increasingly repulsive with strengthening of solute-water attractions thereby opposing those direct interactions. We term this phenomenon "competitive expulsion," which characterizes the repulsion of a test water molecule by the hydration shell solvent waters. !
We develop a physically motivated theoretical approach to predict changes in omega(r) with attractions. We call this approach the modified-EXP (M-EXP) approximation owing to the similarity of ideas and especially our final expression with that of the EXP approximation of Chandler and Andersen [J. Chem. Phys. 57, 1930 (1972)]. Solute-water radial distribution functions and chemical potentials calculated using the M-EXP approach are in good agreement with simulation data. These calculations highlight the sensitivity of hydration structure and thermodynamics of bucky ball like solutes to solute-water interactions. We find that excess chemical potentials of bucky balls with standard alkane-like carbon-water interactions parameters are negative, suggesting the need for a careful calibration of those parameters for predictions of solubility, wetting, and water-mediated interactions using molecular simulations. (C) 2009 American Institute of Physics. [doi: 10.1063/1.3227031]

Reprint Address:
Garde, S, Rensselaer Polytech Inst, Howard P Isermann Dept Chem & Biol Engn, Troy, NY 12180 USA.

Research Institution addresses:
[Garde, Shekhar] Rensselaer Polytech Inst, Howard P Isermann Dept Chem & Biol Engn, Troy, NY 12180 USA; Rensselaer Polytech Inst, Ctr Biotechnol & Interdisciplinary Studies, Troy, NY 12180 USA

E-mail Address:
gardes@rpi.edu

Cited References:
ANDERSEN HC, 1976, ADV CHEM PHYS, V34, P105.
ASHBAUGH HS, 2001, J AM CHEM SOC, V123, P10721.
ASHBAUGH HS, 2006, REV MOD PHYS, V78, P159, DOI 10.1103/RevModPhys.78.159.
ASTHAGIRI D, 2008, J CHEM PHYS, V128, ARTN 244512.
BARANYAI A, 1989, PHYS REV A, V40, P3817.
BENAMOTZ D, 2008, ACCOUNTS CHEM RES, V41, P957.
BERENDSEN HJC, 1981, INTERMOLECULAR FORCE.
CHANDLER D, 1972, J CHEM PHYS, V57, P1930.
CHANDLER D, 1983, SCIENCE, V220, P787.
CHANDLER D, 2005, NATURE, V437, P640, DOI 10.1038/nature04162.
CHOUDHURY N, 2005, J AM CHEM SOC, V127, P3556, DOI 10.1021/ja0441817.
CHOUDHURY N, 2007, J PHYS CHEM B, V111, P10474, DOI 10.1021/jp073571n.
CORNELL WD, 1995, J AM CHEM SOC, V117, P5179.
DAROS T, 1999, CHEM COMMUN 0421, P663.
GARDE S, 1996, FARADAY DISCUSS, V103, P125.
GARDE S, 1996, PHYS REV E, V53, P4310.
GIOVAMBATTISTA N, 2006, PHYS REV E 1, V73, ARTN 041604.
HUANG DM, 2002, J PHYS CHEM B, V106, P2047.
HUANG X, 2006, P NATL ACAD SCI USA, V103, P19605, DOI 10.1073/pnas.0609680103.
HUMMER G, 1998, PHYS REV LETT, V80, P4193.
HUMMER G, 2001, NATURE, V414, P188.
JORGENSEN WL, 1984, J AM CHEM SOC, V106, P6638.
KALRA A, 2003, P NATL ACAD SCI USA, V100, P10175.
KIRKWOOD JG, 1935, J CHEM PHYS, V3, P300.
LAZARIDIS T, 1994, J PHYS CHEM-US, V98, P635.
LI LW, 2005, J CHEM PHYS, V123, ARTN 204504.
LUM K, 1999, J PHYS CHEM B, V103, P4570.
MAIBAUM L, 2007, J PHYS CHEM B, V111, P9025, DOI 10.1021/jp072266z.
MITTAL J, 2008, P NATL ACAD SCI USA, V105, P20130, DOI 10.1073/pnas.0809029105.
PRATT LR, 1980, J CHEM PHYS, V73, P3434.
PRATT LR, 2002, ANNU REV PHYS CHEM, V53, P409.
RAJAMANI S, 2005, P NATL ACAD SCI USA, V102, P9475, DOI 10.1073/pnas.0504089102.
RASAIAH JC, 2008, ANNU REV PHYS CHEM, V59, P713.
SARUPRIA S, 2009, PHYS REV LETT, V103, ARTN 037803.
STILLINGER FH, 1973, J SOLUTION CHEM, V2, P141.
WEEKS JD, 1971, J CHEM PHYS, V54, P5237.
WERDER T, 2003, J PHYS CHEM B, V107, P1345, DOI 10.1021/jp0268112.
ZHOU SQ, 2001, SCIENCE, V291, P1944.

Cited Reference Count:
38

Times Cited:
0

Publisher:
AMER INST PHYSICS; CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA

Subject Category:
Physics, Atomic, Molecular & Chemical

ISSN:
0021-9606

DOI:
10.1063/1.3227031

IDS Number:
497XG

========================================================================

*Record 6 of 7.
*View Full Record: http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000270164800022
*Order Full Text [ ]

Title:
Direct determination of intermolecular structure of ethanol adsorbed in micropores using X-ray diffraction and reverse Monte Carlo analysis

Authors:
Iiyama, T; Hagi, K; Urushibara, T; Ozeki, S

Author Full Names:
Iiyama, Taku; Hagi, Kousuke; Urushibara, Takafumi; Ozeki, Sumio

Source:
COLLOIDS AND SURFACES A-PHYSICOCHEMICAL AND ENGINEERING ASPECTS 347 (1-3): 133-141 Sp. Iss. SI SEP 5 2009

Language:
English

Document Type:
Proceedings Paper

Author Keywords:
Intermolecular structure; XRD; Adsorption; Activated carbon fiber; Radial distribution function

KeyWords Plus:
MOLECULAR ASSEMBLY STRUCTURE; ACTIVATED CARBON-FIBERS; SIMULATION; WATER; ADSORPTION; NANOSPACE; CCL4; SCATTERING; BEHAVIOR; METHANOL

Abstract:
The intermolecular structure of C2H5OH molecules confined in slit-shaped graphitic micropore of activated carbon fiber was investigated by in situ X-ray diffraction (XRD) measurement and reverse Monte Carlo (RMC) analysis. The pseudo-3-dimensional intermolecular structure Of C2H5OH adsorbed in the micropores was determined by applying the RMC analysis to XRD data, assuming a simple slit-shaped space composed of double graphene sheets. The results were consistent with conventional Monte Carlo simulation; e.g., bilayer structure formed by hydrogen bonds among C2H5OH adsorbed at low fractional filling. The RMC method based on experimental XRD data may be a useful tool to estimate the 3-dimensional structure of adsorbed phase confined in pores. (C) 2009 Elsevier B.V. All rights reserved.

Reprint Address:
Iiyama, T, Shinshu Univ, Fac Sci, Dept Chem, 3-1-1 Asahi, Nagano 3908621, Japan.

Research Institution addresses:
[Iiyama, Taku; Hagi, Kousuke; Urushibara, Takafumi; Ozeki, Sumio] Shinshu Univ, Fac Sci, Dept Chem, Nagano 3908621, Japan

E-mail Address:
tiiyama@shinshu-u.ac.jp

Cited References:
BAKO I, 2000, J MOL LIQ, V87, P243.
BHATIA SK, 2004, LANGMUIR, V20, P9612, DOI 10.1021/la0418571i.
CHIALVO AA, 1990, J CHEM PHYS, V92, P673.
CRACKNELL RF, 1995, ACCOUNTS CHEM RES, V28, P281.
EVERETT DH, 1976, J CHEM SOC FARADAY T, V72, P619.
FUJIWARA Y, 1991, J CHEM SOC FARADAY T, V87, P2763.
GAVALDA S, 2002, LANGMUIR, V18, P2141.
GUINIER A, 1963, XRAY DIFFRACTION CRY.
HORIKE S, 2004, CHEM COMMUN, P2152, DOI 10.1039/b406883a.
HUMMER G, 2001, NATURE, V414, P188.
IIYAMA T, 1995, J PHYS CHEM-US, V99, P10075.
IIYAMA T, 1996, CHEM PHYS LETT, V259, P37.
IIYAMA T, 1997, CHEM PHYS LETT, V274, P152.
IIYAMA T, 1997, J PHYS CHEM B, V101, P3037.
IIYAMA T, 2000, RECENT ADV GAS SEPAR.
IIYAMA T, 2004, COLLOID SURFACE A, V241, P207, DOI 10.1016/j.colsurfa.2004.04.008.
KANEKO K, 1991, CHEM PHYS LETT, V176, P75.
KANEKO K, 1992, CARBON, V30, P1075.
KOGA K, 1997, PHYS REV LETT, V79, P5013.
LIYAMA T, 2000, CHEM PHYS LETT, V331, P359.
LIYAMA T, 2006, ADSORPT SCI TECHNOL, V24, P815.
MACGILLAVRY CH, 2008, INT TABLES XRAY CRYS, V4.
MATSUMOTO M, 1998, ACM T MODEL COMPUT S, V8, P3.
MCCALLUM CL, 1999, LANGMUIR, V15, P533.
MISAWA M, 2002, J CHEM PHYS, V116, P8463.
MORISHIGE K, 1992, J CHEM PHYS, V97, P2084.
OHBA T, 2004, J AM CHEM SOC, V126, P1560, DOI 10.1021/ja038842w.
OHKUBO T, 1999, J PHYS CHEM B, V103, P1859.
OHKUBO T, 2002, J AM CHEM SOC, V124, P11860, DOI 10.1021/ja027144t.
PIKUNIC J, 2001, STUDIES SURFACE SCI, V132, P647.
PUSZTAI L, 1997, MOL PHYS, V90, P533.
RUIKE M, 1994, J PHYS CHEM-US, V98, P9594.
SEATON NA, 1989, CARBON, V27, P855.
STEELE WA, 1973, SURF SCI, V36, P317.
STEWART E, 2003, J PHYS CHEM B, V107, P2333, DOI 10.1021/jp0271357.
STEWART JJP, 1989, QCPE B, V9, P10.
SUZUKI T, 1999, LANGMUIR, V15, P5870.
TAKAMIZAWA S, 2003, CRYSTENGCOMM, V5, P411, DOI 10.1039/b312553j.
VERNOV AV, 1993, J PHYS CHEM-US, V97, P7660.

Cited Reference Count:
39

Times Cited:
0

Publisher:
ELSEVIER SCIENCE BV; PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS

Subject Category:
Chemistry, Physical

ISSN:
0927-7757

DOI:
10.1016/j.colsurfa.2009.02.021

IDS Number:
498SY

========================================================================

*Record 7 of 7.
*View Full Record: http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000270096900075
*Order Full Text [ ]

Title:
Detection of defective DNA in carbon nanotubes by combined molecular dynamics/tight-binding technique

Authors:
Xu, Y; Mi, XB; Aluru, NR

Author Full Names:
Xu, Yang; Mi, Xiaobing; Aluru, N. R.

Source:
APPLIED PHYSICS LETTERS 95 (11): Art. No. 113116 SEP 14 2009

Language:
English

Document Type:
Article

KeyWords Plus:
WATER; CHANNEL; SIMULATION; NANOPORE; FLOW

Abstract:
A tight-binding method combined with molecular dynamics (MD) is used to investigate the electrostatic signals generated by DNA segments inside short semiconducting single-wall carbon nanotubes (CNTs). The trajectories of DNA, ions, and waters, obtained from MD, are used in the tight-binding method to compute the electrostatic potential. The electrostatic signals indicate that when the DNA translocates through the CNT, it is possible to identify the total number of base pairs and the relative positions of the defective base pairs in DNA chains. Our calculations suggest that it is possible to differentiate Dickerson and hairpin DNA structures by comparing the signals. (C) 2009 American Institute of Physics. [doi: 10.1063/1.3231922]

Reprint Address:
Aluru, NR, Univ Illinois, Urbana, IL 61801 USA.

Research Institution addresses:
[Xu, Yang; Mi, Xiaobing; Aluru, N. R.] Univ Illinois, Urbana, IL 61801 USA

E-mail Address:
aluru@illinois.edu

Cited References:
BAUGHMAN RH, 2002, SCIENCE, V297, P787.
BRANTON D, 2008, NAT BIOTECHNOL, V26, P1146, DOI 10.1038/nbt.1495.
DAI L, 2006, CARBON NANOTECHNOLOG.
DAVIES H, 2002, NATURE, V417, P949.
DREW HR, 1981, P NATL ACAD SCI USA, V78, P2179.
GAO HJ, 2004, ANNU REV MATER RES, V34, P123, DOI 10.1146/annurev.matsci.34.040203.120402.
GHOSH S, 2003, SCIENCE, V299, P1042, DOI 10.1126/science.1079080.
GOODFELLOW PJ, 2003, P NATL ACAD SCI USA, V100, P5908, DOI 10.1073/pnas.1030231100.
GUNSTEREN WF, 1996, BIOMOLECULAR SIMULAT.
HENG JB, 2005, NANO LETT, V5, P1883, DOI 10.1021/nl0510816.
HOLT JK, 2006, SCIENCE, V312, P1034, DOI 10.1126/science.1126298.
HUMMER G, 2001, NATURE, V414, P188.
JORGENSEN WL, 1983, J CHEM PHYS, V79, P926.
JOSEPH S, 2008, NANO LETT, V8, P452, DOI 10.1021/nl072385q.
KASIANOWICZ JJ, 1996, P NATL ACAD SCI USA, V93, P13770.
LEE JW, 2007, PERSPECTIVE BIOANALY.
LI J, 2001, NATURE, V412, P166.
LU DY, 2004, NANO LETT, V4, P2383, DOI 10.1021/nl0485511.
MAJUMDER M, 2005, NATURE, V438, P44, DOI 10.1038/43844a.
MASHL RJ, 2003, NANO LETT, V3, P589, DOI 10.1021/nl0340226.
MCNALLY B, 2008, NANO LETT, V8, P3418, DOI 10.1021/nl802218f.
SORIN EJ, 2005, BIOPHYS J, V88, P2472.
XIE YH, 2007, J CHEM PHYS, V127, ARTN 225101.
XU Y, 2007, PHYS REV B, V76, ARTN 075304.
XU Y, 2008, APPL PHYS LETT, V93, ARTN 043122.
XU Y, 2008, PHYS REV B, V77, ARTN 075313.
ZHAO X, 2007, J AM CHEM SOC, V129, P10438, DOI 10.1021/ja071844m.
ZWOLAK M, 2008, REV MOD PHYS, V80, P141, DOI 10.1103/RevModPhys.80.141.

Cited Reference Count:
28

Times Cited:
0

Publisher:
AMER INST PHYSICS; CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA

Subject Category:
Physics, Applied

ISSN:
0003-6951

DOI:
10.1063/1.3231922

IDS Number:
497XC

========================================================================
*Order Full Text*
All Customers
--------------
Please contact your library administrator, or person(s) responsible for
document delivery, to find out more about your organization's policy for
obtaining the full text of the above articles. If your organization does
not have a current document delivery provider, your administrator can
contact ISI Document Solution at service@isidoc.com, or call 800-603-4367
or 734-459-8565.

IDS Customers
--------------
IDS customers can purchase the full text of an article (having page number,
volume, and issue information) by returning this ENTIRE message as a Reply
to Sender or Forward to orders@isidoc.com. Mark your choices with an X in
the "Order Full Text: []" brackets for each item. For example, [X].

Please enter your account number here:

========================================================================
*Help Desk Contact Information*
If you have any questions, please visit the Thomson Scientific Technical Support Contact Information Web page:
http://www.thomsonscientific.com/support/techsupport
========================================================================

No comments: