Cited Article:    Holt JK. Fast mass transport through sub-2-nanometer carbon nanotubes
 Alert Expires:    18 OCT 2009
 Number of Citing Articles:    5 new records this week (5 in this e-mail)
 Organization ID:  3b97d1bbc1878baed0ab183d8b03130b
========================================================================
 Note:  Instructions on how to purchase the full text of an article, import the records into an 
 ISI ResearchSoft product, and Help Desk Contact information are at the end of the e-mail.
========================================================================
FN ISI Export Format
VR 1.0
PT J
*Record 1 of 5. 
L5 <http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;UT=000266515400011>
*Order Full Text [ ]
AU Thornton, AW
   Hilder, T
   Hill, AJ
   Hill, JM
AF Thornton, Aaron W.
   Hilder, Tamsyn
   Hill, Anita J.
   Hill, James M.
TI Predicting gas diffusion regime within pores of different size, shape
   and composition
SO JOURNAL OF MEMBRANE SCIENCE
LA English
DT Article
DE Surface diffusion; Activation diffusion; Knudsen; Transport; Arrhenius;
   Separation; Membrane; Pore; Modelling
ID WALLED CARBON NANOTUBES; FREE-VOLUME; POSITRON LIFETIME;
   GLASSY-POLYMERS; MEMBRANES; MECHANICS; TRANSPORT; PERMEABILITY;
   FULLERENES; ADSORPTION
AB The ability to separate mixtures of molecules is a vital technology in
   a world that emits excess carbon dioxide into the atmosphere, needs
   purified water, desires artificial kidneys and requires hydrogen for
   sustainable energy alternatives. Membranes are composed of angstrom and
   nanometer-sized pores which may be designed to separate a gas, vapor or
   liquid mixture. In this paper we employ mathematical modeling, using
   the Lernnard-Jones interactions between the gas molecule and the pore
   wall, to determine the gas diffusion regime occurring within pores of
   different size, shape and composition. This novel approach is used to
   predict the transport of light gases, namely, He, H-2, CO2, O-2, N-2
   and CH4, through carbon tubes, carbon slits, silica tubes and silica
   slits. Minimum pore size for barrier-free transport (d(min)) and the
   minimum pore size for Knudsen diffusion (d(k)) are calculated for each
   gas and a mechanism for the intermediate region is suggested in which
   the attractive van der Waals forces cause an accelerated entrance
   velocity of the gas at the pore opening. Experimental results for gas
   transport in carbon nanotube, carbon molecular sieving and molecular
   sieving silica membranes are explained well by the model. The aim of
   this work is to provide the guidelines for tailoring porosity in
   membranes and adsorbents, such that desired separations are achieved.
   Crown Copyright (C) 2009 Published by Elsevier B.V. All rights reserved.
C1 [Thornton, Aaron W.; Hilder, Tamsyn; Hill, James M.] Univ Wollongong, Nanomech Grp, Sch Math & Appl Stat, Wollongong, NSW 2522, Australia.
   [Thornton, Aaron W.; Hill, Anita J.] CSIRO Mat Sci & Engn, Clayton Sth Mdc, Vic 3169, Australia.
RP Thornton, AW, Univ Wollongong, Nanomech Grp, Sch Math & Appl Stat,
   Wollongong, NSW 2522, Australia.
EM aaron.thornton@csiro.au
CR ACHARYA M, 2000, AICHE J, V46, P911
   BAUSCHLICHER CW, 2000, CHEM PHYS LETT, V322, P237
   BRECK DW, 1973, MOL SIEVES STRUCTURE
   CHEN HB, 2006, J MEMBRANE SCI, V269, P152, DOI
   10.1016/j.memsci.2005.06.030
   COX BJ, 2007, J PHYS A-MATH THEOR, V40, P13197
   COX BJ, 2007, P R SOC A, V463, P461, DOI 10.1098/rspa.2006.1771
   COX BJ, 2007, P R SOC A, V463, P477, DOI 10.1098/rspa.2006.1772
   COX BJ, 2007, Q J MECH APPL MATH 2, V60, P231, DOI 10.1093/qjmam/hbm005
   DELANGE RSA, 1995, J MEMBRANE SCI, V104, P81
   DEVOS RM, 1998, J MEMBRANE SCI, V143, P37
   DLUBEK G, 1996, PHYS STATUS SOLIDI A, V157, P351
   DUCKE MC, 2008, ADV FUNCT MATER, V18, P1
   DUREN T, 2004, LANGMUIR, V20, P2683, DOI 10.1021/la0355500
   EVERETT DH, 1976, J CHEM SOC FARADAY T, V72, P619
   FREEMAN BD, 1999, MACROMOLECULES, V32, P375
   GARBEROGLIO G, 2005, J PHYS CHEM B, V109, P13094, DOI 10.1021/jp0509481
   GILLILAND ER, 1974, IND ENG F, V13, P95
   GILRON J, 2002, J MEMBRANE SCI, V209, P339
   GRADSHTEYN IS, 2000, SERIES PRODUCTS
   GRAYWEALE AA, 1997, MACROMOLECULES, V30, P7296
   GREENFIELD ML, 1993, MACROMOLECULES, V26, P5461
   HEDSTROM JA, 2004, LANGMUIR, V20, P1535, DOI 10.1021/la0351515
   HILDER TA, 2007, J PHYS A-MATH THEOR, V40, P3851, DOI
   10.1088/1751-8113/40/14/008
   HILDER TA, 2007, NANOTECHNOLOGY, V18, ARTN 275704
   HILDER TA, 2007, PHYS REV B, V75, ARTN 125415
   HILDER TA, 2009, J NANOSCI NANOTECHNO, V9, P1403, DOI
   10.1166/jnn.2009.C166
   HINDS BJ, 2004, SCIENCE, V303, P62, DOI 10.1126/science.1092048
   HOFMANN D, 2003, MACROMOLECULES, V36, P8528, DOI 10.1021/ma0349711
   HOLT JK, 2006, SCIENCE, V312, P1034, DOI 10.1126/science.1126298
   HUMMER G, 2001, NATURE, V414, P188
   HWANG ST, 1984, MEMBRANES SEPARATION
   JINNAI H, 2000, PHYS REV E B, V61, P6773
   KALRA A, 2003, P NATL ACAD SCI USA, V100, P10175
   KNUDSEN M, 1909, ANN PHYS, V28, P75
   KOVACS AJ, 1979, J POLYM SCI POL PHYS, V17, P1097
   LIN YS, 2002, SEPAR PURIF METHOD, V31, P229, DOI 10.1081/SPM-120017009
   LIU P, 2005, J APPL PHYS, V97, ARTN 094313
   MERKEL TC, 2002, SCIENCE, V296, P519
   MERKEL TC, 2003, MACROMOLECULES, V36, P6844, DOI 10.1021/ma0341566
   MILLS AF, 2001, MASS TRANSFER
   PARK HB, 2007, SCIENCE, V318, P254, DOI 10.1126/science.1146744
   PARK JY, 1997, J MEMBRANE SCI, V125, P23
   PENG FB, 2005, CHEM MATER, V17, P6790, DOI 10.1021/cm051890q
   POLING BE, 2001, PROPERTIES GASES LIQ
   QIAN D, 2001, J PHYS CHEM B, V105, P10753
   RAPPE AK, 1992, J AM CHEM SOC, V114, P10024
   ROBESON LM, 1991, J MEMBRANE SCI, V62, P165
   SCHRADER DM, 1988, STUDIES PHYS THEORET
   SHELEKHIN AB, 1995, AICHE J, V41, P58
   TRIEBE RW, 1995, GAS SEP PURIF, V9, P223
   WANG XY, 2004, POLYMER, V45, P3907, DOI 10.1016/j.polymer.2004.01.080
   WHITBY M, 2007, NAT NANOTECHNOL, V2, P87, DOI 10.1038/nnano.2006.175
   YAMPOLSKII Y, 2006, MAT SCI MEMBRANES GA
   YAMPOLSKII YP, 1994, MACROMOLECULES, V27, P2872
NR 54
TC 0
PU ELSEVIER SCIENCE BV; PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0376-7388
DI 10.1016/j.memsci.2009.03.019
PD JUL 1
VL 336
IS 1-2
BP 101
EP 108
SC Engineering, Chemical; Polymer Science
GA 452BU
UT ISI:000266515400011
ER
PT J
*Record 2 of 5. 
L5 <http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;UT=000266679500009>
*Order Full Text [ ]
AU Dong, K
   Zhou, GH
   Liu, XM
   Yao, XQ
   Zhang, SJ
   Lyubartsev, A
AF Dong, Kun
   Zhou, Guohui
   Liu, Xiaomin
   Yao, Xiaoqian
   Zhang, Suojiang
   Lyubartsev, Alexander
TI Structural Evidence for the Ordered Crystallites of Ionic Liquid in
   Confined Carbon Nanotubes
SO JOURNAL OF PHYSICAL CHEMISTRY C
LA English
DT Article
ID MOLECULAR-DYNAMICS SIMULATION; ROOM-TEMPERATURE;
   1-N-BUTYL-3-METHYLIMIDAZOLIUM HEXAFLUOROPHOSPHATE; ICE NANOTUBES;
   FREE-ENERGY; TRANSPORT; MIXTURES; SOLVENTS; METHANE; POTENTIALS
AB Ionic liquids (ILs) are a class of new green materials that have
   attracted extensive attention in recent decades. Many novel properties
   not evident under normal conditions may appear when ionic liquids are
   confined to a nanometer scale. As was observed in the experiment, an
   anomalous phase behavior from liquid to high melting point perfect
   crystal occurred when 1-n-butyl-3-methylimidazolium hexafluorophosphate
   ([bmim][PF6]) ionic liquid was confined in a carbon nanotube. In this
   work, we performed molecular dynamics (MD) simulations for [bmim][PF6]
   ionic liquid and provided direct structural evidence that the ionic
   crystallizes in a carbon nanotube. The ordered ionic arrangement in
   both the radial and the axial directions can be observed inside the
   channels of the CNTs to induce the form of crystallites. The ionic
   stacking and distributing can be determined by the sizes of the CNTs.
   Hydrogen bonds remain the dominant interactions between cations and
   anions when the ionic liquid enters into the CNT from the bulk phase.
   The free energies as the thermal driven forces were calculated, and it
   is found that it is very difficult for a single anion to enter into the
   channel of the CNT spontaneously. A more favorable way is through an
   ion-pair in which a cation "pulls" an anion to enter into the channel
   of the CNT together. It is predicted that other ionic liquids that
   possess similar structures, even including the pyridinium-based ionic
   liquids, can show higher melting points when confined in CNTs.
C1 [Dong, Kun; Zhou, Guohui; Liu, Xiaomin; Yao, Xiaoqian; Zhang, Suojiang] Chinese Acad Sci, State Key Lab Multiphase Complex Syst, Inst Proc Engn, Beijing 100190, Peoples R China.
   [Lyubartsev, Alexander] Stockholm Univ, Arrhenius Lab, Div Phys Chem, S-10691 Stockholm, Sweden.
RP Zhang, SJ, Chinese Acad Sci, State Key Lab Multiphase Complex Syst,
   Inst Proc Engn, Beijing 100190, Peoples R China.
EM sjzhang@home.ipe.ac.cn
CR AJAYAN PM, 1997, REP PROG PHYS, V60, P1025
   BAI J, 2003, J CHEM PHYS, V118, P3913, DOI 10.1063/1.1555091
   BONDI A, 1964, J PHYS CHEM-US, V68, P441
   BYL O, 2006, J AM CHEM SOC, V128, P12090, DOI 10.1021/ja057856u
   CAO DP, 2003, J PHYS CHEM B, V107, P13286, DOI 10.1021/jp036094r
   CHEN SM, 2007, J AM CHEM SOC, V129, P2416, DOI 10.1021/ja067972c
   DELPOPOLO MG, 2004, J PHYS CHEM B, V108, P1744, DOI 10.1021/jp0364699
   DONG K, 2006, J PHYS CHEM A, V110, P9775, DOI 10.1021/jp054054c
   EARLE MJ, 1999, GREEN CHEM, V1, P23
   EARLE MJ, 2000, PURE APPL CHEM, V72, P1391
   FREDLAKE CP, 2004, J CHEM ENG DATA, V49, P954, DOI 10.1021/je034261a
   FUKUSHIMA T, 2003, SCIENCE, V300, P2072
   HANKE CG, 2001, MOL PHYS, V99, P801
   HANKE CG, 2003, J PHYS CHEM B, V107, P10873, DOI 10.1021/jp034221d
   HINDS BJ, 2004, SCIENCE, V303, P5654
   HOLT JK, 2006, SCIENCE, V312, P1034, DOI 10.1126/science.1126298
   HUANG XH, 2005, J AM CHEM SOC, V127, P17842, DOI 10.1021/ja055315z
   HUDDLESTON JG, 2001, GREEN CHEM, V3, P156
   HUMMER G, 2001, NATURE, V414, P188
   KALRA A, 2003, P NATL ACAD SCI USA, V100, P10175
   KALRA A, 2004, J PHYS CHEM B, V108, P544, DOI 10.1021/jp035828x
   KANAKUBO M, 2005, CHEM LETT, V34, P324, DOI 10.1246/cl.2005.324
   KELKAR MS, 2007, J PHYS CHEM B, V111, P9492
   KHLOBYSTOV AN, 2005, ACCOUNTS CHEM RES, V38, P901
   KOGA K, 2000, J CHEM PHYS, V113, P5037
   KOGA K, 2001, NATURE, V412, P802
   KONG J, 2000, SCIENCE, V287, P5453
   LIU C, 1999, SCIENCE, V286, P1127
   LIU YD, 2006, J AM CHEM SOC, V128, P7456, DOI 10.1021/ja062685u
   LIU ZP, 2004, J PHYS CHEM B, V108, P12978, DOI 10.1021/jp048369o
   LUDER K, 2006, J PHYS CHEM B, V110, P15514, DOI 10.1021/jp061245m
   LYUBARTSEV AP, 1996, MOL SIMULAT, V18, P43
   LYUBARTSEV AP, 1998, J CHEM PHYS, V108, P227
   LYUBARTSEV AP, 2000, COMPUT PHYS COMMUN, V128, P565
   LYUBARTSEV AP, 2001, J PHYS CHEM B, V105, P7775
   MARGULIS CJ, 2002, J PHYS CHEM B, V106, P12017, DOI 10.1021/jp021392u
   MARGULIS CJ, 2004, MOL PHYS, V102, P829, DOI
   10.1080/00268970410001683843
   MARTYNA GJ, 1996, MOL PHYS, V87, P1117
   MORROW TI, 2002, J PHYS CHEM B, V106, P12807, DOI 10.1021/jp0267003
   SAZONOVA V, 2004, NATURE, V431, P284, DOI 10.1038/nature02905
   SHAH JK, 2002, GREEN CHEM, V4, P112
   SHELDON R, 2001, CHEM COMMUN, P2399
   SNOW ES, 2005, SCIENCE, V307, P1942, DOI 10.1126/science.1109128
   TALATY ER, 2004, J PHYS CHEM B, V108, P13177, DOI 10.1021/jp040199s
   TASIS D, 2006, CHEM REV, V106, P1105, DOI 10.1021/cr050569o
   TUCKERMAN M, 1992, J CHEM PHYS, V97, P1990
   WANG J, 2003, ACTA CHIM SINICA, V61, P1891
   WANG YT, 2005, J AM CHEM SOC, V127, P12192, DOI 10.1021/ja053796g
   WELTON T, 1999, CHEM REV, V99, P2071
   WILSON M, 2001, J AM CHEM SOC, V123, P2101
   WILSON M, 2004, NANO LETT, V4, P299, DOI 10.1021/nl035044v
   WILSON M, 2006, ACTA CRYSTALLOGR A 4, V62, P287, DOI
   10.1107/S0108767306018101
   WILSON M, 2006, J CHEM PHYS, V124, ARTN 124706
   YAN TY, 2004, J PHYS CHEM B, V108, P11877, DOI 10.1021/jp047619y
NR 54
TC 0
PU AMER CHEMICAL SOC; 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 1932-7447
DI 10.1021/jp900533k
PD JUN 11
VL 113
IS 23
BP 10013
EP 10020
SC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science,
   Multidisciplinary
GA 454JZ
UT ISI:000266679500009
ER
PT J
*Record 3 of 5. 
L5 <http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;UT=000266679500039>
*Order Full Text [ ]
AU Jenness, GR
   Jordan, KD
AF Jenness, Glen R.
   Jordan, Kenneth D.
TI DF-DFT-SAPT Investigation of the Interaction of a Water Molecule to
   Coronene and Dodecabenzocoronene: Implications for the Water-Graphite
   Interaction
SO JOURNAL OF PHYSICAL CHEMISTRY C
LA English
DT Review
ID DENSITY-FUNCTIONAL THEORY; DISTRIBUTED MULTIPOLE ANALYSIS; ADAPTED
   PERTURBATION-THEORY; PI-PI INTERACTIONS; INTERMOLECULAR INTERACTION
   ENERGIES; DER-WAALS INTERACTIONS; KOHN-SHAM ORBITALS; CARBON NANOTUBES;
   BENZENE DIMER; BASIS-SETS
AB In the present study we revisit the problem of the interaction of a
   water molecule with a single graphite sheet. The density
   fitting-density functional theory-symmetry-adapted perturbation theory
   (DF-DFT-SAPT; J. Chem. Phys. 2005, 122, 014103) method is used to
   calculate the individual contributions arising from the interaction of
   a water molecule with various acenes, including benzene, coronene, and
   dodecabenzocoronene. These results are combined with calculations of
   the electrostatic interactions with water and a C216H36 acene to
   extrapolate to the limit of an infinite graphite sheet, giving a
   interaction energy of -2.2 kcal/mol for the water-graphite system, with
   the assumed geometrical structure with one hydrogen atom pointed down
   toward the ring system. The structure with two hydrogens pointed down
   is predicted to be more stable, with a net interaction energy of -2.7
   kcal/mol.
C1 [Jordan, Kenneth D.] Univ Pittsburgh, Dept Chem, Pittsburgh, PA 15620 USA.
   Univ Pittsburgh, Ctr Mol & Mat Simulat, Pittsburgh, PA 15620 USA.
RP Jordan, KD, Univ Pittsburgh, Dept Chem, Pittsburgh, PA 15620 USA.
EM jordan@pitt.edu
CR ADAMO C, 1999, J CHEM PHYS, V110, P6158
   ALEXIADIS A, 2008, CHEM REV, V108, P5014, DOI 10.1021/cr078140f
   ALONSO JA, 2007, THEOR CHEM ACC, V117, P467, DOI
   10.1007/s00214-006-0079-3
   ANDERSSON Y, 1996, PHYS REV LETT, V76, P102
   ARAI N, 2008, J AM CHEM SOC, V130, P7916, DOI 10.1021/ja7108739
   AVGUL NN, 1970, CHEMISTRY PHYSICS CA, V6, P1
   BARBER AH, 2005, PHYS REV B, V71, ARTN 115443
   BENEDICT LX, 1995, PHYS REV B, V52, P8541
   BENEDICT WS, 1956, J CHEM PHYS, V24, P1139
   BIRKETT GR, 2007, J PHYS CHEM C, V111, P5735, DOI 10.1021/jp068479q
   BOYS SF, 1970, MOL PHYS, V19, P553
   BUKOWSKI R, 2005, CHEM PHYS LETT, V414, P111, DOI
   10.1016/j.cplett.2005.08.048
   BUSHUEV Y, 2005, SENSORS-BASEL, V5, P139
   CHAKAROV DV, 1995, LANGMUIR, V11, P1201
   COURTY A, 1998, J PHYS CHEM A, V102, P6590
   CYBULSKI SM, 2003, J CHEM PHYS, V119, P12704, DOI 10.1063/1.1635351
   DANG LX, 1997, J CHEM PHYS, V106, P8149
   DANG LX, 2000, J PHYS CHEM B, V104, P4403
   FELLER D, 1999, J PHYS CHEM A, V103, P7558
   FELLER D, 2000, J PHYS CHEM A, V104, P9971
   FRISCH MJ, 2004, GAUSSIAN 03 REVISION
   GONZALEZ BS, 2007, J PHYS CHEM C, V111, P14862, DOI 10.1021/jp074249f
   GORDILLO MC, 2000, CHEM PHYS LETT, V329, P341
   GRIMME S, 2006, J CHEM PHYS, V124, ARTN 034108
   GRIMME S, 2007, J PHYS CHEM C, V111, P11199, DOI 10.1021/jp0720791
   GRUNING M, 2001, J CHEM PHYS, V114, P652
   HESSELMANN A, 2002, CHEM PHYS LETT, V357, P464
   HESSELMANN A, 2002, CHEM PHYS LETT, V362, P319
   HESSELMANN A, 2003, CHEM PHYS LETT, V367, P778
   HESSELMANN A, 2005, J CHEM PHYS, V122, ARTN 014103
   HOBZA P, 1996, J PHYS CHEM-US, V100, P18790
   HOLT JK, 2006, SCIENCE, V312, P1034, DOI 10.1126/science.1126298
   HULT E, 1996, PHYS REV LETT, V77, P2029
   HUMMER G, 2001, NATURE, V414, P188
   JEZIORSKI B, 1993, METHODS TECHNIQUES C, B, P79
   JOHNSON ER, 2006, J CHEM PHYS, V124, ARTN 174104
   JORGENSEN WL, 1985, MOL PHYS, V56, P1381
   KAIRYS V, 1999, CHEM PHYS LETT, V315, P140
   KARAPETIAN K, 2003, WATER CONFINING GEOM, P139
   KENDALL RA, 1992, J CHEM PHYS, V96, P6769
   KHALIULLIN RZ, 2008, J CHEM PHYS, V128, ARTN 184112
   KING EC, 2007, J ENVIRON ENG GEOPH, V12, P15
   KOFINGER J, 2008, P NATL ACAD SCI USA, V105, P13218, DOI
   10.1073/pnas.0801448105
   KOGA K, 2001, NATURE, V412, P802
   KOGA K, 2002, PHYSICA A, V314, P462
   KOHN W, 1998, PHYS REV LETT, V80, P4153
   KOLESNIKOV AI, 2004, PHYS REV LETT, V93, ARTN 035503
   KOLESNIKOV AI, 2006, PHYSICA B 1, V385, P272, DOI
   10.1016/j.physb.2006.05.065
   LEENAERTS O, 2008, PHYS REV B, V77, ARTN 125416
   LIA SG, NIST CHEM WEBBOOK
   LIN IC, 2008, PHYS CHEM CHEM PHYS, V10, P2730, DOI 10.1039/b718594d
   MAMONTOV E, 2006, J CHEM PHYS, V124, ARTN 194703
   MARKOVIC N, 1999, CHEM PHYS, V247, P413
   MISQUITTA AJ, 2003, PHYS REV LETT, V91, ARTN 033201
   MISQUITTA AJ, 2005, J CHEM PHYS, V122, ARTN 214109
   MISQUITTA AJ, 2005, J CHEM PHYS, V123, ARTN 214103
   NANOK T, J PHYS CH A IN PRESS
   NOON WH, 2002, CHEM PHYS LETT, V355, P445
   PERTSIN A, 2004, J PHYS CHEM B, V108, P1357, DOI 10.1021/jp0356968
   PERTSIN A, 2006, J CHEM PHYS, V125, ARTN 114707
   PODESZWA R, 2005, CHEM PHYS LETT, V412, P488, DOI
   10.1016/j.cplett.2005.07.029
   PODESZWA R, 2006, J CHEM THEORY COMPUT, V2, P400, DOI 10.1021/ct050304h
   PODESZWA R, 2006, J PHYS CHEM A, V110, P10345, DOI 10.1021/jp064095o
   PONDER JW, 2004, TINKER SOFTWARE TOOL
   PRICE SL, 1983, CHEM PHYS LETT, V98, P419
   PRICE SL, 1984, MOL PHYS, V52, P987
   RAGHAVACHARI K, 1989, CHEM PHYS LETT, V157, P479
   RASAIAH JC, 2008, ANNU REV PHYS CHEM, V59, P713
   REN PY, 2003, J PHYS CHEM B, V107, P5933, DOI 10.1021/jp027815+
   RUBES M, 2008, PHYS CHEM CHEM PHYS, V10, P2611, DOI 10.1039/b718701g
   RUBES M, 2009, J PHYS CHEM C, V113, P8412, DOI 10.1021/jp901410m
   RYBAK S, 1991, J CHEM PHYS, V95, P6576
   SALA FD, 2001, J CHEM PHYS, V115, P5718
   SHAO Y, 2006, PHYS CHEM CHEM PHYS, V8, P3172, DOI 10.1039/b517914a
   SILVESTRELLI PL, 2008, PHYS REV LETT, V100, ARTN 053002
   SINHA S, 2007, PHYS FLUIDS, V19, ARTN 013603
   SINNOKROT MO, 2002, J AM CHEM SOC, V124, P10887, DOI 10.1021/ja025896h
   SINNOKROT MO, 2004, J PHYS CHEM A, V108, P10200, DOI 10.1021/jp0469517
   STONE AJ, 1981, CHEM PHYS LETT, V83, P233
   STONE AJ, 1996, THEORY INTERMOLECULA
   STONE AJ, 2005, J CHEM THEORY COMPUT, V1, P1128, DOI 10.1021/ct050190+
   SUDIARTA IW, 2006, J PHYS CHEM A, V110, P10501, DOI 10.1021/jp060554+
   THOMAS JA, 2007, J CHEM PHYS, V126, ARTN 034707
   THOMAS JA, 2008, J CHEM PHYS, V128, ARTN 084715
   TSUZUKI S, 1996, CHEM PHYS LETT, V252, P206
   TSUZUKI S, 2000, CHEM PHYS LETT, V319, P547
   TSUZUKI S, 2002, J AM CHEM SOC, V124, P104
   VAHTRAS O, 1993, CHEM PHYS LETT, V213, P514
   VANLEEUWEN R, 1994, PHYS REV A, V49, P2421
   VANMOURIK T, 2002, J CHEM PHYS, V116, P9620
   VERNOV A, 1992, LANGMUIR, V8, P155
   WALTHER JH, 2001, J PHYS CHEM B, V105, P9980
   WEHLING TO, 2008, APPL PHYS LETT, V93, ARTN 202110
   WEIGEND F, 2002, J CHEM PHYS, V116, P3175
   WEIGEND F, 2002, PHYS CHEM CHEM PHYS, V4, P4285, DOI 10.1039/b204199p
   WERDER T, 2001, NANO LETT, V1, P697, DOI 10.1021/nl015640u
   WERDER T, 2003, J PHYS CHEM B, V107, P1345, DOI 10.1021/jp0268112
   WERNER HJ, 2006, MOLPRO VERSION 2006
   WHITBY M, 2008, NANO LETT, V8, P2632, DOI 10.1021/nl080705f
   WHITEHOUSE DB, 1993, J CHEM SOC FARADAY T, V89, P1909
   WILLIAMS HL, 2001, J PHYS CHEM A, V105, P646
   XU J, UNPUB
   ZHANG XH, 2007, LANGMUIR, V23, P23
   ZHAO Y, 2005, J CHEM THEORY COMPUT, V1, P415, DOI 10.1021/ct049851d
   ZHAO Y, 2005, J PHYS CHEM B, V109, P19046, DOI 10.1021/jp0534434
   ZHAO Z, 2005, MOL SIMULAT, V1, P1
NR 106
TC 0
PU AMER CHEMICAL SOC; 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 1932-7447
DI 10.1021/jp9015307
PD JUN 11
VL 113
IS 23
BP 10242
EP 10248
SC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science,
   Multidisciplinary
GA 454JZ
UT ISI:000266679500039
ER
PT J
*Record 4 of 5. 
L5 <http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;UT=000266549300080>
*Order Full Text [ ]
AU Wang, S
   Lu, HJ
   Tu, YS
   Wang, CL
   Fang, HP
AF Wang Shen
   Lu Hang-Jun
   Tu Yu-Song
   Wang Chun-Lei
   Fang Hai-Ping
TI Gating of Water Flow Induced by Bending of a Carbon Nanotube
SO CHINESE PHYSICS LETTERS
LA English
DT Article
ID BIOLOGICAL CHANNELS; PERMEATION; CONDUCTION; TRANSPORT; DYNAMICS; PIPES
AB The ON-OFF state transition of the water transport induced by the
   structural bending of a carbon nanotube is studied by molecule dynamics
   simulation. The water permeation through a bent carbon nanotube shows
   excellent gating property with a threshold bending angle of about 14.6
   degrees. We also investigate the water density distribution inside the
   nanochannel to illustrate the mechanism.
C1 [Wang Shen; Tu Yu-Song; Wang Chun-Lei; Fang Hai-Ping] Chinese Acad Sci, Shanghai Inst Appl Phys, Shanghai 201800, Peoples R China.
   [Wang Shen; Tu Yu-Song; Wang Chun-Lei] Chinese Acad Sci, Grad Sch, Beijing 100049, Peoples R China.
   [Lu Hang-Jun] Zhejiang Normal Univ, Dept Phys, Jinhua 321004, Peoples R China.
   [Fang Hai-Ping] Chinese Acad Sci, TPCSF, Beijing 100049, Peoples R China.
RP Fang, HP, Chinese Acad Sci, Shanghai Inst Appl Phys, POB 800-204,
   Shanghai 201800, Peoples R China.
EM fanghaiping@sinap.ac.cn
CR BERENDSEN HJC, 1981, INTERMOLECULAR FORCE, P331
   BERENDSEN HJC, 1995, COMPUT PHYS COMMUN, V91, P43
   BERNE BJ, 2009, ANN REV PHY IN PRESS, V60
   BRENNER DW, 1990, PHYS REV B, V42, P9458
   DEGROOT BL, 2001, SCIENCE, V294, P2353
   FANG HP, 2008, J PHYS D APPL PHYS, V41, ARTN 103002
   GONG XJ, 2007, NAT NANOTECHNOL, V2, P709, DOI 10.1038/nnano.2007.320
   GONG XJ, 2008, CHINESE PHYS B, V17, P2739
   HOLT JK, 2006, SCIENCE, V312, P1034, DOI 10.1126/science.1126298
   HUMMER G, 2001, NATURE, V414, P188
   LI JY, 2007, CHINESE PHYS LETT, V24, P2710
   LI JY, 2007, P NATL ACAD SCI USA, V104, P3687, DOI
   10.1073/pnas.0604541104
   LINDAHL E, 2001, J MOL MODEL, V7, P306
   LIU J, 1998, SCIENCE, V280, P1253
   LU HJ, 2008, CHINESE PHYS LETT, V25, P1145
   MAJUMDER M, 2005, NATURE, V438, P44, DOI 10.1038/43844a
   PAN ZW, 1998, NATURE, V394, P631
   TAJKHORSHID E, 2002, SCIENCE, V296, P525
   TERSOFF J, 1988, PHYS REV LETT, V61, P2879
   VANDERSPOEL D, 2005, GROMACS USER MANUAL
   WAN RZ, 2005, J AM CHEM SOC, V127, P7166, DOI 10.1021/ja050044d
   WHITBY M, 2008, NANO LETT, V8, P2632, DOI 10.1021/nl080705f
   ZHAO YC, 2008, ADV MATER, V20, P1772, DOI 10.1002/adma.200702956
   ZHU FQ, 2003, BIOPHYS J, V85, P236
NR 24
TC 0
PU IOP PUBLISHING LTD; DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND
SN 0256-307X
PD JUN
VL 26
IS 6
AR 068702
SC Physics, Multidisciplinary
GA 452OA
UT ISI:000266549300080
ER
PT B
*Record 5 of 5. 
L5 <http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;UT=000266546900083>
*Order Full Text [ ]
AU Han, YL
   Muntz, EP
AF Han, Yen-Lin
   Muntz, E. P.
TI INVESTIGATION OF TEMPERATURE DRIVEN GAS FLOWS IN 4 NM CHANNELS FOR
   APPLICATIONS OF MICRO-SCALE COMPRESSORS AT ABOVE ATMOSPHERIC PRESSURE
SO PROCEEDINGS OF THE ASME INTERNATIONAL MECHANICAL ENGINEERING CONGRESS
   AND EXPOSITION, VOL 13, PTS A AND B
LA English
DT Proceedings Paper
ID LINEARIZED BOLTZMANN-EQUATION; WALL CARBON NANOTUBES;
   MOLECULAR-TRANSPORT; KNUDSEN COMPRESSOR; MEMBRANES; PERFORMANCE
AB Based on the rarefied flow phenomenon of thermal creep (or thermal
   transpiration), the Knudsen Compressor is an unconventional
   micro/meso-scale compressor or pump. Optimization studies have shown
   that a Knudsen Compressor operates most efficiently when its membrane's
   flow channels are at the transitional flow regime, between continuum
   and molecular flows; simultaneously it provides a desired mass flow and
   pressure ratio. At higher pressures (> 1 atm), to maintain membrane
   channel Knudsen numbers in the transitional regime (Kn similar to 1),
   the corresponding membrane channel size needs to be less than about 50
   nm. More specifically, at 10 atm, the membrane channel size should be
   as small as 5 rim to provide the most efficient Knudsen Compressor
   operation.
   Prior to this work, there has been no documented experimental
   investigation of thermal creep measurements through channels less than
   5 nm. Phenomena that could be associated with such flows are briefly
   discussed, and possible selection criteria for thermal creep membranes
   are included in this study. Apparatus design is discussed. Experimental
   results are provided for thermal creep flows, within a single stage
   Knudsen Compressor with 4 nm diameter membrane channels. The maximum
   pressure increases across the Knudsen Compressor's thermal creep
   membrane were measured, over a range of operating pressures from I atm
   to 1.1 atm with Helium or Argon as the working gas. Results showed
   apparent thermal creep effects across the porous glass membrane, and
   possibly significant force field effects within the nano-scale channels.
C1 [Han, Yen-Lin; Muntz, E. P.] Univ So Calif, Los Angeles, CA 90089 USA.
RP Han, YL, Univ So Calif, Los Angeles, CA 90089 USA.
CR ACKERMAN DM, 2003, MOL SIMULAT, V29, P677, DOI
   10.1080/0892702031000103239
   ARORA G, 2006, J CHEM PHYS, V124, P84702, ARTN 084702
   BEENAKKER JJM, 1994, PHYS REV LETT, V72, P514
   BEENAKKER JJM, 1995, CHEM PHYS LETT, V232, P379
   BORMAN VD, 1990, SOV PHYS JETP, V70, P1013
   CHEN HB, 2006, J PHYS CHEM B, V110, P1971, DOI 10.1021/jp056911i
   FUJII M, 2005, PHYS REV LETT, V95, P5502
   HAN YL, 2004, THESIS U SO CALIFORN
   HAN YL, 2007, J VAC SCI TECHNOL B, V25, P703, DOI 10.1116/1.2723755
   HAN YL, 2007, NANOSC MICROSC THERM, V11, P151, DOI
   10.1080/15567260701337209
   HAN YL, 2008, J MICROELECTROMECH S, V17, P984
   HINDS BJ, 2004, SCIENCE, V303, P62, DOI 10.1126/science.1092048
   HIRSCHFELDER JO, 1964, ADV QUANTUM CHEM, V1, P255
   HOLT JK, 2006, SCIENCE, V312, P1034, DOI 10.1126/science.1126298
   HONE J, 1999, PHYS REV B, V59, P2514
   JAKOBTORWEIHEN S, 2006, J CHEM PHYS, V124, P54706
   KNUDSEN M, 1910, ANN PHYS-BERLIN, V31, P205
   KNUDSEN M, 1910, ANN PHYS-BERLIN, V33, P1435
   LU GQ, 2004, NANOPOROUS MAT SCI E
   MAJUMDER M, 2005, NATURE, V438, P44, DOI 10.1038/43844a
   MARTIN CR, 2001, J PHYS CHEM B, V105, P1925
   MUNTZ EP, 2002, J VAC SCI TECHNOL A, V20, P214
   MUNTZ EP, 2002, MEMS HDB
   PADGETT CW, 2004, NANO LETT, V4, P1051, DOI 10.1021/nl049645d
   PHAMVANDIEP G, 1995, RAREFIED GAS DYN, P715
   REYNOLDS O, 1879, PHILOS T, V170, P727
   SHACKELFORD JF, 2001, CRC MAT SCI ENG HDB, P289
   SKOULIDAS AI, 2002, PHYS REV LETT, V89, P5901
   SOKHAN VP, 2002, J CHEM PHYS, V117, P8531, DOI 10.1063/1.1512643
   SOKHAN VP, 2004, J CHEM PHYS, V120, P3855, DOI 10.1063/1.1643726
   SONE Y, 1989, PHYS FLUIDS A-FLUID, V1, P363
   SONE Y, 1994, EUR J MECH B-FLUID, V13, P573
   SUGIMOTO H, 2005, AIP CONF PROC, V762, P168
   VARGO SE, 2000, THESIS U SO CALIFORN
   WANG YH, 2004, J AM CHEM SOC, V126, P9502, DOI 10.1021/ja048680j
   YOUNG MP, 2004, THESIS U SO CALIFORN
NR 36
TC 0
PU AMER SOC MECHANICAL ENGINEERS; THREE PARK AVENUE, NEW YORK, NY
   10016-5990 USA
BP 661
EP 668
GA BJJ80
UT ISI:000266546900083
ER
EF
========================================================================
 *Order Full Text* 
 All Customers
--------------
    Please contact your library administrator, or person(s) responsible for 
    document delivery, to find out more about your organization's policy for 
    obtaining the full text of the above articles. If your organization does 
    not have a current document delivery provider, your administrator can 
    contact ISI Document Solution at service@isidoc.com, or call 800-603-4367 
    or 734-459-8565.
 IDS Customers
--------------
    IDS customers can purchase the full text of an article (having page number, 
    volume, and issue information) by returning this ENTIRE message as a Reply 
    to Sender or Forward to orders@isidoc.com. Mark your choices with an X in 
    the "Order Full Text: []" brackets for each item. For example, [X].
Please enter your account number here:
========================================================================
 *Import Records into an ISI ResearchSoft product*
 1) Save the email as a text file. If your e-mail software removed extra line breaks, restore them before saving.
 2) From within an ISI ResearchSoft product, import the text file using the ISI-CE filter.
========================================================================
 *Help Desk Contact Information*
 If you have any questions, please visit the Thomson Scientific Technical Support Contact Information Web page:
http://www.thomsonscientific.com/support/techsupport
========================================================================
 
No comments:
Post a Comment