Friday, October 16, 2009

ISI Web of Knowledge Alert - Thompson, P

ISI Web of Knowledge Citation Alert
Cited Article:   Thompson, P. A general boundary condition for liquid flow at solid surfaces
Alert Expires:   21 OCT 2009
Number of Citing Articles:   3 new records this week (3 in this e-mail)
Organization ID:   3b97d1bbc1878baed0ab183d8b03130b

Note: Instructions on how to purchase the full text of an article and Help Desk Contact information are at the end of the e-mail.

*Record 1 of 3.
*Click Here to View Full Record
*Order Full Text [ ]
Title: Shear rate threshold for the boundary slip in dense polymer films
Authors: Priezjev, NV
Author Full Names: Priezjev, Nikolai V.
Source: PHYSICAL REVIEW E 80 (3): Art. No. 031608 Part 1 SEP 2009
Language: English
Document Type: Article
KeyWords Plus: MOLECULAR-DYNAMICS SIMULATION; FLUID-SOLID INTERFACE; SURFACE-ROUGHNESS; LIQUID FLOW; NO-SLIP; MELTS; BEHAVIOR; WALL; MICROCHANNELS; HEXADECANE
Abstract: The shear rate dependence of the slip length in thin polymer films confined between atomically flat surfaces is investigated by molecular dynamics simulations. The polymer melt is described by the bead-spring model of linear flexible chains. We found that at low shear rates the velocity profiles acquire a pronounced curvature near the wall and the absolute value of the negative slip length is approximately equal to the thickness of the viscous interfacial layer. At higher shear rates, the velocity profiles become linear and the slip length increases rapidly as a function of shear rate. The gradual transition from no-slip to steady-state slip flow is associated with faster relaxation of the polymer chains near the wall evaluated from decay of the time autocorrelation function of the first normal mode. We also show that at high melt densities the friction coefficient at the interface between the polymer melt and the solid wall follows a power-law decay as a function of the sli! p velocity. At large slip velocities the friction coefficient is determined by the product of the surface-induced peak in the structure factor, the temperature, and the contact density of the first fluid layer near the solid wall.
Reprint Address: Priezjev, NV, Michigan State Univ, Dept Mech Engn, E Lansing, MI 48824 USA.
Research Institution addresses: Michigan State Univ, Dept Mech Engn, E Lansing, MI 48824 USA
Cited References: ALLEN MP, 1987, COMPUTER SIMULATION.
AOYAGI T, 2001, J CHEM PHYS, V115, P552.
BARRAT JL, 1999, FARADAY DISCUSS, V112, P119.
BARRAT JL, 1999, PHYS REV LETT, V82, P4671.
BAUDRY J, 2001, LANGMUIR, V17, P5232.
BINDER K, 1995, MONTE CARLO MOL DYNA.
BIRD RB, 1987, DYNAMICS POLYM LIQUI.
BITSANIS I, 1990, J CHEM PHYS, V92, P3827.
BITSANIS IA, 1993, J CHEM PHYS, V99, P5520.
BROCHARDWYART F, 1992, LANGMUIR, V8, P3033.
CHOI CH, 2003, PHYS FLUIDS, V15, P2897, DOI 10.1063/1.1605425.
CHURAEV NV, 1984, J COLLOID INTERF SCI, V97, P574.
CIEPLAK M, 2001, PHYS REV LETT, V86, P803.
COTTINBIZONNE C, 2002, EUR PHYS J E, V9, P47, DOI 10.1140/epje/i2002-10112-9.
CRAIG VSJ, 2001, PHYS REV LETT, V87, ARTN 054504.
DEGENNES PG, 1985, REV MOD PHYS, V57, P827.
GALEA TM, 2004, LANGMUIR, V20, P3477, DOI 10.1021/la035880k.
GREST GS, 1986, PHYS REV A, V33, P3628.
HEINBUCH U, 1989, PHYS REV A, V40, P1144.
HORN RG, 2000, J CHEM PHYS, V112, P6424.
IRVING JH, 1950, J CHEM PHYS, V18, P817.
JABBARZADEH A, 1999, J CHEM PHYS, V110, P2612.
KHARE R, 1996, MACROMOLECULES, V29, P7910.
KOIKE A, 1998, J PHYS CHEM B, V102, P3669.
KOPLIK J, 1989, PHYS FLUIDS A-FLUID, V1, P781.
KREMER K, 1990, J CHEM PHYS, V92, P5057.
MANIAS E, 1993, EUROPHYS LETT, V24, P99.
MANIAS E, 1996, LANGMUIR, V12, P4587.
MARTINI A, 2008, J FLUID MECH, V600, P257, DOI 10.1017/S0022112008000475.
MARTINI A, 2008, PHYS REV LETT, V100, ARTN 206001.
MATE CM, 2008, TRIBOLOGY SMALL SCAL.
MIGLER KB, 1993, PHYS REV LETT, V70, P287.
MUKHERJI D, 2006, PHYS REV E 1, V74, ARTN 010601.
MULLER M, 2008, J PHYS-CONDENS MAT, V20, P94225, ARTN 494225.
NIAVARANI A, 2008, J CHEM PHYS, V129, P44902, ARTN 144902.
NIAVARANI A, 2008, PHYS REV E 1, V77, ARTN 041606.
PRIEZJEV NV, 2004, PHYS REV LETT, V92, ARTN 018302.
PRIEZJEV NV, 2005, PHYS REV E 1, V71, ARTN 041608.
PRIEZJEV NV, 2006, J FLUID MECH, V554, P25, DOI 10.1017/S0022112006009086.
PRIEZJEV NV, 2007, J CHEM PHYS, V127, P44708, ARTN 144708.
PRIEZJEV NV, 2007, PHYS REV E 1, V75, ARTN 051605.
SANCHEZREYES J, 2003, LANGMUIR, V19, P3304, DOI 10.1021/la0265326.
SCHMATKO T, 2005, PHYS REV LETT, V94, ARTN 244501.
SCHMATKO T, 2006, LANGMUIR, V22, P6843, DOI 10.1021/la060061w.
SERVANTIE J, 2008, PHYS REV LETT, V101, ARTN 026101.
SMITH ED, 1996, PHYS REV B, V54, P8252.
SOKHAN VP, 2001, J CHEM PHYS, V115, P3878.
STEVENS MJ, 1997, J CHEM PHYS, V106, P7303.
THOMPSON PA, 1990, PHYS REV A, V41, P6830.
THOMPSON PA, 1995, ISR J CHEM, V35, P93.
THOMPSON PA, 1997, NATURE, V389, P360.
TOMASSONE MS, 1997, PHYS REV LETT, V79, P4798.
ULMANELLA U, 2008, PHYS FLUIDS, V20, ARTN 101512.
VINOGRADOVA OI, 1995, LANGMUIR, V11, P2213.
VINOGRADOVA OI, 2006, PHYS REV E 2, V73, ARTN 045302.
YANG SC, 2005, MOL SIMULAT, V31, P971, DOI 10.1080/08927020500423778.
ZHU YX, 2001, PHYS REV LETT, V87, P6105.
ZHU YX, 2002, LANGMUIR, V18, P10058, DOI 10.1021/la026016f.
ZHU YX, 2002, PHYS REV LETT, V88, ARTN 106102.
Cited Reference Count: 59
Times Cited: 0
Publisher: AMER PHYSICAL SOC; ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
Subject Category: Physics, Fluids & Plasmas; Physics, Mathematical
ISSN: 1539-3755
DOI: 10.1103/PhysRevE.80.031608
IDS Number: 501LM

*Record 2 of 3.
*Click Here to View Full Record
*Order Full Text [ ]
Title: Flow regimes and parameter dependence in nanochannel flows
Authors: Liu, C; Li, ZG
Author Full Names: Liu, Chong; Li, Zhigang
Source: PHYSICAL REVIEW E 80 (3): Art. No. 036302 Part 2 SEP 2009
Language: English
Document Type: Article
Author Keywords: channel flow; nanofluidics; Poiseuille flow
KeyWords Plus: FLUID-SOLID INTERFACE; MOLECULAR-DYNAMICS; BOUNDARY-CONDITIONS; SLIP LENGTH; LIQUID FLOW; SHEAR-FLOW; SURFACES; PORES
Abstract: Nanoscale fluid flow systems involve both microscopic and macroscopic parameters, which compete with each another and lead to different flow regimes. In this work, we investigate the interactions of four fundamental parameters, including the fluid-fluid, fluid-wall binding energies, temperature of the system, and driving force, and their effects on the flow motion in nanoscale Poiseuille flows. By illustrating the fluid flux as a function of a dimensionless number, which represents the effective surface effect on the fluid, we show that the fluid motion in nanochannels falls into different regimes, each of which is associated with a distinct mechanism. The mechanisms in different situations reveal the effects of the parameters on the fluid dynamics.
Reprint Address: Liu, C, Hong Kong Univ Sci & Technol, Dept Mech Engn, Clear Water Bay, Kowloon, Hong Kong, Peoples R China.
Research Institution addresses: [Liu, Chong; Li, Zhigang] Hong Kong Univ Sci & Technol, Dept Mech Engn, Kowloon, Hong Kong, Peoples R China
Cited References: ALLEN MP, 1987, COMPUTER SIMULATION.
BARRAT JL, 1999, PHYS REV LETT, V82, P4671.
BITSANIS I, 1987, J CHEM PHYS, V87, P1733.
CIEPLAK M, 2001, PHYS REV LETT, V86, P803.
GALEA TM, 2004, LANGMUIR, V20, P3477, DOI 10.1021/la035880k.
HEINBUCH U, 1989, PHYS REV A, V40, P1144.
HIPPLER H, 1983, J CHEM PHYS, V78, P6709.
HUANG CK, 2007, J CHEM PHYS, V126, P24702, ARTN 224702.
KOPLIK J, 1989, PHYS FLUIDS A-FLUID, V1, P781.
LI ZG, 2005, PHYS REV LETT, V95, ARTN 014502.
LI ZG, 2006, PHYS FLUIDS, V18, P17102, ARTN 117102.
LI ZG, 2007, J CHEM PHYS, V127, P74706.
LI ZG, 2009, PHYS REV E 2, V79, ARTN 026312.
MARTINI A, 2008, PHYS REV LETT, V100, ARTN 206001.
PRIEZJEV NV, 2007, J CHEM PHYS, V127, P44708, ARTN 144708.
PRIEZJEV NV, 2007, PHYS REV E 1, V75, ARTN 051605.
SOONG CY, 2007, PHYS REV E 2, V76, ARTN 036303.
SUN M, 1992, PHYS REV LETT, V69, P3491.
TAKABA H, 2007, J CHEM PHYS, V127, P54703, ARTN 054703.
THOMPSON PA, 1990, PHYS REV A, V41, P6830.
THOMPSON PA, 1997, NATURE, V389, P360.
TRAVIS KP, 1997, PHYS REV E, V55, P4288.
TRAVIS KP, 2000, J CHEM PHYS, V112, P1984.
VORONOV RS, 2006, J CHEM PHYS, V124, ARTN 204701.
Cited Reference Count: 24
Times Cited: 0
Publisher: AMER PHYSICAL SOC; ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
Subject Category: Physics, Fluids & Plasmas; Physics, Mathematical
ISSN: 1539-3755
DOI: 10.1103/PhysRevE.80.036302
IDS Number: 501LN

*Record 3 of 3.
*Click Here to View Full Record
*Order Full Text [ ]
Title: Molecular dynamics simulations of polymeric fluids in narrow channels: Methods to enhance mixing
Authors: Dhondi, S; Pereira, GG; Hendy, SC
Author Full Names: Dhondi, Srikanth; Pereira, Gerald G.; Hendy, Shaun C.
Source: PHYSICAL REVIEW E 80 (3): Art. No. 036309 Part 2 SEP 2009
Language: English
Document Type: Article
Author Keywords: channel flow; flow simulation; fluid oscillations; liquid mixtures; molecular dynamics method; polymer solutions; slip flow; wetting
KeyWords Plus: BOUNDARY-CONDITION; SHEAR-FLOW; SLIP; MELTS; MICROFLUIDICS; INTERFACES; HEXADECANE; SOLIDS; LIQUID
Abstract: Mixing of shear thinning polymeric fluids in long channels with patterned boundary conditions is studied through molecular dynamics simulations. Patterned wettability was shown to induce spatially varying slip lengths at the channel walls which in turn induce mixing in the fluid. To quantify the amount of mixing for different wave lengths of patterns, transverse velocity profiles were evaluated. The transverse velocity profiles from the molecular dynamics simulations were then compared with predictions from continuum modeling and good quantitative agreement was found. Offsetting the pattern was shown to produce better mixing in the center of the channel. Transverse flow is found to increase when the radius of gyration of the chains is smaller than the pattern length. We also implement an oscillating (time dependent) body force and find that the transverse flow increases significantly. However, we do not find an increase in transverse flow with frequency of the oscillation as! predicted from continuum modeling and we postulate reasons for this behavior.
Reprint Address: Dhondi, S, Victoria Univ Wellington, Sch Chem & Phys Sci, MacDiarmid Inst Adv Mat & Nanotechnol, Wellington 6011, New Zealand.
Research Institution addresses: [Dhondi, Srikanth; Hendy, Shaun C.] Victoria Univ Wellington, Sch Chem & Phys Sci, MacDiarmid Inst Adv Mat & Nanotechnol, Wellington 6011, New Zealand; [Pereira, Gerald G.] CSIRO Math & Informat Sci, Clayton 3169, Australia
Cited References: ALLEN MP, 1987, COMPUTER SIMULATION.
AOYAGI T, 2000, COMPUT THEOR POLYM S, V10, P317.
AUHL R, 2003, J CHEM PHYS, V119, P12718, DOI 10.1063/1.1628670.
BARRAT JL, 1999, PHYS REV LETT, V82, P4671.
BEEBE DJ, 2002, ANNU REV BIOMED ENG, V4, P261, DOI 10.1146/annurev.bioeng.4.112601.125916.
BIRD RB, 1987, DYNAMICS POLYM LIQUI, V1.
BYUN D, 2008, PHYS FLUIDS, V20, P13601, ARTN 113601.
CHOI CH, 2003, PHYS FLUIDS, V15, P2897, DOI 10.1063/1.1605425.
COTTINBIZONNE C, 2003, NAT MATER, V2, P237, DOI 10.1038/nmat857.
GRANICK S, 2003, NAT MATER, V2, P221.
GREST GS, 1986, PHYS REV A, V33, P3628.
HENDY SC, 2005, PHYS REV E 2, V72, ARTN 016303.
IRVING JH, 1950, J CHEM PHYS, V18, P817.
JABBARZADEH A, 1999, J CHEM PHYS, V110, P2612.
JABBARZADEH A, 2003, MACROMOLECULES, V36, P5020, DOI 10.1021/ma025782q.
KHARE R, 1996, MACROMOLECULES, V29, P7910.
KUKSENOK O, 2002, PHYS REV E 1, V65, ARTN 031502.
LAUGA E, 2003, J FLUID MECH, V489, P55, DOI 10.1017/S0022112003004695.
NAGAYAMA G, 2004, INT J HEAT MASS TRAN, V47, P501, DOI 10.1016/j.ijheatmasstransfer.2003.07.013.
NGUYEN NT, 2005, J MICROMECH MICROENG, V15, R1, DOI 10.1088/0960-1317/15/2/R01.
NIAVARANI A, 2008, PHYS REV E 1, V77, ARTN 041606.
OTTINO JM, 2004, PHILOS T ROY SOC A, V362, P923, DOI 10.1098/rsta.2003.1355.
OU J, 2007, PHYS REV E 2, V76, ARTN 016304.
PEREIRA GG, 2009, J NON-NEWTON FLUID, V157, P197, DOI 10.1016/j.jnnfm.2008.11.012.
PIT R, 2000, PHYS REV LETT, V85, P980.
PRIEZJEV NV, 2004, PHYS REV LETT, V92, ARTN 018302.
THOMPSON PA, 1990, PHYS REV A, V41, P6830.
THOMPSON PA, 1997, NATURE, V389, P360.
TODD BD, 1995, PHYS REV E, V52, P1627.
TRAVIS KP, 1997, PHYSICA A, V240, P315.
ZHU YX, 2001, PHYS REV LETT, V87, P6105.
ZHU YX, 2002, PHYS REV LETT, V88, ARTN 106102.
Cited Reference Count: 32
Times Cited: 0
Publisher: AMER PHYSICAL SOC; ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
Subject Category: Physics, Fluids & Plasmas; Physics, Mathematical
ISSN: 1539-3755
DOI: 10.1103/PhysRevE.80.036309
IDS Number: 501LN

Order Full Text

All Customers
    Please contact your library administrator, or person(s) responsible for document delivery, to find out more about your organization's policy for obtaining the full text of the above articles. If your organization does not have a current document delivery provider, your administrator can contact ISI Document Solution at service@isidoc.com, or call 800-603-4367 or 734-459-8565.
IDS Customers
    IDS customers can purchase the full text of an article (having page number, volume, and issue information) by returning this ENTIRE message as a Reply to Sender or Forward to orders@isidoc.com. Mark your choices with an X in the "Order Full Text: []" brackets for each item. For example, [X].

 Please enter your account number here:

Help Desk Contact Information
If you have any questions, please visit the Thomson Scientific Technical Support Contact Information Web page.


No comments: