Friday, October 23, 2009

ISI Web of Knowledge Alert - Hummer, G

ISI Web of Knowledge Citation Alert

Cited Article: Hummer, G. Water conduction through the hydrophobic channel of a carbon nanotube
Alert Expires: 22 OCT 2009
Number of Citing Articles: 2 new records this week (2 in this e-mail)
Organization ID: 3b97d1bbc1878baed0ab183d8b03130b
========================================================================
Note: Instructions on how to purchase the full text of an article and Help Desk Contact information are at the end of the e-mail.
========================================================================

*Record 1 of 2.
*View Full Record: http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000270594500059
*Order Full Text [ ]

Title:
Ion and Liquid Dependent Dielectric Failure in Electrowetting Systems

Authors:
Raj, B; Dhindsa, M; Smith, NR; Laughlin, R; Heikenfeld, J

Author Full Names:
Raj, Balaji; Dhindsa, Manjeet; Smith, Neil R.; Laughlin, Robert; Heikenfeld, Jason

Source:
LANGMUIR 25 (20): 12387-12392 OCT 20 2009

Language:
English

Document Type:
Article

KeyWords Plus:
SURFACTANTS; VOLTAGE; WATER; CHIP; LENS

Abstract:
Electrowetting devices often utilize aqueous solutions with ionic surfactants and inorganic salts to modify the electrowetting response. It has been observed in low-voltage electrowetting devices (thin dielectric, < 12V) that a frequent onset of dielectric failure (electrolysis) occurs with use of ionic solutes such as potassium chloride (KCl) or sodium dodecyl sulfate. More detailed current-voltage investigations reveal less dielectric failure for the larger size ions. Specifically, improved resistance to failure is seen for surfactant ions carrying it long alkane chain. Therefore, a catanionic surfactant (in Which both ions are amphiphilic) was Custom Synthesized, and elimination of dielectric failure was observed in both negative and positive voltage. Because water is a small molecule that easily penetrates dielectrics, further experiments were performed to show that dielectric failure can also be eliminated by use of larger size polar molecules such as propylene glycol. !
In addition to these results, important parameters Such as conductivity and interfacial tensions are reported.

Reprint Address:
Heikenfeld, J, Univ Cincinnati, Novel Devices Lab, Dept Elect & Comp Engn, Cincinnati, OH 45221 USA.

Research Institution addresses:
[Raj, Balaji; Dhindsa, Manjeet; Smith, Neil R.; Laughlin, Robert; Heikenfeld, Jason] Univ Cincinnati, Novel Devices Lab, Dept Elect & Comp Engn, Cincinnati, OH 45221 USA

E-mail Address:
heikenjc@ucmail.uc.edu

Cited References:
BAHENA JLR, 2002, SEPAR SCI TECHNOL, V37, P1973.
BARBARA GS, 2008, INVERTEBR NEUROSCI, V8, P19, DOI 10.1007/s10158-007-0062-2.
BERGE B, 2000, EUR PHYS J E, V3, P159.
BERRY S, 2006, J COLLOID INTERF SCI, V303, P517, DOI 10.1016/j.jcis.2006.08.004.
FAIR RB, 2007, MICROFLUID NANOFLUID, V3, P245, DOI 10.1007/s10404-007-0161-8.
GEISSLER PL, 2001, SCIENCE, V291, P2121.
HAYES RA, 2003, NATURE, V425, P383, DOI 10.1038/nature01988.
HEIKENFELD J, 2009, NAT PHOTONICS, V3, P292, DOI 10.1038/NPHOTON.2009.68.
HEIKENFELD J, 2009, OPT PHOTONICS NEWS, V20, P20.
HUMMER G, 2001, NATURE, V414, P188.
JONES TB, 2005, J MICROMECH MICROENG, V15, P1184, DOI 10.1088/0960-1317/15/6/008.
KALER EW, 1992, J PHYS CHEM-US, V96, P6698.
KHAN A, 1997, SPECIALIST SURFACTAN, P37.
KILARU MK, 1990, APPL PHYS LETT, V90, UNSP 212906.
KUIPER S, 2004, P SOC PHOTO-OPT INS, V5523, P100, DOI 10.1117/12.555980.
LAUGHLIN RG, 1996, AQUEOUS PHASE BEHAV.
LI F, 2008, APPL PHYS LETT, V92, ARTN 244108.
MOON H, 2006, LAB CHIP, V6, P1213, DOI 10.1039/b601954d.
MUGELE F, 2005, J PHYS-CONDENS MAT, V17, R705, DOI 10.1088/0953-8984/17/28/R01.
ONO YA, 1995, ELECTROLUMINESCENT D.
QUINN A, 2003, J PHYS CHEM B, V107, P1163, DOI 10.1021/jp0216326.
RACCURT O, 2007, J MICROMECH MICROENG, V17, P2217, DOI 10.1088/0960-1317/17/11/007.
VERHEIJEN HJJ, 1999, LANGMUIR, V15, P6616.
ZHOU K, 2009, J MICROMECH MICROENG, V19, UNSP 065029-065041.

Cited Reference Count:
24

Times Cited:
0

Publisher:
AMER CHEMICAL SOC; 1155 16TH ST, NW, WASHINGTON, DC 20036 USA

Subject Category:
Chemistry, Multidisciplinary; Chemistry, Physical; Materials Science, Multidisciplinary

ISSN:
0743-7463

DOI:
10.1021/la9016933

IDS Number:
504DO

========================================================================

*Record 2 of 2.
*View Full Record: http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000270670800008
*Order Full Text [ ]

Title:
Effect of Temperature on the Structure and Phase Behavior of Water Confined by Hydrophobic, Hydrophilic, and Heterogeneous Surfaces

Authors:
Giovambattista, N; Rossky, PJ; Debenedetti, PG

Author Full Names:
Giovambattista, Nicolas; Rossky, Peter J.; Debenedetti, Pablo G.

Source:
JOURNAL OF PHYSICAL CHEMISTRY B 113 (42): 13723-13734 OCT 22 2009

Language:
English

Document Type:
Article

KeyWords Plus:
MOLECULAR-DYNAMICS SIMULATIONS; THERMAL-EXPANSION; LIQUID WATER; NANOSCALE CONFINEMENT; REVERSE MICELLES; AQUEOUS-SOLUTION; EWALD SUMMATION; LENGTH SCALES; HYDRATION; PRESSURE

Abstract:
We perform molecular dynamics simulations of water confined between atomically detailed hydrophobic, hydrophilic and heterogeneous (patchy) nanoscale plates. We study the effects of temperature 220 <= T <= 300 K on confined water's behavior at various pressures -0.2 <= P <= 0.2 GPa and plate separations 0.5 <= d <= 1.6 nm. Combining this with our earlier results on the same system [Giovambattista, N.; Rossky, P. J.; Debenedetti, P. G. Phys, Rev. E: Stat., Nordinear, Soft Matter Phys. 2006, 73, 041604; Giovambattista, N.; Rossky, P. J.; Debenedetti, P. G. J. Phys. Chem. C, 2007,11, 1323], where pressure was varied at constant temperature, allows us to compare water's behavior in nanoscale confinement, upon isobaric cooling and isothermal compression, corresponding to paths of interest in protein denaturation. At a fixed temperature, water confined between hydrophobic plates can form vapor, liquid, or crystal (bilayer ice) phases. depending on the values of P and d. The P-d ph!
ase diagrams at T = 300 K and T = 220 K show that cooling, suppresses the vapor phase and stabilizes the liquid and crystal phases. The critical separation d(e)(P), below which vapor forms, shifts to lower values of d and P upon cooling. The density profiles show that, upon cooling, water approaches the hydrophobic plates. Hence, the effective hydrophobicity of the plate decreases as T decreases, consistent with the suppression of the vapor phase upon cooling, However. both the orientation of water's molecules at the interface and the water contact angle on the hydrophobic Surface show practically no temperature dependence. Simulations of water confined by heterogeneous plates decorated with hydrophobic and hydrophilic patches reveal that cooling leads to appreciable blurring of the differences between water densities at hydrophobic and hydrophilic, surfaces. This observation, together with remarkable similarities in confined water's response to isobaric cooling and to isot!
hermal compression, suggests that (fie invasion of hydrophobic!
cavitie
s by water is all important mechanism underlying both pressure and cold denaturation of proteins,

Reprint Address:
Debenedetti, PG, Princeton Univ, Dept Chem Engn, Princeton, NJ 08544 USA.

Research Institution addresses:
[Giovambattista, Nicolas; Debenedetti, Pablo G.] Princeton Univ, Dept Chem Engn, Princeton, NJ 08544 USA; [Giovambattista, Nicolas] CUNY Brooklyn Coll, Dept Phys, Brooklyn, NY 11210 USA; [Rossky, Peter J.] Univ Texas Austin, Dept Chem & Biochem, Inst Computat Engn & Sci, Austin, TX 78712 USA

E-mail Address:
pdebene@princeton.edu

Cited References:
ALLEN MD, 2004, COMPUTER SIMULATION.
ASHBAUGH HS, 2002, J CHEM PHYS, V116, P2907.
ASHBAUGH HS, 2006, REV MOD PHYS, V78, P159, DOI 10.1103/RevModPhys.78.159.
BALL P, 2008, CHEMPHYSCHEM, V9, P2677, DOI 10.1002/cphc.200800515.
BENNAIM A, 1980, HYDROPHOBIC INTERACT.
BERENDSEN HJC, 1984, J CHEM PHYS, V81, P3684.
BERENDSEN HJC, 1987, J PHYS CHEM-US, V91, P6269.
BRANDEN C, 1998, INTRO PROTEIN STRUCT.
BRATKO D, 2001, J CHEM PHYS, V115, P3873.
BROOKS CL, 1998, P NATL ACAD SCI USA, V95, P11037.
BROOKS CL, 2001, SCIENCE, V293, P612.
CASTRILLON SRV, 2009, J PHYS CHEM B, V113, P1438, DOI 10.1021/jp809032n.
CHMIOLA J, 2006, SCIENCE, V313, P1760, DOI 10.1126/science/1132195.
DAUB CD, 2007, J PHYS CHEM C, V111, P505, DOI 10.1021/jp067395e.
DERJAGUIN BV, 1986, J COLLOID INTERF SCI, V109, P586.
DILL KA, 1990, BIOCHEMISTRY-US, V29, P7133.
DOBSON CM, 1998, ANGEW CHEM INT EDIT, V37, P868.
ERRINGTON JR, 2001, NATURE, V409, P318.
FAEDER J, 2000, J PHYS CHEM B, V104, P1033.
FAEDER J, 2005, J PHYS CHEM B, V109, P6732, DOI 10.1021/jp045202m.
FERSHT AR, 1999, STRUCTURE MECH PROTE.
FROLOFF N, 1997, PROTEIN SCI, V6, P1293.
FUJIYOSHI Y, 2002, CURR OPIN STRUC BIOL, V12, P509.
GAROFALIN SH, 2008, CHEMPHYSCHEM, V9, P1997, DOI 10.1002/cphc.200800455.
GIOVAMBATTISTA N, 2006, SOFT MATTER PHYS, V73, UNSP 041604.
GIOVAMBATTISTA N, 2007, J PHYS CHEM B, V111, P9581, DOI 10.1021/jp071957s.
GIOVAMBATTISTA N, 2007, J PHYS CHEM C, V111, P1323.
GIOVAMBATTISTA N, 2008, P NATL ACAD SCI USA, V105, P2274, DOI 10.1073/pnas.0708088105.
GIOVAMBATTISTA N, 2009, PHYS REV LETT, V102, UNSP 056603.
GOEL G, 2008, J PHYS CHEM B, V112, P13193, DOI 10.1021/jp806993b.
HAMMOND C, 2001, BASICS CRYSTALLOGRAP, P31.
HARPHAM NJR, 2004, J CHEM PHYS, V121, P7855.
HARRINGTON S, 1997, J CHEM PHYS, V107, P7443.
HAWLEY SA, 1971, BIOCHEMISTRY-US, V10, P2436.
HONIG B, 1995, ADV PROTEIN CHEM, V46, P27.
HUA L, 2007, J PHYS CHEM B, V111, P9069, DOI 10.1021/jp0707923.
HUANG X, 2003, P NATL ACAD SCI USA, V100, P11953, DOI 10.1073/pnas.1934837100.
HUMMER G, 1998, P NATL ACAD SCI USA, V95, P1552.
HUMMER G, 2001, NATURE, V414, P188.
ILER RK, 1979, CHEM SILICA.
JINESH KB, 2008, PHYS REV LETT, V101, ARTN 036101.
KAUZMANN W, 1999, ADV PROTEIN CHEM, V14, P1.
KOGA K, 1997, PHYS REV LETT, V79, P5262.
KOISHI T, 2005, J CHEM PHYS, V123, ARTN 204707.
KUMAR P, 2005, PHYS REV E 1, V72, ARTN 051503.
LEE CY, 1984, J CHEM PHYS, V80, P4448.
LEE SH, 1994, J CHEM PHYS, V100, P3334.
LEUNG K, 2003, PHYS REV LETT, V90, P65502.
LEVY Y, 2006, ANNU REV BIOPH BIOM, V35, P389, DOI 10.1146/annurev.biophys.35.040405.102134.
LI LW, 2006, J PHYS CHEM B, V110, P10509, DOI 10.1021/jp060718m.
LINSE P, 1993, J AM CHEM SOC, V115, P8793.
LIPOWSKY R, 1995, STRUCTURE DYNAMICS A, V1.
LOMBARDO TG, 2009, FARADAY DISCUSS, V141, P359, DOI 10.1039/b805361h.
LOPEZ CF, 2008, J PHYS CHEM B, V112, P5961, DOI 10.1021/jp075928t.
LU L, 2006, J CHEM PHYS, V124, ARTN 101101.
LUM K, 1999, J PHYS CHEM B, V103, P4570.
LUND M, 2008, PHYS REV LETT, V100, ARTN 258105.
MEYER M, 1999, J PHYS CHEM B, V103, P9728.
NYMAND TM, 2000, J CHEM PHYS, V112, P6152.
OPITZ A, 2002, SURF SCI, V504, P199.
PATEL BA, 2007, BIOPHYS J, V93, P4116, DOI 10.1529/biophysj.107.108530.
POHL P, 2001, P NATL ACAD SCI USA, V98, P9624.
PRIVALOV PL, 1993, J MOL BIOL, V232, P660.
RAJAMANI S, 2005, P NATL ACAD SCI USA, V102, P9475, DOI 10.1073/pnas.0504089102.
RAVINDRA R, 2003, CHEMPHYSCHEM, V4, P359.
RAVIV U, 2002, J PHYS-CONDENS MAT, V14, P9275.
SANZ E, 2004, PHYS REV LETT, V92, ARTN 255701.
STARR FW, 1999, PHYS REV E A, V60, P6757.
STURTEVANT JM, 1977, P NATL ACAD SCI USA, V74, P2236.
TANFORD C, 1980, HYDROPHABIC EFFECT F.
TOUKMAJI AY, 1996, COMPUT PHYS COMMUN, V95, P73.
WERDER T, 2003, J PHYS CHEM B, V107, P1345, DOI 10.1021/jp0268112.
WIDOM B, 2003, PHYS CHEM CHEM PHYS, V5, P3085, DOI 10.1039/b304038k.
WILLIAMS DH, 1993, P NATL ACAD SCI USA, V90, P1172.
WU JZ, 2008, P NATL ACAD SCI USA, V105, P9512, DOI 10.1073/pnas.0802162105.
XU SY, 2004, MATER RES SOC SYMP P, V790, P85.
YANG B, 1997, BIOCHEMISTRY-US, V36, P7675.
ZANGI R, 2007, J AM CHEM SOC, V129, P4678, DOI 10.1021/ja068305m.
ZHU YX, 2001, PHYS REV LETT, V87, ARTN 096104.

Cited Reference Count:
79

Times Cited:
0

Publisher:
AMER CHEMICAL SOC; 1155 16TH ST, NW, WASHINGTON, DC 20036 USA

Subject Category:
Chemistry, Physical

ISSN:
1520-6106

DOI:
10.1021/jp9018266

IDS Number:
505EB

========================================================================
*Order Full Text*
All Customers
--------------
Please contact your library administrator, or person(s) responsible for
document delivery, to find out more about your organization's policy for
obtaining the full text of the above articles. If your organization does
not have a current document delivery provider, your administrator can
contact ISI Document Solution at service@isidoc.com, or call 800-603-4367
or 734-459-8565.

IDS Customers
--------------
IDS customers can purchase the full text of an article (having page number,
volume, and issue information) by returning this ENTIRE message as a Reply
to Sender or Forward to orders@isidoc.com. Mark your choices with an X in
the "Order Full Text: []" brackets for each item. For example, [X].

Please enter your account number here:

========================================================================
*Help Desk Contact Information*
If you have any questions, please visit the Thomson Scientific Technical Support Contact Information Web page:
http://www.thomsonscientific.com/support/techsupport
========================================================================

No comments: