Friday, June 26, 2009

ISI Web of Knowledge Alert - Hummer, G

ISI Web of Knowledge Citation Alert

Cited Article: Hummer, G. Water conduction through the hydrophobic channel of a carbon nanotube
Alert Expires: 22 OCT 2009
Number of Citing Articles: 4 new records this week (4 in this e-mail)
Organization ID: 3b97d1bbc1878baed0ab183d8b03130b
========================================================================
Note: Instructions on how to purchase the full text of an article and Help Desk Contact information are at the end of the e-mail.
========================================================================

*Record 1 of 4.
*View Full Record: http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000266652600023
*Order Full Text [ ]

Title:
Affinity of Drugs and Small Biologically Active Molecules to Carbon Nanotubes: A Pharmacodynamics and Nanotoxicity Factor?

Authors:
Liu, J; Yang, L; Hopfinger, AJ

Author Full Names:
Liu, John; Yang, Liu; Hopfinger, Anton J.

Source:
MOLECULAR PHARMACEUTICS 6 (3): 873-882 MAY-JUN 2009

Language:
English

Document Type:
Article

Author Keywords:
Molecular dynamics; drug binding; carbon nanotubes; nanotoxicity; pharmacodynamics

KeyWords Plus:
HUMAN SERUM-ALBUMIN; ENVIRONMENTAL-HEALTH; NANOTECHNOLOGY; BINDING; KERATINOCYTES; CONFORMATION; MECHANICS; TOXICITY; EXPOSURE; PACKING

Abstract:
The MM-PBSA MD method was used to estimate the affinity, as represented by log k(b), of each of a variety of biologically active molecules to a carbon nanotube in an aqueous environment. These ligand-receptor binding simulations were calibrated by first estimating the log k(b) values for eight ligands to human serum albumin, HSA, whose log k(b) values have been observed. A validation linear correlation equation was established [R-2 = 0.888, Q(2) = 0.603] between the observed and estimated log k(b) values to HSA. This correlation equation was then used to rescale all MM-PBSA MD log k(b) values using a carbon nanotube as the receptor. The log k(b) of the eight HSA ligands, nine polar and/or rigid ligands and six nonpolar and/or flexible ligands to a carbon nanotube were estimated. The range in rescaled log k(b) values across this set of 23 ligands is 0.25 to 7.14, essentially 7 orders of magnitude. Some ligands, like PG12, bind in the log k(b) = 7 range which corresponds to th!
e lower limits of known drugs. Thus, such significant levels of binding of biologically relevant compounds to carbon nanotubes might lead to alterations in the normal pharmacodynamic profiles of these compounds and be a source of toxicity. Ligand binding potency to a carbon nanotube is largely controlled by the shape, polarity/nonpolarity distribution and flexibility of the ligand. HSA ligands exhibit the most limited binding to a carbon nanotube, and they are relatively rigid and of generally spherical shape. Polar and/or rigid ligands bind less strongly to the carbon nanotube, on average, than nonpolar and/or flexible ligands even though the chosen members of both classes of ligands in this study have chainlike shapes that facilitate binding. The introduction of only a few strategically spaced single bonds in the polar and/or rigid ligands markedly increases their binding to a carbon nanotube.

Reprint Address:
Hopfinger, AJ, 1 Univ New Mexico, Coll Pharm, 2502 Marble,NE,Rm 179,NRPH Bldg,MSC09 5360, Albuquerque, NM 87131 USA.

Research Institution addresses:
[Hopfinger, Anton J.] 1 Univ New Mexico, Coll Pharm, Albuquerque, NM 87131 USA; [Liu, John; Hopfinger, Anton J.] Chem21 Grp Inc, Lake Forest, IL 60045 USA; [Yang, Liu] Univ Delaware, Dept Chem & Biochem, Newark, DE 19711 USA

E-mail Address:
hopfingr@unm.edu

Cited References:
2007, ENV MOL MUTAGEN, V48, P524.
BHATTACHARYA AA, 2000, J BIOL CHEM, V275, P38731.
BRADSHAW JP, 1999, BIOCHEMISTRY-US, V38, P8393.
CASE DA, 2006, AMBER 9.
CHAKRAVARTY P, 2008, P NATL ACAD SCI USA, V105, P8697, DOI 10.1073/pnas.0803557105.
DONALDSON K, 2004, OCCUP ENVIRON MED, V61, P727, DOI 10.1136/oem.2004.013243.
FISCHER HC, 2007, CURR OPIN BIOTECH, V18, P565, DOI 10.1016/j.copbio.2007.11.008.
GENAIDY A, 2006, HUM FACTOR ERGON MAN, V16, P247, DOI 10.1002/hfm.20051.
GHUMAN J, 2005, J MOL BIOL, V353, P38, DOI 10.1016/j.jmb.2005.07.075.
GUO L, 2008, SMALL, V4, P721, DOI 10.1002/smll.200700754.
HAUPTMANN J, 2002, EUR J CLIN PHARMACOL, V57, P751.
HAUSER H, 1981, BIOCHIM BIOPHYS ACTA, V650, P21.
HILDER TA, 2008, MICRO NANO LETT, V3, P18, DOI 10.1049/mnl:20070070.
HUMMER G, 2001, NATURE, V414, P188.
KOLLMAN PA, 2000, ACCOUNTS CHEM RES, V33, P889.
KOSTARELOS K, 2008, NAT BIOTECHNOL, V26, P774, DOI 10.1038/nbt0708-774.
LAM CW, 2006, CRIT REV TOXICOL, V36, P189, DOI 10.1080/10408440600570233.
LIU JZ, 2005, J COMPUT AID MOL DES, V19, P567, DOI 10.1007/s10822-005-9012-4.
LIU JZ, 2008, CHEM RES TOXICOL, V21, P459, DOI 10.1021/tx700392b.
LIU Z, 2008, P NATL ACAD SCI USA, V105, P1410, DOI 10.1073/pnas.0707654105.
LOPEZ CF, 2004, P NATL ACAD SCI USA, V101, P4431, DOI 10.1073/pnas.0400352101.
MONTEIRORIVIERE NA, 2005, TOXICOL LETT, V155, P377, DOI 10.1016/j.toxlet.2004.11.004.
ONEIL MJ, 2006, MERCK INDEX.
PASCHER I, 1987, BIOCHIM BIOPHYS ACTA, V896, P77.
PEARLMAN DA, 1995, COMPUT PHYS COMMUN, V91, P1.
POLAND CA, 2008, NAT NANOTECHNOL, V3, P423.
SERVICE RF, 2004, SCIENCE, V304, P1732.
SERVICE RF, 2007, SCIENCE, V315, P926.
SHVEDOVA AA, 2003, J TOXICOL ENV HEAL A, V66, P1909, DOI 10.1080/15287390390231566.
TOZER TN, 2006, INTRO PHARMACOKINETI.
WEEKS JR, 1978, ACTA BIOL MED GER, V37, P707.
WERMUTH CM, 2003, PRACTICE MED CHEM.
WILLIAMS DA, 2002, FOYES PRINICPLES MED.
WITZMANN FA, 2006, NANOMED-NANOTECHNOL, V2, P158, DOI 10.1016/j.nano.2006.07.005.
ZHAO YL, 2008, NAT NANOTECHNOL, V3, P191, DOI 10.1038/nnano.2008.77.

Cited Reference Count:
35

Times Cited:
0

Publisher:
AMER CHEMICAL SOC; 1155 16TH ST, NW, WASHINGTON, DC 20036 USA

Subject Category:
Pharmacology & Pharmacy

ISSN:
1543-8384

DOI:
10.1021/mp800197v

IDS Number:
453ZY

========================================================================

*Record 2 of 4.
*View Full Record: http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000266928100008
*Order Full Text [ ]

Title:
Thermoactivated transport of molecules H-2 in narrow single-wall carbon nanotubes

Authors:
Fedorov, AS; Sadreev, AF

Author Full Names:
Fedorov, A. S.; Sadreev, A. F.

Source:
EUROPEAN PHYSICAL JOURNAL B 69 (3): 363-368 JUN 2009

Language:
English

Document Type:
Article

KeyWords Plus:
DIFFUSION; NANOPORES; ENERGY; MOTION; FLUIDS

Abstract:
By use both of the plane wave DFT and the empirical exp-6 Lennard-Jones potential methods we calculate the inner potential in narrow single-wall carbon nanotubes (SWCNT) (6, 0), (7, 0) and (3, 3) which affects the hydrogen molecules. The inner potential forms a goffered potential surface and can be approximated as V(z,r,phi)a parts per thousand V(0)sin (2 pi z/a)+V(r). We show that in these SWCNTs transport of molecules is given mainly by thermoactivated hoppings between minima of the periodic potential along the tube axis. The rate hoppings is substantially depends on temperature because of thermal fluctuations of tube wall.

Reprint Address:
Fedorov, AS, Russian Acad Sci, Inst Phys, Krasnoyarsk 660036, Russia.

Research Institution addresses:
[Fedorov, A. S.; Sadreev, A. F.] Russian Acad Sci, Inst Phys, Krasnoyarsk 660036, Russia

E-mail Address:
almas@tnp.krasn.ru

Cited References:
ARYA G, 2003, PHYS REV LETT, V91, ARTN 026102.
BARREIRO A, 2008, SCIENCE, V320, P775, DOI 10.1126/science.1155559.
BHATIA SK, 2004, J CHEM PHYS, V120, P4472, DOI 10.1063/1.1644108.
BHATIA SK, 2005, MOL SIMULAT, V31, P6439.
BHATIA SK, 2006, AICHE J, V52, P29, DOI 10.1002/aic.10580.
BHATIA SK, 2007, J CHEM PHYS, V127, ARTN 124701.
CHEN HB, 2004, J AM CHEM SOC, V126, P7778, DOI 10.1021/ja039462d.
FEDDERS PA, 1978, PHYS REV B, V17, P40.
GUPTA V, 1996, SCIENCE, V274, P164.
HINDS BJ, 2004, SCIENCE, V303, P62, DOI 10.1126/science.1092048.
HOLT JK, 2006, SCIENCE, V312, P1034, DOI 10.1126/science.1126298.
HUMMER G, 2001, NATURE, V414, P188.
JAKOBTORWEIHEN S, 2005, PHYS REV LETT, V95, ARTN 044501.
JAKOBTORWEIHEN S, 2006, J CHEM PHYS, V124, ARTN 154706.
JAKOBTORWEIHEN S, 2007, J CHEM PHYS, V127, ARTN 024904.
JEPPS OG, 2003, PHYS REV LETT, V91, ARTN 126102.
JEPPS OG, 2004, J CHEM PHYS, V120, P5396, DOI 10.1063/1.1647516.
KARGER J, 1992, DIFFUSION ZEOLITES O.
KNUDSEN M, 1909, ANN PHYS, V28, P75.
KRESSE G, 1996, COMP MATER SCI, V6, P15.
KRESSE G, 1996, PHYS REV B, V54, UNSP 011169.
KUMAR AVA, 2006, J PHYS CHEM B, V110, P3109, DOI 10.1021/jp056670e.
LANDAU LD, 1980, STAT PHYS.
MAO ZG, 2000, J PHYS CHEM B, V104, P4618.
PERDEW JP, 1996, PHYS REV LETT, V77, P3865.
PERDEW JP, 1997, PHYS REV LETT, V78, P1396.
POLLARD WG, 1948, PHYS REV, V73, P762.
RICHARDS PM, 1977, PHYS REV B, V16, P1393.
SADREEV AF, 2001, J CHEM PHYS, V115, P9513.
SAITO R, 1998, PHYS REV B, V57, P4145.
SHIOMI J, 2009, NANOTECHNOLOGY, V20, ARTN 055708.
SKOULIDAS AI, 2002, PHYS REV LETT, V89, ARTN 185901.
SOKHAN VP, 2004, J CHEM PHYS, V120, P3855, DOI 10.1063/1.1643726.
SOMADA H, NANO LETT ASAP.
SUN DY, 2007, PHYS REV B, V75, ARTN 075424.
VANDERBILT D, 1990, PHYS REV B, V41, P7892.
VINEYARD GH, 1957, J PHYS CHEM SOLIDS, V3, P121.
VLUGT TJH, 2002, J PHYS CHEM B, V106, P12757, DOI 10.1021/jp0263931.
WEI CY, 2003, PHYS REV LETT, V91, ARTN 235901.
ZAMBRANO HA, 2009, NANO LETT, V9, P66, DOI 10.1021/nl802429s.

Cited Reference Count:
40

Times Cited:
0

Publisher:
SPRINGER; 233 SPRING ST, NEW YORK, NY 10013 USA

Subject Category:
Physics, Condensed Matter

ISSN:
1434-6028

DOI:
10.1140/epjb/e2009-00152-1

IDS Number:
457KY

========================================================================

*Record 3 of 4.
*View Full Record: http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000266855800005
*Order Full Text [ ]

Title:
Surface modification of carbon nanotubes with ethylene glycol plasma

Authors:
Avila-Orta, CA; Cruz-Delgado, VJ; Neira-Velazquez, MG; Hernandez-Hernandez, E; Mendez-Padilla, MG; Medellin-Rodriguez, FJ

Author Full Names:
Avila-Orta, C. A.; Cruz-Delgado, V. J.; Neira-Velazquez, M. G.; Hernandez-Hernandez, E.; Mendez-Padilla, M. G.; Medellin-Rodriguez, F. J.

Source:
CARBON 47 (8): 1916-1921 JUL 2009

Language:
English

Document Type:
Article

KeyWords Plus:
ICE-NANOTUBES; FUNCTIONALIZATION; POLYMERIZATION; NANOPARTICLES; DEPOSITION; FILMS; WATER

Abstract:
Multi-walled carbon nanotubes (MWCNTs) were modified using plasma polymerization with ethylene glycol (EG) as monomer. Conditions of the EG plasma process in a specially designed reactor and the plasma-polymerized ethylene glycol (PPEG) coating were studied. The study involved varying the plasma powers of 10 and 20 W at a constant process time of 60 min, and EG flow rate of 0.15 cm(3)/min. Dispersion of the modified MWCNTs was evaluated in several solvents, showing hydrophilic behavior. Morphology of the PPEG coating and the functional groups (hydroxyl) on its surface were characterized by both transmission electron microscope and FTIR spectroscopy. Characterization by thermogravimetric analysis and FTIR suggested that the hydroxyl groups of the PPEG coating residing inside the nanotubes possessed higher thermal stability than the ones outside. (C) 2009 Elsevier Ltd. All rights reserved.

Reprint Address:
Avila-Orta, CA, Ctr Invest Quim Aplicada, Blvd Enrique Reyna 140, Saltillo 25253, Coahuila, Mexico.

Research Institution addresses:
[Avila-Orta, C. A.; Cruz-Delgado, V. J.; Neira-Velazquez, M. G.; Hernandez-Hernandez, E.; Mendez-Padilla, M. G.] Ctr Invest Quim Aplicada, Saltillo 25253, Coahuila, Mexico; [Medellin-Rodriguez, F. J.] Univ Autonoma San Luis Potosi, CIEP FCQ, San Luis Potosi 78210, Mexico

E-mail Address:
cavila@ciqa.mx

Cited References:
CHEN SM, 2006, NANOTECHNOLOGY, V17, P2368, DOI 10.1088/0957-4484/17/9/048.
COLTHUP NB, 1990, INTRO INFRARED RAMAN, P363.
DYKE CA, 2004, J PHYS CHEM A, V108, P11151.
HARPERNIXON D, 2002, 224 ACS NAT M BOST U.
HIRSCH A, 2002, ANGEW CHEM INT EDIT, V41, P1853.
HUMMER G, 2001, NATURE, V414, P188.
INAGAKI N, 1993, J APPL POLYM SCI, V48, P1433.
KHABASHESKU VN, 2002, ACCOUNTS CHEM RES, V35, P1087, DOI 10.1021/ar020146y.
KHARE BN, 2004, J PHYS CHEM B, V108, P8166, DOI 10.1021/jp049359q.
KOGA K, 2001, NATURE, V412, P802.
KOGOMA M, 1987, J PHYS D APPL PHYS, V20, P147.
KOVTYUKHOVA NI, 2003, J AM CHEM SOC, V125, P9761, DOI 10.1021/ja0344516.
KUMAR DS, 2007, J MATER SCI-MATER M, V18, P1831, DOI 10.1007/s10856-007-3033-6.
MANIWA Y, 2005, CHEM PHYS LETT, V401, P534, DOI 10.1016/j.cplett.2004.11.112.
NIYOGI S, 2002, ACCOUNTS CHEM RES, V35, P1105, DOI 10.1021/ar010155r.
PARK SH, 1994, POLYM BULL, V33, P249.
RAMOSDEVALLE LF, 2008, J APPL POLYM SCI, V107, P1893, DOI 10.1002/app.27336.
SAINI RK, 2003, J AM CHEM SOC, V125, P3617, DOI 10.1021/ja021167q.
SCHULZE RD, 2000, 2 WORKSH SELF EXC EL.
SHI DL, 2001, APPL PHYS LETT, V78, P1243.
SHI DL, 2002, J MATER RES, V17, P2555.
SHI DL, 2003, APPL PHYS LETT, V83, P5301, DOI 10.1063/1.1636521.
SUN YP, 2002, ACCOUNTS CHEM RES, V35, P1096, DOI 10.1021/er010160v.
TASIS D, 2003, CHEM-EUR J, V9, P40.
WANG CC, 2004, PROG POLYM SCI, V29, P1079, DOI 10.1016/j.progpolymsci.2004.08.001.
WEINKAUF DH, 2002, 224 ACS NAT M BOST U.
WESTERDAHL CAL, 1974, J COLLOID INTERF SCI, V47, P610.
YASUDA H, 1985, PLASMAS POLYM, P10.
YLINIEMI K, 2007, SURF COAT TECH, V201, P7865, DOI 10.1016/j.surfcoat.2007.03.023.

Cited Reference Count:
29

Times Cited:
0

Publisher:
PERGAMON-ELSEVIER SCIENCE LTD; THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND

Subject Category:
Chemistry, Physical; Materials Science, Multidisciplinary

ISSN:
0008-6223

DOI:
10.1016/j.carbon.2009.02.033

IDS Number:
456OG

========================================================================

*Record 4 of 4.
*View Full Record: http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000266190600010
*Order Full Text [ ]

Title:
Extrusion of transmitter, water and ions generates forces to close fusion pore

Authors:
Tajparast, M; Glavinovic, MI

Author Full Names:
Tajparast, M.; Glavinovic, M. I.

Source:
BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 1788 (5): 993-1008 MAY 2009

Language:
English

Document Type:
Article

Author Keywords:
Fusion pore; Nanofluidic; Transmitter; Pore dynamics; Exocytosis; Poisson-Nernst-Planck; Navier-Stokes; Transport; Porous media; Nano-electromechanical system

KeyWords Plus:
QUANTAL SIZE; SYNAPTIC VESICLES; NEUROMUSCULAR-JUNCTION; HIPPOCAMPAL SYNAPSES; CHROMAFFIN GRANULES; SECRETORY GRANULES; CONTINUUM-THEORIES; BROWNIAN DYNAMICS; CARBON NANOTUBE; SURFACE-CHARGE

Abstract:
During exocytosis the fusion pore opens rapidly, then dilates gradually, and may subsequently close completely, but what controls its dynamics is not well understood. In this study we focus our attention on forces acting on the pore wall, and which are generated solely by the passage of transmitter, ions and water through the open fusion pore. The transport through the charged cylindrical nano-size pore is simulated using a coupled system of Poisson-Nernst-Planck and Navier-Stokes equations and the forces that act radially on the wall of the fusion pore are then estimated. Four forces are considered: a) inertial force, b) pressure, c) viscotic force, and d) electrostatic force. The inertial and viscotic forces are small, but the electrostatic force and the pressure are typically significant. High vesicular pressure tends to open the fusion pore, but the pressure induced by the transport of charged particles (glutamate, ions), which is predominant when the pore wall charge de!
nsity is high tends to close the pore. The electrostatic force, which also depends on the charge density on the pore wall, is weakly repulsive before the pore dilates, but becomes attractive and pronounced as the pore dilates. Given that the vesicular concentration of free transmitter can change rapidly due to the release, or owing to the dissociation from the gel matrix. we evaluated how much and how rapidly a change of the vesicular K+-glutamate(-) concentration affects the concentration of glutamate(-) and ions in the pore and how such changes alter the radial force on the wall of the fusion pore. A step-like rise of the vesicular K+-glutamate(-) concentration leads to a chain of events. Pore concentration (and efflux) of both K+ and glutamate(-) rise reaching their new steady-state values in less than 100 ns. Interestingly within a similar time interval the pore concentration of Na+ also rises, whereas that of Cl- diminishes, although their extra-cellular concentration !
does not change. Finally such changes affect also the water mo!
vement.
Water efflux changes bi-phasically, first increasing before decreasing to a new, but lower steady-state value. Nevertheless, even under such conditions an overall approximate neutrality of the pore is maintained remarkably well, and the electrostatic, but also inertial, viscotic and pressure forces acting on the pore wall remain constant. In conclusion the extrusion of the vesicular content generates forces, primarily the force due to the electro-kinetically induced pressure and electrostatic force (both influenced by the pore radius and even more by the charge density on the pore wall). which tend to close the fusion pore. (C) 2009 Elsevier B.V. All rights reserved.

Reprint Address:
Glavinovic, MI, McGill Univ, Dept Physiol, 3655 Sir William Oster Promenade, Montreal, PQ H3G 1Y6, Canada.

Research Institution addresses:
[Glavinovic, M. I.] McGill Univ, Dept Physiol, Montreal, PQ H3G 1Y6, Canada; [Tajparast, M.] McGill Univ, Dept Civil Engn, Montreal, PQ H3G 1Y6, Canada

E-mail Address:
mladen.glavinovic@mcgill.ca

Cited References:
ARAVANIS AM, 2003, NATURE, V423, P643, DOI 10.1038/nature01686.
ATLURI PP, 2006, J NEUROSCI, V26, P2313, DOI 10.1523/JNEUROSCI.4425-05.2006.
BARTHEL J, 1998, PHYS CHEM ELECT SOLU.
BEHRENDS JC, 1998, J NEUROPHYSIOL, V79, P2999.
BOCKRIS JOM, 1976, MODERN ELECTROCHEMIS.
BRECKENRIDGE LJ, 1987, NATURE, V328, P814.
BRECKENRIDGE LJ, 1987, P NATL ACAD SCI USA, V84, P1945.
CECCARELLI B, 1973, J CELL BIOL, V57, P499.
CHEEK TR, 1986, FEBS LETT, V207, P110.
CHITI Z, 2007, FASEB J, V21, P2540, DOI 10.1096/fj.06-7342com.
CHIU SW, 1993, BIOPHYS J, V64, P96.
CHIZMADZHEV YA, 1999, BIOPHYS J, V76, P2951.
CHOI S, 2000, NAT NEUROSCI, V3, P330.
COCHILLA AJ, 2000, J CELL BIOL, V150, P839.
CORRY B, 2000, BIOPHYS J, V78, P2364.
CORY SM, 2007, BBA-BIOMEMBRANES, V1768, P2319, DOI 10.1016/j.bbamem.2007.06.006.
DAIGUJI H, 2004, NANO LETT, V4, P137, DOI 10.1021/nl0348185.
DELUCA G, 2007, BBA-BIOMEMBRANES, V1768, P264, DOI 10.1016/j.bbamem.2006.08.015.
DURANDVIDAL S, 2000, ELECT INTERFACES.
DUTTA P, 2001, ANAL CHEM, V73, P1979.
GLAVINOVIC MI, 2001, PFLUG ARCH EUR J PHY, V443, P132.
GLAVINOVIC MI, 2002, PFLUGERS ARCH, V443, P594.
GONG LW, 2007, NAT CELL BIOL, V9, P915.
GRANSETH B, 2006, NEURON, V51, P773, DOI 10.1016/j.neuron.2006.08.029.
HAN X, 2006, J CELL BIOL, V172, P281.
HILLE B, 1975, PHILOS T R SOC B, V270, P301.
HUMMER G, 2001, NATURE, V414, P188.
JANKOWSKI JA, 1993, J BIOL CHEM, V268, P14694.
JENA BP, 2003, BIOPHYS J 1, V84, P1337.
JOHNSON RG, 1988, PHYSIOL REV, V68, P232.
JOSEPH S, 2008, NANO LETT, V8, P452, DOI 10.1021/nl072385q.
LEHNINGER AL, 1970, BIOCHEMISTRY.
MAYCOX PR, 1988, J BIOL CHEM, V263, P15423.
MCLAUGHLIN SGA, 1971, J GEN PHYSIOL, V58, P667.
MOY G, 2000, BIOPHYS J, V78, P2349.
MUNDORF ML, 2000, J BIOL CHEM, V275, P9136.
NANAVATI C, 1993, SCIENCE, V259, P963.
NECO P, 2004, J BIOL CHEM, V279, P27450, DOI 10.1074/jbc.M311462200.
NECO P, 2008, J BIOL CHEM, V283, P10949, DOI 10.1074/jbc.M709058200.
NEWMAN JS, 1991, ELECTROCHEMICAL SYST.
NJUS D, 1986, BIOCHIM BIOPHYS ACTA, V853, P237.
OHEIM M, 1999, EUR BIOPHYS J BIOPHY, V28, P91.
PATANKAR NA, 1998, ANAL CHEM, V70, P1870.
PAWLU C, 2004, NEURON, V42, P607.
POLLARD HB, 1979, J BIOL CHEM, V254, P1170.
POTHOS EN, 2002, J PHYSIOL-LONDON, V542, P453, DOI 10.1113/jphysiol.2002.018630.
QIAO R, 2003, J CHEM PHYS, V118, P692.
QIAO R, 2003, NANO LETT, V3, P1013, DOI 10.1021/nl034236n.
RABIE HR, 2006, BIOL CYBERN, V94, P483, DOI 10.1007/s00422-006-0061-0.
RICHARDS DA, 2005, J CELL BIOL, V168, P929, DOI 10.1083/jcb.200407148.
SIMON SM, 1985, BIOPHYS J, V48, P485.
SMITH GR, 1999, BIOPHYS CHEM, V79, P129.
SODERMAN O, 1996, J CHEM PHYS, V105, P10300.
SULZER D, 2000, REV NEUROSCIENCE, V11, P159.
TAJPARAST M, 2009, BIOPHYS J, DOI 10.1016/J.BBAMEM.2009.01.019.
URBE S, 1998, J CELL BIOL, V143, P1831.
VITALE ML, 1995, NEURON, V14, P353.
WANG XY, 2005, J NEUROSCI, V25, P343, DOI 10.1523/JNEUROSCI.3252-04.2005.

Cited Reference Count:
58

Times Cited:
0

Publisher:
ELSEVIER SCIENCE BV; PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS

Subject Category:
Biochemistry & Molecular Biology; Biophysics

ISSN:
0005-2736

DOI:
10.1016/j.bbamem.2009.01.018

IDS Number:
447KS

========================================================================
*Order Full Text*
All Customers
--------------
Please contact your library administrator, or person(s) responsible for
document delivery, to find out more about your organization's policy for
obtaining the full text of the above articles. If your organization does
not have a current document delivery provider, your administrator can
contact ISI Document Solution at service@isidoc.com, or call 800-603-4367
or 734-459-8565.

IDS Customers
--------------
IDS customers can purchase the full text of an article (having page number,
volume, and issue information) by returning this ENTIRE message as a Reply
to Sender or Forward to orders@isidoc.com. Mark your choices with an X in
the "Order Full Text: []" brackets for each item. For example, [X].

Please enter your account number here:

========================================================================
*Help Desk Contact Information*
If you have any questions, please visit the Thomson Scientific Technical Support Contact Information Web page:
http://www.thomsonscientific.com/support/techsupport
========================================================================

No comments: