Cited Article:    Holt JK. Fast mass transport through sub-2-nanometer carbon nanotubes
 Alert Expires:    09 NOV 2010
 Number of Citing Articles:    2 new records this week (2 in this e-mail)
 Organization ID:  3b97d1bbc1878baed0ab183d8b03130b
========================================================================
 Note:  Instructions on how to purchase the full text of an article, import the records into an 
 ISI ResearchSoft product, and Help Desk Contact information are at the end of the e-mail.
========================================================================
FN ISI Export Format
VR 1.0
PT J
*Record 1 of 2. 
L5 <http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;UT=000276551500002>
*Order Full Text [ ]
AU Majumder, M
   Stinchcomb, A
   Hinds, BJ
AF Majumder, Mainak
   Stinchcomb, Audra
   Hinds, Bruce J.
TI Towards mimicking natural protein channels with aligned carbon nanotube
   membranes for active drug delivery
SO LIFE SCIENCES
LA English
DT Review
DE Drug delivery; Biomimetic; Nanostructure; Gatekeeper; Membrane;
   Transdermal; Nanoporous
ID WATER; TRANSPORT; POLYSTYRENE; GROWTH; FLOW
AB Aims: Carbon nanotube (CNT) membranes offer an exciting opportunity to
   mimic natural protein channels due to 1) a mechanism of dramatically
   enhanced fluid flow 2) ability to place 'gatekeeper' chemistry at the
   entrance to pores 3) the ability for biochemical reactions to occur on
   gatekeeper molecules and 4) an ability to chemically functionalize each
   side of the membrane independently.
   Main methods: Aligned CNT membranes were fabricated and CNT pore
   entrances modified with gatekeeper chemistry. Pressure driven fluid
   flow and diffusion experiments were performed to study the mechanisms
   of transport through CNTs.
   Key findings: The transport mechanism through CNT membranes is
   primarily 1) ionic diffusion near bulk expectation 2) gas flow enhanced
   1-2 orders of magnitude primarily due to specular reflection 3) fluid
   flow 4-5 orders of magnitude faster than conventional materials due to
   a nearly ideal slip-boundary interface. The transport can be modulated
   by 'gatekeeper' chemistry at the pore entrance using steric hindrance,
   electrostatic attraction/repulsion, or biochemical state. The
   conformation of charged tethered molecules can be modulated by applied
   bias setting the stage for programmable drug release devices.
   Significance: The membrane structure is mechanically far more robust
   than lipid bilayer films, allowing for large-scale chemical
   separations, delivery or sensing based on the principles of protein
   channels. The performance of protein channels is several orders of
   magnitude faster than conventional membrane materials. The fundamental
   requirements of mimicking protein channels are present in the CNT
   membrane system. Crown Copyright (C) 2009 Published by Elsevier Inc.
   All rights reserved.
C1 [Majumder, Mainak; Hinds, Bruce J.] Univ Kentucky, Dept Chem & Mat Engn, Lexington, KY 40502 USA.
   [Stinchcomb, Audra] Univ Kentucky, Coll Pharm, Lexington, KY 40502 USA.
RP Hinds, BJ, Univ Kentucky, Dept Chem & Mat Engn, Lexington, KY 40502 USA.
EM bjhinds@engr.uky.edu
CR ANDREWS R, 1999, CHEM PHYS LETT, V303, P467
   BAHR JL, 2001, CHEM MATER, V13, P3823
   CHOPRA N, 2005, ADV FUNCT MATER, V15, P858, DOI 10.1002/adfm.200400399
   HILLE B, 1984, IONIC CHANNELS EXCIT
   HINDS BJ, 2004, SCIENCE, V303, P62, DOI 10.1126/science.1092048
   HOLT JK, 2006, SCIENCE, V312, P1034, DOI 10.1126/science.1126298
   HOLT JK, 2006, SCIENCE, V312, P1034, DOI 10.1126/science.1126298
   HUANG SM, 2002, J PHYS CHEM B, V106, P3543
   HUMMER G, 2001, NATURE, V414, P188
   JIRAGE KB, 1997, SCIENCE, V278, P655
   JOSEPH S, 2008, NANO LETT, V8, P452, DOI 10.1021/nl072385q
   LAUGA E, 2005, HDB EXPT FLUID DYNAM
   LEE SB, 2002, SCIENCE, V296, P2198
   MAJUMDER M, 2005, J AM CHEM SOC, V127, P9062, DOI 10.1021/ja043013b
   MAJUMDER M, 2005, NATURE, V438, P44, DOI 10.1038/43844a
   MAJUMDER M, 2007, LANGMUIR, V23, P8624, DOI 10.1021/la700686k
   MAJUMDER M, 2008, J MEMBRANE SCI, V316, P89, DOI
   10.1016/j.memsci.2007.09.068
   MAO ZG, 2001, J PHYS CHEM B, V105, P6916, DOI 10.1021/jp0103272
   MERKULOV VI, 2002, APPL PHYS LETT, V80, P4816
   MITCHELL CA, 2002, MACROMOLECULES, V35, P8825, DOI 10.1021/ma020890y
   MULDER M, 1994, BASIC PRINCIPLES MEM
   MURATA K, 2000, NATURE, V407, P599
   NEDNOOR P, 2005, CHEM MATER, V17, P3595, DOI 10.1021/cm047844s
   NEDNOOR P, 2007, J MATER CHEM, V17, P1755, DOI 10.1039/b703365f
   OHBA T, 2005, NANO LETT, V5, P227, DOI 10.1021/nl048327b
   QIAN D, 2000, APPL PHYS LETT, V76, P2868
   REN ZF, 1998, SCIENCE, V282, P1105
   SINNOTT SB, 1999, CHEM PHYS LETT, V315, P25
   SKOULIDAS AL, 2002, PHYS REV LETT, V89
   SOKHAN VP, 2002, J CHEM PHYS, V117, P8531, DOI 10.1063/1.1512643
   STEINLE ED, 2002, ANAL CHEM, V74, P2416
   WONG SS, 1998, J AM CHEM SOC, V120, P8557
   ZHANG ZJ, 2000, APPL PHYS LETT, V77, P3764
NR 33
TC 1
PU PERGAMON-ELSEVIER SCIENCE LTD; THE BOULEVARD, LANGFORD LANE,
   KIDLINGTON, OXFORD OX5 1GB, ENGLAND
SN 0024-3205
DI 10.1016/j.lfs.2009.04.006
PD APR 10
VL 86
IS 15-16
BP 563
EP 568
SC Medicine, Research & Experimental; Pharmacology & Pharmacy
GA 581UY
UT ISI:000276551500002
ER
PT J
*Record 2 of 2. 
L5 <http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;UT=000276341700026>
*Order Full Text [ ]
AU Zhang, YY
   Gregoire, JM
   van Dover, RB
   Hart, AJ
AF Zhang, Yongyi
   Gregoire, John M.
   van Dover, R. B.
   Hart, A. John
TI Ethanol-Promoted High-Yield Growth of Few-Walled Carbon Nanotubes
SO JOURNAL OF PHYSICAL CHEMISTRY C
LA English
DT Article
ID FORESTS; WATER; CATALYSTS; ARRAYS; SIZE
AB We report the use of a small concentration of ethanol in addition to
   ethylene as the carbon source for growth of dense vertically aligned
   "forests" of few-walled carbon nanotubes (CNTs) Through a detailed
   comparison of CNTs vi own with and without ethanol added to the
   C2H4/H-2 feedstock, we quantify several important effects of the
   ethanol addition We show that ethanol selectively reduces the number of
   CNT walls without changing the outer diameter, increases the catalyst
   lifetime more than 3-fold, and increases the rate of carbon conversion
   more than 5-fold Online dewpoint and mass spectrometry measurements of
   the exhaust stream suggest that ethanol decomposes into active carbon
   species that enhance growth, and into H2O, which counteracts the
   accumulation of amorphous carbon and thus prolongs the catalyst
   lifetime We performed a systematic study of the effect of the catalyst
   film thickness, and identify a set of conditions that provides growth
   of millimeter-tall double-walled CNT forests Importantly, our study
   reveals that the chemistry or the CVD atmosphere alone. plays a
   critical role in controlling the structure of CNTs, and that addition
   of ethanol results in few-walled CNTs over a broad range of growth
   conditions These findings ale an important step toward the ultimate
   goal of control of CNT chirality during synthesis as well as toward
   realization of important large-scale applications of aligned CNT films
   having high monodispersity and structural quality.
C1 [Zhang, Yongyi; Hart, A. John] Univ Michigan, Dept Mech Engn, Mechanosynth Grp, Ann Arbor, MI 48109 USA.
   [Gregoire, John M.; van Dover, R. B.] Cornell Univ, Dept Mat Sci & Engn, Ithaca, NY 14853 USA.
   [Gregoire, John M.; van Dover, R. B.] Cornell Univ, Cornell Fuel Cell Inst, Ithaca, NY 14853 USA.
RP Hart, AJ, Univ Michigan, Dept Mech Engn, Mechanosynth Grp, 2350 Hayward
   St, Ann Arbor, MI 48109 USA.
CR AMAMA PB, 2009, NANO LETT, V9, P44, DOI 10.1021/nl801876h
   BEDEWY M, 2009, J PHYS CHEM C, V113, P20576, DOI 10.1021/jp904152v
   CHATTOPADHYAY D, 2001, J AM CHEM SOC, V123, P9451
   CHEN GH, 2008, NANOTECHNOLOGY, V19, ARTN 415703
   CHRISTEN HM, 2004, NANO LETT, V4, P1939, DOI 10.1021/nl048856f
   EINARSSON E, 2008, CARBON, V46, P923, DOI 10.1016/j.carbon.2008.02.021
   FAN S, 1999, SCIENCE, V283, P5401
   FORNASIERO F, 2008, P NATL ACAD SCI USA, V105, P17250, DOI
   10.1073/pnas.0710437105
   FUTABA DN, 2005, PHYS REV LETT, V95, ARTN 056104
   FUTABA DN, 2006, J PHYS CHEM B, V110, P8035, DOI 10.1021/jp060080e
   FUTABA DN, 2009, ADV MATER, V21, P4811, DOI 10.1002/adma.200901257
   GARCIA EJ, 2008, COMPOS PART A-APPL S, V39, P1065, DOI
   10.1016/j.compositesa.2008.03.011
   GREGOIRE JM, 2007, REV SCI INSTRUM, V78, ARTN 072212
   HATA K, 2004, SCIENCE, V306, P1362
   HINDS BJ, 2004, SCIENCE, V303, P62, DOI 10.1126/science.1092048
   HOLT JK, 2006, SCIENCE, V312, P1034, DOI 10.1126/science.1126298
   JIANG KL, 2002, NATURE, V419, P801
   KUKOVITSKY EF, 2002, CHEM PHYS LETT, V355, P497
   LI J, 2004, J PHYS CHEM A, V108, P7671, DOI 10.1021/jp0480302
   LI XS, 2005, NANO LETT, V5, P1997, DOI 10.1021/nl051486q
   LI XS, 2008, NANOTECHNOLOGY, V19, ARTN 455609
   LIU K, 2005, CARBON, V43, P2850, DOI 10.1016/j.carbon.2005.06.002
   MARUYAMA S, 2005, CHEM PHYS LETT, V403, P320, DOI
   10.1016/j.cplett.2005.01.031
   MESHOT ER, 2009, ACS NANO, V3, P2477, DOI 10.1021/nn900446a
   NODA S, 2006, CARBON, V44, P1414, DOI 10.1016/j.carbon.2005.11.026
   PFEIFFER R, 2008, TOP APPL PHYS, V111, P495
   PINT CL, 2009, CHEM MATER, V21, P1550, DOI 10.1021/cm8031626
   PINT CL, 2009, J PHYS CHEM C, V113, P4125, DOI 10.1021/jp8070585
   PLATA DL, 2009, ENVIRON SCI TECHNOL, V42, P8367
   POLSEN ES, 2009, INT C COMP MAT BRIT
   QU LT, 2008, SCIENCE, V322, P238, DOI 10.1126/science.1159503
   SON YW, 2005, NANOTECHNOLOGY, V16, P125, DOI 10.1088/0957-4484/16/1/025
   SUGIME H, 2009, CARBON, V47, P234, DOI 10.1016/j.carbon.2008.10.001
   WEI JQ, 2007, NANO LETT, V7, P2317, DOI 10.1021/nl070961c
   XIANG R, 2009, J PHYS CHEM C, V113, P7511, DOI 10.1021/jp810454f
   YAMADA T, 2006, NAT NANOTECHNOL, V1, P131, DOI 10.1038/nnano.2006.95
   YANG L, 2009, J AM CHEM SOC, V131, P12373, DOI 10.1021/ja9044554
   YASUDA S, 2009, NANO LETT, V9, P769, DOI 10.1021/nl803389v
   YILDIRIM T, 2005, PHYS REV LETT, V94, ARTN 175501
   ZHANG GY, 2005, P NATL ACAD SCI USA, V102, P16141, DOI
   10.1073/pnas.0507064102
NR 40
TC 0
PU AMER CHEMICAL SOC; 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 1932-7447
DI 10.1021/jp100358j
PD APR 15
VL 114
IS 14
BP 6389
EP 6395
SC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science,
   Multidisciplinary
GA 579BP
UT ISI:000276341700026
ER
EF
========================================================================
 *Order Full Text* 
 All Customers
--------------
    Please contact your library administrator, or person(s) responsible for 
    document delivery, to find out more about your organization's policy for 
    obtaining the full text of the above articles. If your organization does 
    not have a current document delivery provider, your administrator can 
    contact ISI Document Solution at service@isidoc.com, or call 800-603-4367 
    or 734-459-8565.
 IDS Customers
--------------
    IDS customers can purchase the full text of an article (having page number, 
    volume, and issue information) by returning this ENTIRE message as a Reply 
    to Sender or Forward to orders@isidoc.com. Mark your choices with an X in 
    the "Order Full Text: []" brackets for each item. For example, [X].
Please enter your account number here:
========================================================================
 *Import Records into an ISI ResearchSoft product*
 1) Save the email as a text file. If your e-mail software removed extra line breaks, restore them before saving.
 2) From within an ISI ResearchSoft product, import the text file using the ISI-CE filter.
========================================================================
 *Help Desk Contact Information*
 If you have any questions, please visit the Thomson Scientific Technical Support Contact Information Web page:
http://www.thomsonscientific.com/support/techsupport
========================================================================
 
No comments:
Post a Comment