Friday, April 9, 2010

ISI Web of Knowledge Alert - Hummer, G

ISI Web of Knowledge Citation Alert

Cited Article: Hummer, G. Water conduction through the hydrophobic channel of a carbon nanotube
Alert Expires: 09 NOV 2010
Number of Citing Articles: 5 new records this week (5 in this e-mail)
Organization ID: 3b97d1bbc1878baed0ab183d8b03130b
========================================================================
Note: Instructions on how to purchase the full text of an article and Help Desk Contact information are at the end of the e-mail.
========================================================================

*Record 1 of 5.
*View Full Record: http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000276006900006
*Order Full Text [ ]

Title:
Confined Liquid Flow in Nanotube: A Numerical Study and Implications for Energy Absorption

Authors:
Zhao, JB; Qiao, Y; Culligan, PJ; Chen, X

Author Full Names:
Zhao, Jianbing; Qiao, Yu; Culligan, Patricia J.; Chen, Xi

Source:
JOURNAL OF COMPUTATIONAL AND THEORETICAL NANOSCIENCE 7 (2): 379-387 FEB 2010

Language:
English

Document Type:
Article

Author Keywords:
Nanofluid; Transport; Numerical Simulation

KeyWords Plus:
NANOPOROUS SILICA-GEL; CARBON NANOTUBES; MECHANOSENSITIVE CHANNELS; MOLECULAR-DYNAMICS; GATING MECHANISMS; LARGE-CONDUCTANCE; SURFACE-TREATMENT; WATER; INFILTRATION; NANOSCALE

Abstract:
Understanding nanofluidic behavior is of fundamental value to the development of many potential nano-technology applications, including high-performance energy absorption. We carry out non-equilibrium molecular dynamics (NEMD) simulations to study the transport characteristics of liquids in a confined nano-environment. It is shown that the distributed electric field arising from either an electrolyte water solution (due to the dissolved ions) or a partially charged solid surface, could lead to nanofluidic properties that are significantly different to those associated with pure water or a neutral nanotube. In addition, the nanopore size and the transport rate are shown to be important factors that strongly influence the flow process. The nominal viscosity and the shearing stress between the nanofluid and tube wall, which characterize the ease for nanofluid transport under an external driving force, are found to be dependent on the liquid phase and solid phase properties, as !
well as liquid flow rate and nanotube size. By varying properties of liquid phase and solid phase, liquid flow rate and nanotube size, the energy absorption characteristics of nanofluidic devices might be adjusted.

Reprint Address:
Chen, X, Columbia Univ, Sch Engn & Appl Sci, New York, NY 10027 USA.

Research Institution addresses:
[Zhao, Jianbing; Culligan, Patricia J.; Chen, Xi] Columbia Univ, Sch Engn & Appl Sci, New York, NY 10027 USA; [Qiao, Yu] Univ Calif San Diego, Dept Struct Engn, La Jolla, CA 92093 USA; [Qiao, Yu] Univ Calif San Diego, Program Mat Sci & Engn, La Jolla, CA 92093 USA; [Chen, Xi] Columbia Univ, Dept Earth & Environm Engn, New York, NY 10027 USA; [Chen, Xi] Hanyang Univ, Dept Civil & Environm Engn, Seoul 133791, South Korea

Cited References:
CAO GX, 2008, MOL SIMULAT, V34, P1267, DOI 10.1080/08927020802175225.
CAO GX, 2008, PHIL MAG LETT, V88, P371, DOI 10.1080/09500830802050415.
CHEN X, 2006, APPL PHYS LETT, V89, ARTN 241918.
CHEN X, 2008, BIOPHYS J, V95, P563, DOI 10.1529/biophysj.107.128488.
CHEN X, 2008, NANO LETT, V8, P2988, DOI 10.1021/nl802046b.
DILEO JM, 2003, J MOL STRUC-THEOCHEM, V623, P159.
HAN A, 2007, J MATER RES, V22, P3538, DOI 10.1557/JMR.2007.0446.
HAN A, 2007, J PHYS D APPL PHYS, V40, P5743, DOI 10.1088/0022-3727/40/18/035.
HAN A, 2008, APPL PHYS LETT, V92, ARTN 153117.
HAN A, 2008, LANGMUIR, V24, P7044, DOI 10.1021/la800446z.
HAN AJ, 2007, CHEM LETT, V36, P882.
HAN AJ, 2007, LANGMUIR, V23, P11396, DOI 10.1021/la702606s.
HANASAKI I, 2006, J CHEM PHYS, V124, ARTN 144708.
HOCKNEY R, 1981, COMPUTER SIMULATION.
HOLT JK, 2006, SCIENCE, V312, P1034, DOI 10.1126/science.1126298.
HUMMER G, 2001, NATURE, V414, P188.
HWANG MJ, 1994, J AM CHEM SOC, V116, P2515.
JOSEPH S, 2008, NANO LETT, V8, P452, DOI 10.1021/nl072385q.
KALRA A, 2003, P NATL ACAD SCI USA, V100, P10175.
KIM T, 2009, APPL PHYS LETT, V94, ARTN 013105.
KOGA K, 1997, PHYS REV LETT, V79, P5262.
KOLESNIKOV AI, 2004, PHYS REV LETT, V93, ARTN 035503.
KONG XG, 2006, PHYS SCRIPTA, V74, P531, DOI 10.1088/0031-8949/74/5/006.
LIU L, 2008, APPL PHYS LETT, V92, ARTN 101927.
LIU L, 2009, PHYS REV LETT, V102, ARTN 184501.
LIU YC, 2005, PHYS REV B, V72, ARTN 085420.
MAJUMDER M, 2005, NATURE, V438, P44, DOI 10.1038/43844a.
MANN DJ, 2003, PHYS REV LETT, V90, ARTN 195503.
PETTITT BM, 1986, J CHEM PHYS, V84, P5836.
PLIMPTON S, 1995, J COMPUT PHYS, V117, P1.
PUNYAMURTULA VK, 2007, MATER RES INNOV, V11, P37, DOI 10.1179/143307507X196211.
QIAO Y, 2007, J AM CHEM SOC, V129, P2355, DOI 10.1021/ja067185f.
RAUSCHER M, 2008, ANNU REV MATER RES, V38, P143, DOI 10.1146/annurev.matsci.38.060407.132451.
ROTHSTEIN JP, 1999, J NON-NEWTON FLUID, V86, P61.
SANSOM MSP, 2001, NATURE, V414, P156.
SEMWOGERERE D, 2007, J FLUID MECH, V581, P437, DOI 10.1017/S0022112007006088.
SKOULIDAS AI, 2002, PHYS REV LETT, V89, ARTN 185901.
SURANI FB, 2005, APPL PHYS LETT, V87, P16311.
SURANI FB, 2006, J APPL PHYS, V100, ARTN 034311.
TANG YY, 2006, BIOPHYS J, V91, P1248, DOI 10.1529/biophysj.106.085985.
TANG YY, 2008, BIOPHYS J, V95, P581, DOI 10.1529/biophysj.107.128496.
VAITHEESWARAN S, 2004, J CHEM PHYS, V121, P7955, DOI 10.1063/1.1796271.
XU JL, 2004, INT J NUMER METHOD H, V14, P664, DOI 10.1108/09615530410539973.
ZOU J, 2006, SMALL, V2, P1348, DOI 10.1002/smll.200600055.

Cited Reference Count:
44

Times Cited:
0

Publisher:
AMER SCIENTIFIC PUBLISHERS; 25650 NORTH LEWIS WAY, STEVENSON RANCH, CA 91381-1439 USA

Subject Category:
Chemistry, Multidisciplinary; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter

ISSN:
1546-1955

DOI:
10.1166/jctn.2010.1369

IDS Number:
574QM

========================================================================

*Record 2 of 5.
*View Full Record: http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000276007100002
*Order Full Text [ ]

Title:
Tunable Core Size of Carbon Nanoscrolls

Authors:
Shi, XH; Pugno, NM; Gao, HJ

Author Full Names:
Shi, Xinghua; Pugno, Nicola M.; Gao, Huajian

Source:
JOURNAL OF COMPUTATIONAL AND THEORETICAL NANOSCIENCE 7 (3): 517-521 MAR 2010

Language:
English

Document Type:
Article

Author Keywords:
Carbon Nanoscrolls; Molecular Dynamics; Core Size

KeyWords Plus:
PARTICLE MESH EWALD; MOLECULAR-DYNAMICS; HYDROGEN STORAGE; NANOTUBES; WATER; CONDUCTION; SIMULATION; INSERTION; CHANNEL; ENERGY

Abstract:
We study the equilibrium core radius of a carbon nanoscroll (CNS) formed from spontaneous rolling of a graphene sheet. By a balance between the elastic bending energy and the van der Waals interaction energy in the system, we derive an analytical relation between the surface energy, the bending stiffness, the interlayer spacing, the length of a graphene sheet and the core radius of the resulting CNS. This relation is then quantitatively verified by molecular dynamics simulations. Our work immediately suggests that the core size of a CNS can be actively controlled for applications such as tunable water and ion channels, molecular sensors, as well as flexible gene and drug delivery systems.

Reprint Address:
Shi, XH, Brown Univ, Div Engn, 610 Barus & Holley, Providence, RI 02912 USA.

Research Institution addresses:
[Shi, Xinghua; Gao, Huajian] Brown Univ, Div Engn, Providence, RI 02912 USA; [Pugno, Nicola M.] Politecn Torino, Dept Struct Engn, I-10129 Turin, Italy

Cited References:
AVOURIS P, 2002, ACCOUNTS CHEM RES, V35, P1026, DOI 10.1021/ar010152e.
BRAGA SF, 2004, NANO LETT, V4, P881, DOI 10.1021/nl0497272.
BRAGA SF, 2007, CHEM PHYS LETT, V441, P78, DOI 10.1016/j.cplett.2007.04.060.
BRENNER DW, 2002, J PHYS-CONDENS MAT, V14, P783.
CHEN Y, 2007, J PHYS CHEM C, V111, P1625, DOI 10.1021/jp066030r.
COLUCI VR, 2007, PHYS REV B, V75, ARTN 125404.
DARDEN T, 1993, J CHEM PHYS, V98, P10089.
ESSMANN U, 1995, J CHEM PHYS, V103, P8577.
GAO HJ, 2003, NANO LETT, V3, P471, DOI 10.1021/nl025967a.
HESS B, 2008, J CHEM THEORY COMPUT, V4, P435, DOI 10.1021/ct700301q.
HUMMER G, 2001, NATURE, V414, P188.
JORGENSEN WL, 1983, J CHEM PHYS, V79, P926.
LACERDA L, 2006, ADV DRUG DELIVER REV, V58, P1460, DOI 10.1016/j.addr.2006.09.015.
LANGLET R, 2006, CARBON, V44, P2883, DOI 10.1016/j.carbon.2006.05.050.
LI JY, 2007, P NATL ACAD SCI USA, V104, P3687, DOI 10.1073/pnas.0604541104.
LIU GR, 2005, INT J MOD PHYS C, V16, P1239.
MAHESHWARI R, 2004, J COLLOID INTERF SCI, V271, P419, DOI 10.1016/j.jcis.2003.11.060.
MELLER A, 2000, P NATL ACAD SCI USA, V97, P1079.
MPOURMPAKIS G, 2007, NANO LETT, V7, P1893, DOI 10.1021/nl070530u.
RURALI R, 2006, PHYS REV B, V74, ARTN 085414.
SAVOSKIN MV, 2007, CARBON, V45, P2797, DOI 10.1016/j.carbon.2007.09.031.
SHIOYAMA H, 2003, CARBON, V41, P179.
VICULIS LM, 2003, SCIENCE, V299, P1361.
WALTHER JH, 2001, J PHYS CHEM B, V105, P9980.
ZHU FQ, 2003, BIOPHYS J, V85, P236.
ZOU J, 2006, NANO LETT, V6, P430, DOI 10.1021/nl052289u.

Cited Reference Count:
26

Times Cited:
0

Publisher:
AMER SCIENTIFIC PUBLISHERS; 25650 NORTH LEWIS WAY, STEVENSON RANCH, CA 91381-1439 USA

Subject Category:
Chemistry, Multidisciplinary; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter

ISSN:
1546-1955

DOI:
10.1166/jctn.2010.1387

IDS Number:
574QN

========================================================================

*Record 3 of 5.
*View Full Record: http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000275843700003
*Order Full Text [ ]

Title:
Dynamic and energetic mechanisms for the distinct permeation rate in AQP1 and AQP0

Authors:
Qiu, H; Ma, SJ; Shen, R; Guo, WL

Author Full Names:
Qiu, Hu; Ma, Shaojie; Shen, Rong; Guo, Wanlin

Source:
BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 1798 (3): 318-326 MAR 2010

Language:
English

Document Type:
Article

Author Keywords:
Aquaporin; Molecular dynamics; Water conduction; Energetic mechanism

KeyWords Plus:
AQUAPORIN WATER CHANNELS; MOLECULAR-DYNAMICS; PROTON EXCLUSION; SELECTIVITY; TRANSPORT; PROTEIN; GLPF; MIP; PERMEABILITIES; ARCHITECTURE

Abstract:
Despite sharing overall sequence and structural similarities, water channel aquaporin 0 (AQP0) transports water more slowly than other aquaporins. Using molecular dynamics simulations of AQP0 and AQP1, we find that there is a sudden decrease in the distribution profile of water density along the pore of AQP0 in the region of residue Tyr23, which significantly disrupts the single file water chain by forming hydrogen bond with permeating water molecules. Comparisons of free-energy and interaction-energy profiles for water conduction between AQP0 and AQP1 indicate that this interruption of the water chain causes a huge energy barrier opposing water translocation through AQP0. We further show that a mutation of Tyr23 to phenylalanine leads to a 2- to 4-fold enhancement in water permeability of AQP0, from (0.5 +/- 0.2) x 10(-14) cm(3)s(-1) to (1.9 +/- 0.6) x 10(-14) cm(3)s(-1). Therefore, Tyr23 is a dominate factor leading to the low water permeability in AQP0. (C) 2009 Elsevier !
B.V. All rights reserved

Reprint Address:
Guo, WL, Nanjing Univ Aeronaut & Astronaut, Inst Nano Sci, Nanjing 210016, Peoples R China.

Research Institution addresses:
[Qiu, Hu; Ma, Shaojie; Shen, Rong; Guo, Wanlin] Nanjing Univ Aeronaut & Astronaut, Inst Nano Sci, Nanjing 210016, Peoples R China

E-mail Address:
wlguo@nuaa.edu.cn

Cited References:
AGRE P, 2004, ANGEW CHEM INT EDIT, V43, P4278, DOI 10.1002/anie.200460804.
AGRE P, 2006, P AM THORAC SOC, V3, P5, DOI 10.1513/pats.200510-109JH.
BORGNIA M, 1999, ANNU REV BIOCHEM, V68, P425.
CHANDY G, 1997, J MEMBRANE BIOL, V159, P29.
DEGROOT BL, 2001, SCIENCE, V294, P2353.
DEGROOT BL, 2003, J MOL BIOL, V333, P279, DOI 10.1016/j.jmb.2003.08.003.
DEGROOT BL, 2005, CURR OPIN STRUC BIOL, V15, P176, DOI 10.1016/j.sbi.2005.02.003.
ESSMANN U, 1995, J CHEM PHYS, V103, P8577.
FELLER SE, 1995, J CHEM PHYS, V103, P4613.
FRANCIS P, 2000, BRIT J OPHTHALMOL, V84, P1376.
FU DX, 2000, SCIENCE, V290, P481.
GONEN T, 2004, NATURE, V429, P193, DOI 10.1038/nature02503.
GONEN T, 2005, NATURE, V438, P633, DOI 10.1038/nature04321.
HAN BG, 2006, J MOL BIOL, V360, P285, DOI 10.1016/j.jmb.2006.04.039.
HARRIES WEC, 2004, P NATL ACAD SCI USA, V101, P14045, DOI 10.1073/pnas.0405274101.
HASHIDO M, 2005, FEBS LETT, V579, P5549, DOI 10.1016/j.febslet.2005.09.018.
HASHIDO M, 2007, BIOPHYS J, V93, P373, DOI 10.1529/biophysj.107.101170.
HEYMANN JB, 1999, NEWS PHYSIOL SCI, V14, P187.
HUB JS, 2008, P NATL ACAD SCI USA, V105, P1198, DOI 10.1073/pnas.0707662104.
HUMMER G, 2001, NATURE, V414, P188.
HUMPHREY W, 1996, J MOL GRAPHICS, V14, P33.
JENSEN MO, 2002, P NATL ACAD SCI USA, V99, P6731.
JENSEN MO, 2003, BIOPHYS J, V85, P2884.
JENSEN MO, 2006, BIOPHYS J, V90, P2270, DOI 10.1529/biophysj.105.073965.
JENSEN MO, 2008, P NATL ACAD SCI USA, V105, P14430, DOI 10.1073/pnas.0802401105.
JORGENSEN WL, 1983, J CHEM PHYS, V79, P926.
KALE L, 1999, J COMPUT PHYS, V151, P283.
MACKERELL AD, 1998, J PHYS CHEM B, V102, P3586.
MAMONOV AB, 2007, J GEN PHYSIOL, V130, P111, DOI 10.1085/jgp.200709810.
MURATA K, 2000, NATURE, V407, P599.
PRESTON GM, 1992, PROTEIN SCI, V256, P385.
SAVAGE DF, 2003, PLOS BIOL, V1, P334, ARTN e72.
SMART OS, 1996, J MOL GRAPH MODEL, V14, P354.
SUI HX, 2001, NATURE, V414, P872.
TAJKHORSHID E, 2002, SCIENCE, V296, P525.
WALZ T, 1994, J BIOL CHEM, V269, P1583.
YANG BX, 1997, J BIOL CHEM, V272, P16140.
ZEIDEL ML, 1992, BIOCHEMISTRY-US, V31, P7436.
ZEIDEL ML, 1994, BIOCHEMISTRY-US, V33, P1606.
ZHU FQ, 2004, BIOPHYS J 1, V86, P50.
ZHU FQ, 2004, PHYS REV LETT, V93, ARTN 224501.

Cited Reference Count:
41

Times Cited:
0

Publisher:
ELSEVIER SCIENCE BV; PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS

Subject Category:
Biochemistry & Molecular Biology; Biophysics

ISSN:
0005-2736

DOI:
10.1016/j.bbamem.2009.11.015

IDS Number:
572OY

========================================================================

*Record 4 of 5.
*View Full Record: http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000275806300031
*Order Full Text [ ]

Title:
Mixed Quantum-Classical Dynamics Simulations on the Vibrational Spectral Probe in a SWCT Confined Solvent

Authors:
Wang, HJ; Hu, F; Li, SM

Author Full Names:
Wang Hong-Jie; Hu Fan; Li Shen-Min

Source:
ACTA PHYSICO-CHIMICA SINICA 26 (3): 714-720 MAR 2010

Language:
Chinese

Document Type:
Article

Author Keywords:
Vibrational spectral probe; Mixed quantum-classical molecular dynamics; Single-walled carbon nanotube; Vibrational relaxation time; Vibrational frequency shift

KeyWords Plus:
REVERSE MICELLES; CARBON NANOTUBES; FREQUENCY-SHIFTS; WATER; RELAXATION; DIFFUSION; SPECTROSCOPY; FLUIDS; TIME; I-2

Abstract:
The radial distributions of argon as a solvent as well as the vibrational relaxation dynamics of the solute I-2 confined in a single-walled carbon nanotube (SWCT) were investigated by mixed quantum-classical molecular dynamics simulations. Functions of the vibrational frequency shift and the vibrational relaxation time of I-2 with varying radii were presented. Using the frequency shift of I-2 as a spectral probe, an analysis of the instantaneous interactions of I-2 with the surroundings was determined by breaking down the shift into the contributions of the nanotube and the solvent atoms. Detailed mechanistic information related to the shift was investigated at the atomic and molecular level. In addition. by analysis of the sensitivity of the spectral probe and the dependence of the frequency shift on the vibrational relaxation time of the probe molecule, we conclude that the frequency shift is a good spectral probe to investigate the interactions in confined condensed phase!
s.

Reprint Address:
Li, SM, Dalian Univ, Liaoning Key Lab Bioorgan Chem, Dalian 116622, Liaoning Prov, Peoples R China.

Research Institution addresses:
[Hu Fan; Li Shen-Min] Dalian Univ, Liaoning Key Lab Bioorgan Chem, Dalian 116622, Liaoning Prov, Peoples R China; [Wang Hong-Jie] Jilin Inst Architectural & Engn, Coll Mat Sci & Engn, Changchun 130021, Peoples R China

E-mail Address:
shenmin@dl.cn

Cited References:
ABEL S, 2004, J PHYS CHEM B, V108, P19458, DOI 10.1021/jp047138e.
CAO DP, 2004, LANGMUIR, V20, P3759, DOI 10.1021/la036375q.
CHEN HB, 2004, J AM CHEM SOC, V126, P7778, DOI 10.1021/ja039462d.
CHEN HB, 2006, J PHYS CHEM B, V110, P1971, DOI 10.1021/jp056911i.
CHERAYIL BJ, 1997, J CHEM PHYS, V107, P7642.
FANG HP, 2008, J PHYS D APPL PHYS, V41, ARTN 103002.
GONG XJ, 2007, NAT NANOTECHNOL, V2, P709, DOI 10.1038/nnano.2007.320.
HU F, 2008, ACTA CHIM SINICA, V66, P2321.
HU F, 2009, INT C THEOR APPL COM, V1102, P200.
HUMMER G, 2001, NATURE, V414, P188.
KALAMPOUNIAS AG, 2003, J CHEM PHYS, V118, P8340, DOI 10.1063/1.1565325.
KORB JP, 1994, J CHEM PHYS, V101, P7074.
LANCZOS C, 1950, J RES NAT BUR STAN B, V45, P255.
LI SM, 2003, J PHYS CHEM A, V107, P8696, DOI 10.1021/jp0345452.
LI SM, 2005, CHEM PHYS LETT, V405, P304, DOI 10.1016/j.cplett.2005.02.009.
MAO RR, 2008, ACTA PHYS-CHIM SIN, V24, P1451.
MASHL RJ, 2003, NANO LETT, V3, P589, DOI 10.1021/nl0340226.
MORALES CM, 2007, J PHYS CHEM A, V111, P5422, DOI 10.1021/jp071656i.
MORALES CM, 2008, J PHYS CHEM B, V112, P313, DOI 10.1021/jp075038d.
NIENHUYS HK, 1999, J CHEM PHYS, V111, P1494.
OXTOBY DW, 1978, J CHEM PHYS, V68, P5528.
PILETIC IR, 2006, J PHYS CHEM A, V110, P4985, DOI 10.1021/jp061065c.
SKINNER JL, 2008, MOL PHYS, V106, P2245, DOI 10.1080/00268970802454778.
SKOULIDAS AI, 2002, PHYS REV LETT, V89, ARTN 185901.
SMITH W, 2002, DLPOLY 2 13.
YE H, 2004, JEOL NEWS, V39, P2.
ZHENG J, 2007, ACCOUNTS CHEM RES, V40, P75, DOI 10.1021/ar068010d.
ZHENG JR, 2005, SCIENCE, V309, P1338, DOI 10.1126/science.1116213.
ZHOU AS, 2009, ACTA PHYS-CHIM SIN, V25, P1572.

Cited Reference Count:
29

Times Cited:
0

Publisher:
PEKING UNIV PRESS; PEKING UNIV, CHEMISTRY BUILDING, BEIJING 100871, PEOPLES R CHINA

Subject Category:
Chemistry, Physical

ISSN:
1000-6818

IDS Number:
572DC

========================================================================

*Record 5 of 5.
*View Full Record: http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000275858200054
*Order Full Text [ ]

Title:
Single-File Diffusion of Confined Water Inside SWNTs: An NMR Study

Authors:
Das, A; Jayanthi, S; Deepak, HSMV; Ramanathan, KV; Kumar, A; Dasgupta, C; Sood, AK

Author Full Names:
Das, Anindya; Jayanthi, Sundaresan; Deepak, Handiganadu Srinivasa Murthy Vinay; Ramanathan, Krishna Venkatachala; Kumar, Anil; Dasgupta, Chandan; Sood, Ajay K.

Source:
ACS NANO 4 (3): 1687-1695 MAR 2010

Language:
English

Document Type:
Article

Author Keywords:
carbon nanotubes; water; confinement; single-file diffusion; NMR

KeyWords Plus:
WALLED CARBON NANOTUBES; NUCLEAR-MAGNETIC-RESONANCE; ONE-DIMENSIONAL DIFFUSION; LONG-TIME LIMIT; FIELD GRADIENT; ION CHANNELS; SELECTIVITY; ADSORPTION; ALPO4-5

Abstract:
We report a nuclear magnetic resonance (NMR) study of confined water inside similar to 1.4 nm diameter single-walled carbon nanotubes (SWNTs). We show that the confined water does not freeze even up to 223 K. A pulse field gradient (PFG) NMR method is used to determine the mean squared displacement (MSD) of the water molecules inside the nanotubes at temperatures below 273 K, where the bulk water outside the nanotubes freezes and hence does not contribute to the proton NMR signal. We show that the mean squared displacement varies as the square root of time, predicted for single-file diffusion in a one-dimensional channel. We propose a qualitative understanding of our results based on available molecular dynamics simulations.

Reprint Address:
Sood, AK, Indian Inst Sci, Dept Phys, Bangalore 560012, Karnataka, India.

Research Institution addresses:
[Das, Anindya; Jayanthi, Sundaresan; Kumar, Anil; Dasgupta, Chandan; Sood, Ajay K.] Indian Inst Sci, Dept Phys, Bangalore 560012, Karnataka, India; [Jayanthi, Sundaresan; Ramanathan, Krishna Venkatachala; Kumar, Anil] Indian Inst Sci, NMR Res Ctr, Bangalore 560012, Karnataka, India; [Deepak, Handiganadu Srinivasa Murthy Vinay] Jain Univ, Dept Phys, Bangalore 560004, Karnataka, India

E-mail Address:
asood@physics.iisc.ernet.in

Cited References:
BEKYAROVA E, 2002, CHEM PHYS LETT, V366, P463.
CALLAGHAN PT, 1984, AUST J PHYS, V37, P359.
CALLAGHAN PT, 1991, PRINCIPLES NUCL MAGN.
CHEN DP, 1993, BIOPHYS J, V65, P727.
COTTS RM, 1989, J MAGN RESON, V83, P252.
FEDDERS PA, 1978, PHYS REV B, V17, P40.
GHOSH S, 2004, EUROPHYS LETT, V65, P678, DOI 10.1209/epl/i2003-10160-9.
GORDILLO MC, 2000, CHEM PHYS LETT, V329, P341.
GUPTA V, 1995, CHEM PHYS LETT, V247, P596.
HAHN K, 1996, PHYS REV LETT, V76, P2762.
HODGKIN AL, 1955, J PHYSIOL-LONDON, V128, P61.
HUMMER G, 2001, NATURE, V414, P188.
JOHNSON CS, 1999, PROG NUCL MAG RES SP, V34, P203.
KARGER J, 1992, PHYS REV A, V45, P4173.
KARGER J, 1993, PHYS REV E, V47, P1427.
KOGA K, 2001, NATURE, V412, P802.
KOGA K, 2002, PHYSICA A, V314, P462.
KOLESNIKOV AI, 2004, PHYS REV LETT, V93, ARTN 035503.
KUKLA V, 1996, SCIENCE, V272, P702.
LEI GD, 1993, J CATAL, V140, P601.
LEVITT DG, 1973, PHYS REV A, V8, P3050.
LIGGET T, 1985, INTERACTING PARTICLE.
MANIWA Y, 2002, J PHYS SOC JPN, V71, P2863, DOI 10.1143/JPSJ.71.2863.
MAO SH, 2006, CHEM PHYS LETT, V421, P513, DOI 10.1016/j.cplett.2006.02.011.
MARTI J, 2001, PHYS REV E, V64, P21504, UNSP 021504-1-021504-6.
MATSUDA K, 2006, PHYS REV B, V74, ARTN 073415.
MUKHERJEE B, 2007, J CHEM PHYS, V126, UNSP 124704-1-124704-8.
NEHER E, 1992, SCIENCE, V256, P498.
NIVARTHI SS, 1994, CHEM PHYS LETT, V229, P297.
RIEKERT L, 1970, ADV CATAL, V21, P281.
SAITO R, 1998, PHYS PROPERTIES CARB.
SAKMANN B, 1992, SCIENCE, V256, P503.
SEKHANEH W, 2006, CHEM PHYS LETT, V428, P143, DOI 10.1016/j.cplett.2006.06.105.
STEJSKAL EO, 1965, J CHEM PHYS, V42, P288.
STRIOLO A, 2005, J CHEM PHYS, V122, UNSP 234712-1-234172-14.
STRIOLO A, 2006, NANO LETT, V6, P633, DOI 10.1021/nl052254u.
TAJKHORSHID E, 2002, SCIENCE, V296, P525.
TAKAIWA D, 2008, P NATL ACAD SCI USA, V105, P39, DOI 10.1073/pnas.0707917105.
VIVEKCHAND SRC, 2005, SMALL, V1, P920, DOI 10.1002/smll.200500092.
WALTHER JH, 2001, J PHYS CHEM B, V105, P9980.
WERDER T, 2002, TECHN P 2 INT C COMP, V2, P490.
ZANGI R, 2004, J PHYS-CONDENS MAT, V16, S5371, DOI 10.1088/0953-8984/16/45/005.
ZHAO JJ, 2002, NANOTECHNOLOGY, V13, P195.

Cited Reference Count:
43

Times Cited:
0

Publisher:
AMER CHEMICAL SOC; 1155 16TH ST, NW, WASHINGTON, DC 20036 USA

Subject Category:
Chemistry, Multidisciplinary; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary

ISSN:
1936-0851

DOI:
10.1021/nn901554h

IDS Number:
572UE

========================================================================
*Order Full Text*
All Customers
--------------
Please contact your library administrator, or person(s) responsible for
document delivery, to find out more about your organization's policy for
obtaining the full text of the above articles. If your organization does
not have a current document delivery provider, your administrator can
contact ISI Document Solution at service@isidoc.com, or call 800-603-4367
or 734-459-8565.

IDS Customers
--------------
IDS customers can purchase the full text of an article (having page number,
volume, and issue information) by returning this ENTIRE message as a Reply
to Sender or Forward to orders@isidoc.com. Mark your choices with an X in
the "Order Full Text: []" brackets for each item. For example, [X].

Please enter your account number here:

========================================================================
*Help Desk Contact Information*
If you have any questions, please visit the Thomson Scientific Technical Support Contact Information Web page:
http://www.thomsonscientific.com/support/techsupport
========================================================================

No comments: