Thursday, June 18, 2009

ISI Web of Knowledge Alert - Holt JK

ISI Web of Knowledge Citation Alert

Cited Article: Holt JK. Fast mass transport through sub-2-nanometer carbon nanotubes
Alert Expires: 18 OCT 2009
Number of Citing Articles: 5 new records this week (5 in this e-mail)
Organization ID: 3b97d1bbc1878baed0ab183d8b03130b
========================================================================
Note: Instructions on how to purchase the full text of an article, import the records into an
ISI ResearchSoft product, and Help Desk Contact information are at the end of the e-mail.
========================================================================

FN ISI Export Format
VR 1.0

PT J
*Record 1 of 5.
L5 <http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;UT=000266515400011>
*Order Full Text [ ]
AU Thornton, AW
Hilder, T
Hill, AJ
Hill, JM
AF Thornton, Aaron W.
Hilder, Tamsyn
Hill, Anita J.
Hill, James M.
TI Predicting gas diffusion regime within pores of different size, shape
and composition
SO JOURNAL OF MEMBRANE SCIENCE
LA English
DT Article
DE Surface diffusion; Activation diffusion; Knudsen; Transport; Arrhenius;
Separation; Membrane; Pore; Modelling
ID WALLED CARBON NANOTUBES; FREE-VOLUME; POSITRON LIFETIME;
GLASSY-POLYMERS; MEMBRANES; MECHANICS; TRANSPORT; PERMEABILITY;
FULLERENES; ADSORPTION
AB The ability to separate mixtures of molecules is a vital technology in
a world that emits excess carbon dioxide into the atmosphere, needs
purified water, desires artificial kidneys and requires hydrogen for
sustainable energy alternatives. Membranes are composed of angstrom and
nanometer-sized pores which may be designed to separate a gas, vapor or
liquid mixture. In this paper we employ mathematical modeling, using
the Lernnard-Jones interactions between the gas molecule and the pore
wall, to determine the gas diffusion regime occurring within pores of
different size, shape and composition. This novel approach is used to
predict the transport of light gases, namely, He, H-2, CO2, O-2, N-2
and CH4, through carbon tubes, carbon slits, silica tubes and silica
slits. Minimum pore size for barrier-free transport (d(min)) and the
minimum pore size for Knudsen diffusion (d(k)) are calculated for each
gas and a mechanism for the intermediate region is suggested in which
the attractive van der Waals forces cause an accelerated entrance
velocity of the gas at the pore opening. Experimental results for gas
transport in carbon nanotube, carbon molecular sieving and molecular
sieving silica membranes are explained well by the model. The aim of
this work is to provide the guidelines for tailoring porosity in
membranes and adsorbents, such that desired separations are achieved.
Crown Copyright (C) 2009 Published by Elsevier B.V. All rights reserved.
C1 [Thornton, Aaron W.; Hilder, Tamsyn; Hill, James M.] Univ Wollongong, Nanomech Grp, Sch Math & Appl Stat, Wollongong, NSW 2522, Australia.
[Thornton, Aaron W.; Hill, Anita J.] CSIRO Mat Sci & Engn, Clayton Sth Mdc, Vic 3169, Australia.
RP Thornton, AW, Univ Wollongong, Nanomech Grp, Sch Math & Appl Stat,
Wollongong, NSW 2522, Australia.
EM aaron.thornton@csiro.au
CR ACHARYA M, 2000, AICHE J, V46, P911
BAUSCHLICHER CW, 2000, CHEM PHYS LETT, V322, P237
BRECK DW, 1973, MOL SIEVES STRUCTURE
CHEN HB, 2006, J MEMBRANE SCI, V269, P152, DOI
10.1016/j.memsci.2005.06.030
COX BJ, 2007, J PHYS A-MATH THEOR, V40, P13197
COX BJ, 2007, P R SOC A, V463, P461, DOI 10.1098/rspa.2006.1771
COX BJ, 2007, P R SOC A, V463, P477, DOI 10.1098/rspa.2006.1772
COX BJ, 2007, Q J MECH APPL MATH 2, V60, P231, DOI 10.1093/qjmam/hbm005
DELANGE RSA, 1995, J MEMBRANE SCI, V104, P81
DEVOS RM, 1998, J MEMBRANE SCI, V143, P37
DLUBEK G, 1996, PHYS STATUS SOLIDI A, V157, P351
DUCKE MC, 2008, ADV FUNCT MATER, V18, P1
DUREN T, 2004, LANGMUIR, V20, P2683, DOI 10.1021/la0355500
EVERETT DH, 1976, J CHEM SOC FARADAY T, V72, P619
FREEMAN BD, 1999, MACROMOLECULES, V32, P375
GARBEROGLIO G, 2005, J PHYS CHEM B, V109, P13094, DOI 10.1021/jp0509481
GILLILAND ER, 1974, IND ENG F, V13, P95
GILRON J, 2002, J MEMBRANE SCI, V209, P339
GRADSHTEYN IS, 2000, SERIES PRODUCTS
GRAYWEALE AA, 1997, MACROMOLECULES, V30, P7296
GREENFIELD ML, 1993, MACROMOLECULES, V26, P5461
HEDSTROM JA, 2004, LANGMUIR, V20, P1535, DOI 10.1021/la0351515
HILDER TA, 2007, J PHYS A-MATH THEOR, V40, P3851, DOI
10.1088/1751-8113/40/14/008
HILDER TA, 2007, NANOTECHNOLOGY, V18, ARTN 275704
HILDER TA, 2007, PHYS REV B, V75, ARTN 125415
HILDER TA, 2009, J NANOSCI NANOTECHNO, V9, P1403, DOI
10.1166/jnn.2009.C166
HINDS BJ, 2004, SCIENCE, V303, P62, DOI 10.1126/science.1092048
HOFMANN D, 2003, MACROMOLECULES, V36, P8528, DOI 10.1021/ma0349711
HOLT JK, 2006, SCIENCE, V312, P1034, DOI 10.1126/science.1126298
HUMMER G, 2001, NATURE, V414, P188
HWANG ST, 1984, MEMBRANES SEPARATION
JINNAI H, 2000, PHYS REV E B, V61, P6773
KALRA A, 2003, P NATL ACAD SCI USA, V100, P10175
KNUDSEN M, 1909, ANN PHYS, V28, P75
KOVACS AJ, 1979, J POLYM SCI POL PHYS, V17, P1097
LIN YS, 2002, SEPAR PURIF METHOD, V31, P229, DOI 10.1081/SPM-120017009
LIU P, 2005, J APPL PHYS, V97, ARTN 094313
MERKEL TC, 2002, SCIENCE, V296, P519
MERKEL TC, 2003, MACROMOLECULES, V36, P6844, DOI 10.1021/ma0341566
MILLS AF, 2001, MASS TRANSFER
PARK HB, 2007, SCIENCE, V318, P254, DOI 10.1126/science.1146744
PARK JY, 1997, J MEMBRANE SCI, V125, P23
PENG FB, 2005, CHEM MATER, V17, P6790, DOI 10.1021/cm051890q
POLING BE, 2001, PROPERTIES GASES LIQ
QIAN D, 2001, J PHYS CHEM B, V105, P10753
RAPPE AK, 1992, J AM CHEM SOC, V114, P10024
ROBESON LM, 1991, J MEMBRANE SCI, V62, P165
SCHRADER DM, 1988, STUDIES PHYS THEORET
SHELEKHIN AB, 1995, AICHE J, V41, P58
TRIEBE RW, 1995, GAS SEP PURIF, V9, P223
WANG XY, 2004, POLYMER, V45, P3907, DOI 10.1016/j.polymer.2004.01.080
WHITBY M, 2007, NAT NANOTECHNOL, V2, P87, DOI 10.1038/nnano.2006.175
YAMPOLSKII Y, 2006, MAT SCI MEMBRANES GA
YAMPOLSKII YP, 1994, MACROMOLECULES, V27, P2872
NR 54
TC 0
PU ELSEVIER SCIENCE BV; PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0376-7388
DI 10.1016/j.memsci.2009.03.019
PD JUL 1
VL 336
IS 1-2
BP 101
EP 108
SC Engineering, Chemical; Polymer Science
GA 452BU
UT ISI:000266515400011
ER

PT J
*Record 2 of 5.
L5 <http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;UT=000266679500009>
*Order Full Text [ ]
AU Dong, K
Zhou, GH
Liu, XM
Yao, XQ
Zhang, SJ
Lyubartsev, A
AF Dong, Kun
Zhou, Guohui
Liu, Xiaomin
Yao, Xiaoqian
Zhang, Suojiang
Lyubartsev, Alexander
TI Structural Evidence for the Ordered Crystallites of Ionic Liquid in
Confined Carbon Nanotubes
SO JOURNAL OF PHYSICAL CHEMISTRY C
LA English
DT Article
ID MOLECULAR-DYNAMICS SIMULATION; ROOM-TEMPERATURE;
1-N-BUTYL-3-METHYLIMIDAZOLIUM HEXAFLUOROPHOSPHATE; ICE NANOTUBES;
FREE-ENERGY; TRANSPORT; MIXTURES; SOLVENTS; METHANE; POTENTIALS
AB Ionic liquids (ILs) are a class of new green materials that have
attracted extensive attention in recent decades. Many novel properties
not evident under normal conditions may appear when ionic liquids are
confined to a nanometer scale. As was observed in the experiment, an
anomalous phase behavior from liquid to high melting point perfect
crystal occurred when 1-n-butyl-3-methylimidazolium hexafluorophosphate
([bmim][PF6]) ionic liquid was confined in a carbon nanotube. In this
work, we performed molecular dynamics (MD) simulations for [bmim][PF6]
ionic liquid and provided direct structural evidence that the ionic
crystallizes in a carbon nanotube. The ordered ionic arrangement in
both the radial and the axial directions can be observed inside the
channels of the CNTs to induce the form of crystallites. The ionic
stacking and distributing can be determined by the sizes of the CNTs.
Hydrogen bonds remain the dominant interactions between cations and
anions when the ionic liquid enters into the CNT from the bulk phase.
The free energies as the thermal driven forces were calculated, and it
is found that it is very difficult for a single anion to enter into the
channel of the CNT spontaneously. A more favorable way is through an
ion-pair in which a cation "pulls" an anion to enter into the channel
of the CNT together. It is predicted that other ionic liquids that
possess similar structures, even including the pyridinium-based ionic
liquids, can show higher melting points when confined in CNTs.
C1 [Dong, Kun; Zhou, Guohui; Liu, Xiaomin; Yao, Xiaoqian; Zhang, Suojiang] Chinese Acad Sci, State Key Lab Multiphase Complex Syst, Inst Proc Engn, Beijing 100190, Peoples R China.
[Lyubartsev, Alexander] Stockholm Univ, Arrhenius Lab, Div Phys Chem, S-10691 Stockholm, Sweden.
RP Zhang, SJ, Chinese Acad Sci, State Key Lab Multiphase Complex Syst,
Inst Proc Engn, Beijing 100190, Peoples R China.
EM sjzhang@home.ipe.ac.cn
CR AJAYAN PM, 1997, REP PROG PHYS, V60, P1025
BAI J, 2003, J CHEM PHYS, V118, P3913, DOI 10.1063/1.1555091
BONDI A, 1964, J PHYS CHEM-US, V68, P441
BYL O, 2006, J AM CHEM SOC, V128, P12090, DOI 10.1021/ja057856u
CAO DP, 2003, J PHYS CHEM B, V107, P13286, DOI 10.1021/jp036094r
CHEN SM, 2007, J AM CHEM SOC, V129, P2416, DOI 10.1021/ja067972c
DELPOPOLO MG, 2004, J PHYS CHEM B, V108, P1744, DOI 10.1021/jp0364699
DONG K, 2006, J PHYS CHEM A, V110, P9775, DOI 10.1021/jp054054c
EARLE MJ, 1999, GREEN CHEM, V1, P23
EARLE MJ, 2000, PURE APPL CHEM, V72, P1391
FREDLAKE CP, 2004, J CHEM ENG DATA, V49, P954, DOI 10.1021/je034261a
FUKUSHIMA T, 2003, SCIENCE, V300, P2072
HANKE CG, 2001, MOL PHYS, V99, P801
HANKE CG, 2003, J PHYS CHEM B, V107, P10873, DOI 10.1021/jp034221d
HINDS BJ, 2004, SCIENCE, V303, P5654
HOLT JK, 2006, SCIENCE, V312, P1034, DOI 10.1126/science.1126298
HUANG XH, 2005, J AM CHEM SOC, V127, P17842, DOI 10.1021/ja055315z
HUDDLESTON JG, 2001, GREEN CHEM, V3, P156
HUMMER G, 2001, NATURE, V414, P188
KALRA A, 2003, P NATL ACAD SCI USA, V100, P10175
KALRA A, 2004, J PHYS CHEM B, V108, P544, DOI 10.1021/jp035828x
KANAKUBO M, 2005, CHEM LETT, V34, P324, DOI 10.1246/cl.2005.324
KELKAR MS, 2007, J PHYS CHEM B, V111, P9492
KHLOBYSTOV AN, 2005, ACCOUNTS CHEM RES, V38, P901
KOGA K, 2000, J CHEM PHYS, V113, P5037
KOGA K, 2001, NATURE, V412, P802
KONG J, 2000, SCIENCE, V287, P5453
LIU C, 1999, SCIENCE, V286, P1127
LIU YD, 2006, J AM CHEM SOC, V128, P7456, DOI 10.1021/ja062685u
LIU ZP, 2004, J PHYS CHEM B, V108, P12978, DOI 10.1021/jp048369o
LUDER K, 2006, J PHYS CHEM B, V110, P15514, DOI 10.1021/jp061245m
LYUBARTSEV AP, 1996, MOL SIMULAT, V18, P43
LYUBARTSEV AP, 1998, J CHEM PHYS, V108, P227
LYUBARTSEV AP, 2000, COMPUT PHYS COMMUN, V128, P565
LYUBARTSEV AP, 2001, J PHYS CHEM B, V105, P7775
MARGULIS CJ, 2002, J PHYS CHEM B, V106, P12017, DOI 10.1021/jp021392u
MARGULIS CJ, 2004, MOL PHYS, V102, P829, DOI
10.1080/00268970410001683843
MARTYNA GJ, 1996, MOL PHYS, V87, P1117
MORROW TI, 2002, J PHYS CHEM B, V106, P12807, DOI 10.1021/jp0267003
SAZONOVA V, 2004, NATURE, V431, P284, DOI 10.1038/nature02905
SHAH JK, 2002, GREEN CHEM, V4, P112
SHELDON R, 2001, CHEM COMMUN, P2399
SNOW ES, 2005, SCIENCE, V307, P1942, DOI 10.1126/science.1109128
TALATY ER, 2004, J PHYS CHEM B, V108, P13177, DOI 10.1021/jp040199s
TASIS D, 2006, CHEM REV, V106, P1105, DOI 10.1021/cr050569o
TUCKERMAN M, 1992, J CHEM PHYS, V97, P1990
WANG J, 2003, ACTA CHIM SINICA, V61, P1891
WANG YT, 2005, J AM CHEM SOC, V127, P12192, DOI 10.1021/ja053796g
WELTON T, 1999, CHEM REV, V99, P2071
WILSON M, 2001, J AM CHEM SOC, V123, P2101
WILSON M, 2004, NANO LETT, V4, P299, DOI 10.1021/nl035044v
WILSON M, 2006, ACTA CRYSTALLOGR A 4, V62, P287, DOI
10.1107/S0108767306018101
WILSON M, 2006, J CHEM PHYS, V124, ARTN 124706
YAN TY, 2004, J PHYS CHEM B, V108, P11877, DOI 10.1021/jp047619y
NR 54
TC 0
PU AMER CHEMICAL SOC; 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 1932-7447
DI 10.1021/jp900533k
PD JUN 11
VL 113
IS 23
BP 10013
EP 10020
SC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science,
Multidisciplinary
GA 454JZ
UT ISI:000266679500009
ER

PT J
*Record 3 of 5.
L5 <http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;UT=000266679500039>
*Order Full Text [ ]
AU Jenness, GR
Jordan, KD
AF Jenness, Glen R.
Jordan, Kenneth D.
TI DF-DFT-SAPT Investigation of the Interaction of a Water Molecule to
Coronene and Dodecabenzocoronene: Implications for the Water-Graphite
Interaction
SO JOURNAL OF PHYSICAL CHEMISTRY C
LA English
DT Review
ID DENSITY-FUNCTIONAL THEORY; DISTRIBUTED MULTIPOLE ANALYSIS; ADAPTED
PERTURBATION-THEORY; PI-PI INTERACTIONS; INTERMOLECULAR INTERACTION
ENERGIES; DER-WAALS INTERACTIONS; KOHN-SHAM ORBITALS; CARBON NANOTUBES;
BENZENE DIMER; BASIS-SETS
AB In the present study we revisit the problem of the interaction of a
water molecule with a single graphite sheet. The density
fitting-density functional theory-symmetry-adapted perturbation theory
(DF-DFT-SAPT; J. Chem. Phys. 2005, 122, 014103) method is used to
calculate the individual contributions arising from the interaction of
a water molecule with various acenes, including benzene, coronene, and
dodecabenzocoronene. These results are combined with calculations of
the electrostatic interactions with water and a C216H36 acene to
extrapolate to the limit of an infinite graphite sheet, giving a
interaction energy of -2.2 kcal/mol for the water-graphite system, with
the assumed geometrical structure with one hydrogen atom pointed down
toward the ring system. The structure with two hydrogens pointed down
is predicted to be more stable, with a net interaction energy of -2.7
kcal/mol.
C1 [Jordan, Kenneth D.] Univ Pittsburgh, Dept Chem, Pittsburgh, PA 15620 USA.
Univ Pittsburgh, Ctr Mol & Mat Simulat, Pittsburgh, PA 15620 USA.
RP Jordan, KD, Univ Pittsburgh, Dept Chem, Pittsburgh, PA 15620 USA.
EM jordan@pitt.edu
CR ADAMO C, 1999, J CHEM PHYS, V110, P6158
ALEXIADIS A, 2008, CHEM REV, V108, P5014, DOI 10.1021/cr078140f
ALONSO JA, 2007, THEOR CHEM ACC, V117, P467, DOI
10.1007/s00214-006-0079-3
ANDERSSON Y, 1996, PHYS REV LETT, V76, P102
ARAI N, 2008, J AM CHEM SOC, V130, P7916, DOI 10.1021/ja7108739
AVGUL NN, 1970, CHEMISTRY PHYSICS CA, V6, P1
BARBER AH, 2005, PHYS REV B, V71, ARTN 115443
BENEDICT LX, 1995, PHYS REV B, V52, P8541
BENEDICT WS, 1956, J CHEM PHYS, V24, P1139
BIRKETT GR, 2007, J PHYS CHEM C, V111, P5735, DOI 10.1021/jp068479q
BOYS SF, 1970, MOL PHYS, V19, P553
BUKOWSKI R, 2005, CHEM PHYS LETT, V414, P111, DOI
10.1016/j.cplett.2005.08.048
BUSHUEV Y, 2005, SENSORS-BASEL, V5, P139
CHAKAROV DV, 1995, LANGMUIR, V11, P1201
COURTY A, 1998, J PHYS CHEM A, V102, P6590
CYBULSKI SM, 2003, J CHEM PHYS, V119, P12704, DOI 10.1063/1.1635351
DANG LX, 1997, J CHEM PHYS, V106, P8149
DANG LX, 2000, J PHYS CHEM B, V104, P4403
FELLER D, 1999, J PHYS CHEM A, V103, P7558
FELLER D, 2000, J PHYS CHEM A, V104, P9971
FRISCH MJ, 2004, GAUSSIAN 03 REVISION
GONZALEZ BS, 2007, J PHYS CHEM C, V111, P14862, DOI 10.1021/jp074249f
GORDILLO MC, 2000, CHEM PHYS LETT, V329, P341
GRIMME S, 2006, J CHEM PHYS, V124, ARTN 034108
GRIMME S, 2007, J PHYS CHEM C, V111, P11199, DOI 10.1021/jp0720791
GRUNING M, 2001, J CHEM PHYS, V114, P652
HESSELMANN A, 2002, CHEM PHYS LETT, V357, P464
HESSELMANN A, 2002, CHEM PHYS LETT, V362, P319
HESSELMANN A, 2003, CHEM PHYS LETT, V367, P778
HESSELMANN A, 2005, J CHEM PHYS, V122, ARTN 014103
HOBZA P, 1996, J PHYS CHEM-US, V100, P18790
HOLT JK, 2006, SCIENCE, V312, P1034, DOI 10.1126/science.1126298
HULT E, 1996, PHYS REV LETT, V77, P2029
HUMMER G, 2001, NATURE, V414, P188
JEZIORSKI B, 1993, METHODS TECHNIQUES C, B, P79
JOHNSON ER, 2006, J CHEM PHYS, V124, ARTN 174104
JORGENSEN WL, 1985, MOL PHYS, V56, P1381
KAIRYS V, 1999, CHEM PHYS LETT, V315, P140
KARAPETIAN K, 2003, WATER CONFINING GEOM, P139
KENDALL RA, 1992, J CHEM PHYS, V96, P6769
KHALIULLIN RZ, 2008, J CHEM PHYS, V128, ARTN 184112
KING EC, 2007, J ENVIRON ENG GEOPH, V12, P15
KOFINGER J, 2008, P NATL ACAD SCI USA, V105, P13218, DOI
10.1073/pnas.0801448105
KOGA K, 2001, NATURE, V412, P802
KOGA K, 2002, PHYSICA A, V314, P462
KOHN W, 1998, PHYS REV LETT, V80, P4153
KOLESNIKOV AI, 2004, PHYS REV LETT, V93, ARTN 035503
KOLESNIKOV AI, 2006, PHYSICA B 1, V385, P272, DOI
10.1016/j.physb.2006.05.065
LEENAERTS O, 2008, PHYS REV B, V77, ARTN 125416
LIA SG, NIST CHEM WEBBOOK
LIN IC, 2008, PHYS CHEM CHEM PHYS, V10, P2730, DOI 10.1039/b718594d
MAMONTOV E, 2006, J CHEM PHYS, V124, ARTN 194703
MARKOVIC N, 1999, CHEM PHYS, V247, P413
MISQUITTA AJ, 2003, PHYS REV LETT, V91, ARTN 033201
MISQUITTA AJ, 2005, J CHEM PHYS, V122, ARTN 214109
MISQUITTA AJ, 2005, J CHEM PHYS, V123, ARTN 214103
NANOK T, J PHYS CH A IN PRESS
NOON WH, 2002, CHEM PHYS LETT, V355, P445
PERTSIN A, 2004, J PHYS CHEM B, V108, P1357, DOI 10.1021/jp0356968
PERTSIN A, 2006, J CHEM PHYS, V125, ARTN 114707
PODESZWA R, 2005, CHEM PHYS LETT, V412, P488, DOI
10.1016/j.cplett.2005.07.029
PODESZWA R, 2006, J CHEM THEORY COMPUT, V2, P400, DOI 10.1021/ct050304h
PODESZWA R, 2006, J PHYS CHEM A, V110, P10345, DOI 10.1021/jp064095o
PONDER JW, 2004, TINKER SOFTWARE TOOL
PRICE SL, 1983, CHEM PHYS LETT, V98, P419
PRICE SL, 1984, MOL PHYS, V52, P987
RAGHAVACHARI K, 1989, CHEM PHYS LETT, V157, P479
RASAIAH JC, 2008, ANNU REV PHYS CHEM, V59, P713
REN PY, 2003, J PHYS CHEM B, V107, P5933, DOI 10.1021/jp027815+
RUBES M, 2008, PHYS CHEM CHEM PHYS, V10, P2611, DOI 10.1039/b718701g
RUBES M, 2009, J PHYS CHEM C, V113, P8412, DOI 10.1021/jp901410m
RYBAK S, 1991, J CHEM PHYS, V95, P6576
SALA FD, 2001, J CHEM PHYS, V115, P5718
SHAO Y, 2006, PHYS CHEM CHEM PHYS, V8, P3172, DOI 10.1039/b517914a
SILVESTRELLI PL, 2008, PHYS REV LETT, V100, ARTN 053002
SINHA S, 2007, PHYS FLUIDS, V19, ARTN 013603
SINNOKROT MO, 2002, J AM CHEM SOC, V124, P10887, DOI 10.1021/ja025896h
SINNOKROT MO, 2004, J PHYS CHEM A, V108, P10200, DOI 10.1021/jp0469517
STONE AJ, 1981, CHEM PHYS LETT, V83, P233
STONE AJ, 1996, THEORY INTERMOLECULA
STONE AJ, 2005, J CHEM THEORY COMPUT, V1, P1128, DOI 10.1021/ct050190+
SUDIARTA IW, 2006, J PHYS CHEM A, V110, P10501, DOI 10.1021/jp060554+
THOMAS JA, 2007, J CHEM PHYS, V126, ARTN 034707
THOMAS JA, 2008, J CHEM PHYS, V128, ARTN 084715
TSUZUKI S, 1996, CHEM PHYS LETT, V252, P206
TSUZUKI S, 2000, CHEM PHYS LETT, V319, P547
TSUZUKI S, 2002, J AM CHEM SOC, V124, P104
VAHTRAS O, 1993, CHEM PHYS LETT, V213, P514
VANLEEUWEN R, 1994, PHYS REV A, V49, P2421
VANMOURIK T, 2002, J CHEM PHYS, V116, P9620
VERNOV A, 1992, LANGMUIR, V8, P155
WALTHER JH, 2001, J PHYS CHEM B, V105, P9980
WEHLING TO, 2008, APPL PHYS LETT, V93, ARTN 202110
WEIGEND F, 2002, J CHEM PHYS, V116, P3175
WEIGEND F, 2002, PHYS CHEM CHEM PHYS, V4, P4285, DOI 10.1039/b204199p
WERDER T, 2001, NANO LETT, V1, P697, DOI 10.1021/nl015640u
WERDER T, 2003, J PHYS CHEM B, V107, P1345, DOI 10.1021/jp0268112
WERNER HJ, 2006, MOLPRO VERSION 2006
WHITBY M, 2008, NANO LETT, V8, P2632, DOI 10.1021/nl080705f
WHITEHOUSE DB, 1993, J CHEM SOC FARADAY T, V89, P1909
WILLIAMS HL, 2001, J PHYS CHEM A, V105, P646
XU J, UNPUB
ZHANG XH, 2007, LANGMUIR, V23, P23
ZHAO Y, 2005, J CHEM THEORY COMPUT, V1, P415, DOI 10.1021/ct049851d
ZHAO Y, 2005, J PHYS CHEM B, V109, P19046, DOI 10.1021/jp0534434
ZHAO Z, 2005, MOL SIMULAT, V1, P1
NR 106
TC 0
PU AMER CHEMICAL SOC; 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 1932-7447
DI 10.1021/jp9015307
PD JUN 11
VL 113
IS 23
BP 10242
EP 10248
SC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science,
Multidisciplinary
GA 454JZ
UT ISI:000266679500039
ER

PT J
*Record 4 of 5.
L5 <http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;UT=000266549300080>
*Order Full Text [ ]
AU Wang, S
Lu, HJ
Tu, YS
Wang, CL
Fang, HP
AF Wang Shen
Lu Hang-Jun
Tu Yu-Song
Wang Chun-Lei
Fang Hai-Ping
TI Gating of Water Flow Induced by Bending of a Carbon Nanotube
SO CHINESE PHYSICS LETTERS
LA English
DT Article
ID BIOLOGICAL CHANNELS; PERMEATION; CONDUCTION; TRANSPORT; DYNAMICS; PIPES
AB The ON-OFF state transition of the water transport induced by the
structural bending of a carbon nanotube is studied by molecule dynamics
simulation. The water permeation through a bent carbon nanotube shows
excellent gating property with a threshold bending angle of about 14.6
degrees. We also investigate the water density distribution inside the
nanochannel to illustrate the mechanism.
C1 [Wang Shen; Tu Yu-Song; Wang Chun-Lei; Fang Hai-Ping] Chinese Acad Sci, Shanghai Inst Appl Phys, Shanghai 201800, Peoples R China.
[Wang Shen; Tu Yu-Song; Wang Chun-Lei] Chinese Acad Sci, Grad Sch, Beijing 100049, Peoples R China.
[Lu Hang-Jun] Zhejiang Normal Univ, Dept Phys, Jinhua 321004, Peoples R China.
[Fang Hai-Ping] Chinese Acad Sci, TPCSF, Beijing 100049, Peoples R China.
RP Fang, HP, Chinese Acad Sci, Shanghai Inst Appl Phys, POB 800-204,
Shanghai 201800, Peoples R China.
EM fanghaiping@sinap.ac.cn
CR BERENDSEN HJC, 1981, INTERMOLECULAR FORCE, P331
BERENDSEN HJC, 1995, COMPUT PHYS COMMUN, V91, P43
BERNE BJ, 2009, ANN REV PHY IN PRESS, V60
BRENNER DW, 1990, PHYS REV B, V42, P9458
DEGROOT BL, 2001, SCIENCE, V294, P2353
FANG HP, 2008, J PHYS D APPL PHYS, V41, ARTN 103002
GONG XJ, 2007, NAT NANOTECHNOL, V2, P709, DOI 10.1038/nnano.2007.320
GONG XJ, 2008, CHINESE PHYS B, V17, P2739
HOLT JK, 2006, SCIENCE, V312, P1034, DOI 10.1126/science.1126298
HUMMER G, 2001, NATURE, V414, P188
LI JY, 2007, CHINESE PHYS LETT, V24, P2710
LI JY, 2007, P NATL ACAD SCI USA, V104, P3687, DOI
10.1073/pnas.0604541104
LINDAHL E, 2001, J MOL MODEL, V7, P306
LIU J, 1998, SCIENCE, V280, P1253
LU HJ, 2008, CHINESE PHYS LETT, V25, P1145
MAJUMDER M, 2005, NATURE, V438, P44, DOI 10.1038/43844a
PAN ZW, 1998, NATURE, V394, P631
TAJKHORSHID E, 2002, SCIENCE, V296, P525
TERSOFF J, 1988, PHYS REV LETT, V61, P2879
VANDERSPOEL D, 2005, GROMACS USER MANUAL
WAN RZ, 2005, J AM CHEM SOC, V127, P7166, DOI 10.1021/ja050044d
WHITBY M, 2008, NANO LETT, V8, P2632, DOI 10.1021/nl080705f
ZHAO YC, 2008, ADV MATER, V20, P1772, DOI 10.1002/adma.200702956
ZHU FQ, 2003, BIOPHYS J, V85, P236
NR 24
TC 0
PU IOP PUBLISHING LTD; DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND
SN 0256-307X
PD JUN
VL 26
IS 6
AR 068702
SC Physics, Multidisciplinary
GA 452OA
UT ISI:000266549300080
ER

PT B
*Record 5 of 5.
L5 <http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;UT=000266546900083>
*Order Full Text [ ]
AU Han, YL
Muntz, EP
AF Han, Yen-Lin
Muntz, E. P.
TI INVESTIGATION OF TEMPERATURE DRIVEN GAS FLOWS IN 4 NM CHANNELS FOR
APPLICATIONS OF MICRO-SCALE COMPRESSORS AT ABOVE ATMOSPHERIC PRESSURE
SO PROCEEDINGS OF THE ASME INTERNATIONAL MECHANICAL ENGINEERING CONGRESS
AND EXPOSITION, VOL 13, PTS A AND B
LA English
DT Proceedings Paper
ID LINEARIZED BOLTZMANN-EQUATION; WALL CARBON NANOTUBES;
MOLECULAR-TRANSPORT; KNUDSEN COMPRESSOR; MEMBRANES; PERFORMANCE
AB Based on the rarefied flow phenomenon of thermal creep (or thermal
transpiration), the Knudsen Compressor is an unconventional
micro/meso-scale compressor or pump. Optimization studies have shown
that a Knudsen Compressor operates most efficiently when its membrane's
flow channels are at the transitional flow regime, between continuum
and molecular flows; simultaneously it provides a desired mass flow and
pressure ratio. At higher pressures (> 1 atm), to maintain membrane
channel Knudsen numbers in the transitional regime (Kn similar to 1),
the corresponding membrane channel size needs to be less than about 50
nm. More specifically, at 10 atm, the membrane channel size should be
as small as 5 rim to provide the most efficient Knudsen Compressor
operation.
Prior to this work, there has been no documented experimental
investigation of thermal creep measurements through channels less than
5 nm. Phenomena that could be associated with such flows are briefly
discussed, and possible selection criteria for thermal creep membranes
are included in this study. Apparatus design is discussed. Experimental
results are provided for thermal creep flows, within a single stage
Knudsen Compressor with 4 nm diameter membrane channels. The maximum
pressure increases across the Knudsen Compressor's thermal creep
membrane were measured, over a range of operating pressures from I atm
to 1.1 atm with Helium or Argon as the working gas. Results showed
apparent thermal creep effects across the porous glass membrane, and
possibly significant force field effects within the nano-scale channels.
C1 [Han, Yen-Lin; Muntz, E. P.] Univ So Calif, Los Angeles, CA 90089 USA.
RP Han, YL, Univ So Calif, Los Angeles, CA 90089 USA.
CR ACKERMAN DM, 2003, MOL SIMULAT, V29, P677, DOI
10.1080/0892702031000103239
ARORA G, 2006, J CHEM PHYS, V124, P84702, ARTN 084702
BEENAKKER JJM, 1994, PHYS REV LETT, V72, P514
BEENAKKER JJM, 1995, CHEM PHYS LETT, V232, P379
BORMAN VD, 1990, SOV PHYS JETP, V70, P1013
CHEN HB, 2006, J PHYS CHEM B, V110, P1971, DOI 10.1021/jp056911i
FUJII M, 2005, PHYS REV LETT, V95, P5502
HAN YL, 2004, THESIS U SO CALIFORN
HAN YL, 2007, J VAC SCI TECHNOL B, V25, P703, DOI 10.1116/1.2723755
HAN YL, 2007, NANOSC MICROSC THERM, V11, P151, DOI
10.1080/15567260701337209
HAN YL, 2008, J MICROELECTROMECH S, V17, P984
HINDS BJ, 2004, SCIENCE, V303, P62, DOI 10.1126/science.1092048
HIRSCHFELDER JO, 1964, ADV QUANTUM CHEM, V1, P255
HOLT JK, 2006, SCIENCE, V312, P1034, DOI 10.1126/science.1126298
HONE J, 1999, PHYS REV B, V59, P2514
JAKOBTORWEIHEN S, 2006, J CHEM PHYS, V124, P54706
KNUDSEN M, 1910, ANN PHYS-BERLIN, V31, P205
KNUDSEN M, 1910, ANN PHYS-BERLIN, V33, P1435
LU GQ, 2004, NANOPOROUS MAT SCI E
MAJUMDER M, 2005, NATURE, V438, P44, DOI 10.1038/43844a
MARTIN CR, 2001, J PHYS CHEM B, V105, P1925
MUNTZ EP, 2002, J VAC SCI TECHNOL A, V20, P214
MUNTZ EP, 2002, MEMS HDB
PADGETT CW, 2004, NANO LETT, V4, P1051, DOI 10.1021/nl049645d
PHAMVANDIEP G, 1995, RAREFIED GAS DYN, P715
REYNOLDS O, 1879, PHILOS T, V170, P727
SHACKELFORD JF, 2001, CRC MAT SCI ENG HDB, P289
SKOULIDAS AI, 2002, PHYS REV LETT, V89, P5901
SOKHAN VP, 2002, J CHEM PHYS, V117, P8531, DOI 10.1063/1.1512643
SOKHAN VP, 2004, J CHEM PHYS, V120, P3855, DOI 10.1063/1.1643726
SONE Y, 1989, PHYS FLUIDS A-FLUID, V1, P363
SONE Y, 1994, EUR J MECH B-FLUID, V13, P573
SUGIMOTO H, 2005, AIP CONF PROC, V762, P168
VARGO SE, 2000, THESIS U SO CALIFORN
WANG YH, 2004, J AM CHEM SOC, V126, P9502, DOI 10.1021/ja048680j
YOUNG MP, 2004, THESIS U SO CALIFORN
NR 36
TC 0
PU AMER SOC MECHANICAL ENGINEERS; THREE PARK AVENUE, NEW YORK, NY
10016-5990 USA
BP 661
EP 668
GA BJJ80
UT ISI:000266546900083
ER

EF

========================================================================
*Order Full Text*
All Customers
--------------
Please contact your library administrator, or person(s) responsible for
document delivery, to find out more about your organization's policy for
obtaining the full text of the above articles. If your organization does
not have a current document delivery provider, your administrator can
contact ISI Document Solution at service@isidoc.com, or call 800-603-4367
or 734-459-8565.

IDS Customers
--------------
IDS customers can purchase the full text of an article (having page number,
volume, and issue information) by returning this ENTIRE message as a Reply
to Sender or Forward to orders@isidoc.com. Mark your choices with an X in
the "Order Full Text: []" brackets for each item. For example, [X].

Please enter your account number here:

========================================================================
*Import Records into an ISI ResearchSoft product*
1) Save the email as a text file. If your e-mail software removed extra line breaks, restore them before saving.
2) From within an ISI ResearchSoft product, import the text file using the ISI-CE filter.
========================================================================
*Help Desk Contact Information*
If you have any questions, please visit the Thomson Scientific Technical Support Contact Information Web page:
http://www.thomsonscientific.com/support/techsupport
========================================================================

No comments: