Thursday, June 18, 2009

ISI Web of Knowledge Alert - Majumder M

ISI Web of Knowledge Citation Alert

Cited Article: Majumder M. Nanoscale hydrodynamics - Enhanced flow in carbon nanotubes
Alert Expires: 18 OCT 2009
Number of Citing Articles: 3 new records this week (3 in this e-mail)
Organization ID: 3b97d1bbc1878baed0ab183d8b03130b
========================================================================
Note: Instructions on how to purchase the full text of an article and Help Desk Contact information are at the end of the e-mail.
========================================================================

*Record 1 of 3.
*View Full Record: http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000266263300159
*Order Full Text [ ]

Title:
Analysis of the vibration characteristics of fluid-conveying double-walled carbon nanotubes

Authors:
Natsuki, T; Ni, QQ; Endo, M

Author Full Names:
Natsuki, Toshiaki; Ni, Qing-Qing; Endo, Morinobu

Source:
JOURNAL OF APPLIED PHYSICS 105 (9): Art. No. 094328 MAY 1 2009

Language:
English

Document Type:
Article

KeyWords Plus:
WAVE PROPAGATION; WATER; FIBER; MODEL

Abstract:
Vibration characteristics of double-walled carbon nanotubes (DWCNTs) with conveying fluid are analyzed based on the Euler-Bernoulli beam theory and using the wave propagation approach. The DWCNTs are considered as two nanotube shells coupled through the van der Waals interaction between them. The influences of internal moving fluids, such as flow velocity and mass density of fluids, on the vibration frequency of DWCNTs and the DWCNTs embedded in an elastic matrix are investigated in detail. The effect of matrix surrounding carbon nanotubes is considered as a spring element defined by the Winkler model. In this paper, we consider the double-walled nanotubes with an inner diameter of 2.2 nm and an outer diameter of 3.0 nm. According to this analysis, the numerical results indicate that the vibration frequency for the first mode (mode 1) reduces to zero at a critical flow velocity in the case of higher flow velocity, which coincides with the previous study based on a single bea!
m model. The critical flow velocity is largely affected by the fluid properties and the vibration modes. (C) 2009 American Institute of Physics. [DOI: 10.1063/1.3117511]

Reprint Address:
Natsuki, T, Shinshu Univ, Fac Text Sci & Technol, 3-15-1 Tokida, Ueda, Nagano 3868567, Japan.

Research Institution addresses:
[Natsuki, Toshiaki; Ni, Qing-Qing] Shinshu Univ, Fac Text Sci & Technol, Ueda, Nagano 3868567, Japan; [Endo, Morinobu] Shinshu Univ, Fac Engn, Nagano 3808553, Japan

E-mail Address:
natsuki@shinshu-u.ac.jp

Cited References:
AYDOGDU M, 2008, INT J MECH SCI, V50, P837, DOI 10.1016/j.ijmecsci.2007.10.003.
BABIC B, 2003, NANO LETT, V3, P1577, DOI 10.1021/nl0344716.
BAUGHMAN RH, 2002, SCIENCE, V297, P787.
HE XQ, 2005, J MECH PHYS SOLIDS, V53, P303, DOI 10.1016/j.jmps.2004.08.003.
HILDER TA, 2008, CURR APPL PHYS, V8, P258, DOI 10.1016/j.cap.2007.10.011.
HSU JC, 2008, PHYS LETT A, V372, P2757, DOI 10.1016/j.physleta.2008.01.007.
HUMMER G, 2001, NATURE, V414, P188.
KOZIOL K, 2007, SCIENCE, V318, P1892, DOI 10.1126/science.1147635.
LANIR Y, 1972, J COMPOS MATER, V6, P387.
LEISSA AW, 1973, VIBRATION SHELLS.
MAJUMDER M, 2005, NATURE, V438, P44, DOI 10.1038/43844a.
MASHL RJ, 2003, NANO LETT, V3, P589, DOI 10.1021/nl0340226.
NATSUKI T, 2005, J APPL PHYS, V97, ARTN 044307.
NATSUKI T, 2006, J APPL PHYS, V99, ARTN 034311.
NATSUKI T, 2008, J APPL PHYS, V103, ARTN 094312.
PAIDOUSSIS MP, 1974, J SOUND VIBRATION, V33, P267.
QIAN D, 2002, APPL MECH REV, V55, P495.
REDDY CD, 2007, APPL PHYS LETT, V90, ARTN 133122.
SAITO R, 2001, CHEM PHYS LETT, V348, P187.
THOSTENSON ET, 2001, COMPOS SCI TECHNOL, V61, P1899.
TREACY MMJ, 1996, NATURE, V381, P678.
WANG CM, 2006, J SOUND VIB, V294, P1060, DOI 10.1016/j.jsv.2006.01.005.
WANG CY, 2004, ASME, V71, P622.
WANG CY, 2005, PHYS REV B, V72, ARTN 075414.
WONG EW, 1971, SCIENCE, V277, P1997.
YANG F, 2008, MED HYPOTHESES, V70, P765, DOI 10.1016/j.mehy.2007.07.045.
YOON J, 2002, PHYS REV B, V66, ARTN 233402.
YOON J, 2003, COMPOS SCI TECHNOL, V63, P1533, DOI 10.1016/S0266-3538(03)00058-7.
YOON J, 2003, J APPL PHYS, V93, P4801, DOI 10.1063/1.1559932.
YOON J, 2004, COMPOS PART B-ENG, V35, P87, DOI 10.1016/j.compositesb.2003.09.002.
YOON J, 2005, COMPOS SCI TECHNOL, V65, P1326, DOI 10.1016/j.compscitech.2004.12.002.

Cited Reference Count:
31

Times Cited:
0

Publisher:
AMER INST PHYSICS; CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA

Subject Category:
Physics, Applied

ISSN:
0021-8979

DOI:
10.1063/1.3117511

IDS Number:
448LE

========================================================================

*Record 2 of 3.
*View Full Record: http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000266549300080
*Order Full Text [ ]

Title:
Gating of Water Flow Induced by Bending of a Carbon Nanotube

Authors:
Wang, S; Lu, HJ; Tu, YS; Wang, CL; Fang, HP

Author Full Names:
Wang Shen; Lu Hang-Jun; Tu Yu-Song; Wang Chun-Lei; Fang Hai-Ping

Source:
CHINESE PHYSICS LETTERS 26 (6): Art. No. 068702 JUN 2009

Language:
English

Document Type:
Article

KeyWords Plus:
BIOLOGICAL CHANNELS; PERMEATION; CONDUCTION; TRANSPORT; DYNAMICS; PIPES

Abstract:
The ON-OFF state transition of the water transport induced by the structural bending of a carbon nanotube is studied by molecule dynamics simulation. The water permeation through a bent carbon nanotube shows excellent gating property with a threshold bending angle of about 14.6 degrees. We also investigate the water density distribution inside the nanochannel to illustrate the mechanism.

Reprint Address:
Fang, HP, Chinese Acad Sci, Shanghai Inst Appl Phys, POB 800-204, Shanghai 201800, Peoples R China.

Research Institution addresses:
[Wang Shen; Tu Yu-Song; Wang Chun-Lei; Fang Hai-Ping] Chinese Acad Sci, Shanghai Inst Appl Phys, Shanghai 201800, Peoples R China; [Wang Shen; Tu Yu-Song; Wang Chun-Lei] Chinese Acad Sci, Grad Sch, Beijing 100049, Peoples R China; [Lu Hang-Jun] Zhejiang Normal Univ, Dept Phys, Jinhua 321004, Peoples R China; [Fang Hai-Ping] Chinese Acad Sci, TPCSF, Beijing 100049, Peoples R China

E-mail Address:
fanghaiping@sinap.ac.cn

Cited References:
BERENDSEN HJC, 1981, INTERMOLECULAR FORCE, P331.
BERENDSEN HJC, 1995, COMPUT PHYS COMMUN, V91, P43.
BERNE BJ, 2009, ANN REV PHY IN PRESS, V60.
BRENNER DW, 1990, PHYS REV B, V42, P9458.
DEGROOT BL, 2001, SCIENCE, V294, P2353.
FANG HP, 2008, J PHYS D APPL PHYS, V41, ARTN 103002.
GONG XJ, 2007, NAT NANOTECHNOL, V2, P709, DOI 10.1038/nnano.2007.320.
GONG XJ, 2008, CHINESE PHYS B, V17, P2739.
HOLT JK, 2006, SCIENCE, V312, P1034, DOI 10.1126/science.1126298.
HUMMER G, 2001, NATURE, V414, P188.
LI JY, 2007, CHINESE PHYS LETT, V24, P2710.
LI JY, 2007, P NATL ACAD SCI USA, V104, P3687, DOI 10.1073/pnas.0604541104.
LINDAHL E, 2001, J MOL MODEL, V7, P306.
LIU J, 1998, SCIENCE, V280, P1253.
LU HJ, 2008, CHINESE PHYS LETT, V25, P1145.
MAJUMDER M, 2005, NATURE, V438, P44, DOI 10.1038/43844a.
PAN ZW, 1998, NATURE, V394, P631.
TAJKHORSHID E, 2002, SCIENCE, V296, P525.
TERSOFF J, 1988, PHYS REV LETT, V61, P2879.
VANDERSPOEL D, 2005, GROMACS USER MANUAL.
WAN RZ, 2005, J AM CHEM SOC, V127, P7166, DOI 10.1021/ja050044d.
WHITBY M, 2008, NANO LETT, V8, P2632, DOI 10.1021/nl080705f.
ZHAO YC, 2008, ADV MATER, V20, P1772, DOI 10.1002/adma.200702956.
ZHU FQ, 2003, BIOPHYS J, V85, P236.

Cited Reference Count:
24

Times Cited:
0

Publisher:
IOP PUBLISHING LTD; DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND

Subject Category:
Physics, Multidisciplinary

ISSN:
0256-307X

IDS Number:
452OA

========================================================================

*Record 3 of 3.
*View Full Record: http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000266546900083
*Order Full Text [ ]

Title:
INVESTIGATION OF TEMPERATURE DRIVEN GAS FLOWS IN 4 NM CHANNELS FOR APPLICATIONS OF MICRO-SCALE COMPRESSORS AT ABOVE ATMOSPHERIC PRESSURE

Authors:
Han, YL; Muntz, EP

Author Full Names:
Han, Yen-Lin; Muntz, E. P.

Source:
PROCEEDINGS OF THE ASME INTERNATIONAL MECHANICAL ENGINEERING CONGRESS AND EXPOSITION, VOL 13, PTS A AND B : 661-668 2009

Language:
English

Document Type:
Proceedings Paper

KeyWords Plus:
LINEARIZED BOLTZMANN-EQUATION; WALL CARBON NANOTUBES; MOLECULAR-TRANSPORT; KNUDSEN COMPRESSOR; MEMBRANES; PERFORMANCE

Abstract:
Based on the rarefied flow phenomenon of thermal creep (or thermal transpiration), the Knudsen Compressor is an unconventional micro/meso-scale compressor or pump. Optimization studies have shown that a Knudsen Compressor operates most efficiently when its membrane's flow channels are at the transitional flow regime, between continuum and molecular flows; simultaneously it provides a desired mass flow and pressure ratio. At higher pressures (> 1 atm), to maintain membrane channel Knudsen numbers in the transitional regime (Kn similar to 1), the corresponding membrane channel size needs to be less than about 50 nm. More specifically, at 10 atm, the membrane channel size should be as small as 5 rim to provide the most efficient Knudsen Compressor operation.
Prior to this work, there has been no documented experimental investigation of thermal creep measurements through channels less than 5 nm. Phenomena that could be associated with such flows are briefly discussed, and possible selection criteria for thermal creep membranes are included in this study. Apparatus design is discussed. Experimental results are provided for thermal creep flows, within a single stage Knudsen Compressor with 4 nm diameter membrane channels. The maximum pressure increases across the Knudsen Compressor's thermal creep membrane were measured, over a range of operating pressures from I atm to 1.1 atm with Helium or Argon as the working gas. Results showed apparent thermal creep effects across the porous glass membrane, and possibly significant force field effects within the nano-scale channels.

Reprint Address:
Han, YL, Univ So Calif, Los Angeles, CA 90089 USA.

Research Institution addresses:
[Han, Yen-Lin; Muntz, E. P.] Univ So Calif, Los Angeles, CA 90089 USA

Cited References:
ACKERMAN DM, 2003, MOL SIMULAT, V29, P677, DOI 10.1080/0892702031000103239.
ARORA G, 2006, J CHEM PHYS, V124, P84702, ARTN 084702.
BEENAKKER JJM, 1994, PHYS REV LETT, V72, P514.
BEENAKKER JJM, 1995, CHEM PHYS LETT, V232, P379.
BORMAN VD, 1990, SOV PHYS JETP, V70, P1013.
CHEN HB, 2006, J PHYS CHEM B, V110, P1971, DOI 10.1021/jp056911i.
FUJII M, 2005, PHYS REV LETT, V95, P5502.
HAN YL, 2004, THESIS U SO CALIFORN.
HAN YL, 2007, J VAC SCI TECHNOL B, V25, P703, DOI 10.1116/1.2723755.
HAN YL, 2007, NANOSC MICROSC THERM, V11, P151, DOI 10.1080/15567260701337209.
HAN YL, 2008, J MICROELECTROMECH S, V17, P984.
HINDS BJ, 2004, SCIENCE, V303, P62, DOI 10.1126/science.1092048.
HIRSCHFELDER JO, 1964, ADV QUANTUM CHEM, V1, P255.
HOLT JK, 2006, SCIENCE, V312, P1034, DOI 10.1126/science.1126298.
HONE J, 1999, PHYS REV B, V59, P2514.
JAKOBTORWEIHEN S, 2006, J CHEM PHYS, V124, P54706.
KNUDSEN M, 1910, ANN PHYS-BERLIN, V31, P205.
KNUDSEN M, 1910, ANN PHYS-BERLIN, V33, P1435.
LU GQ, 2004, NANOPOROUS MAT SCI E.
MAJUMDER M, 2005, NATURE, V438, P44, DOI 10.1038/43844a.
MARTIN CR, 2001, J PHYS CHEM B, V105, P1925.
MUNTZ EP, 2002, J VAC SCI TECHNOL A, V20, P214.
MUNTZ EP, 2002, MEMS HDB.
PADGETT CW, 2004, NANO LETT, V4, P1051, DOI 10.1021/nl049645d.
PHAMVANDIEP G, 1995, RAREFIED GAS DYN, P715.
REYNOLDS O, 1879, PHILOS T, V170, P727.
SHACKELFORD JF, 2001, CRC MAT SCI ENG HDB, P289.
SKOULIDAS AI, 2002, PHYS REV LETT, V89, P5901.
SOKHAN VP, 2002, J CHEM PHYS, V117, P8531, DOI 10.1063/1.1512643.
SOKHAN VP, 2004, J CHEM PHYS, V120, P3855, DOI 10.1063/1.1643726.
SONE Y, 1989, PHYS FLUIDS A-FLUID, V1, P363.
SONE Y, 1994, EUR J MECH B-FLUID, V13, P573.
SUGIMOTO H, 2005, AIP CONF PROC, V762, P168.
VARGO SE, 2000, THESIS U SO CALIFORN.
WANG YH, 2004, J AM CHEM SOC, V126, P9502, DOI 10.1021/ja048680j.
YOUNG MP, 2004, THESIS U SO CALIFORN.

Cited Reference Count:
36

Times Cited:
0

Publisher:
AMER SOC MECHANICAL ENGINEERS; THREE PARK AVENUE, NEW YORK, NY 10016-5990 USA

IDS Number:
BJJ80

========================================================================
*Order Full Text*
All Customers
--------------
Please contact your library administrator, or person(s) responsible for
document delivery, to find out more about your organization's policy for
obtaining the full text of the above articles. If your organization does
not have a current document delivery provider, your administrator can
contact ISI Document Solution at service@isidoc.com, or call 800-603-4367
or 734-459-8565.

IDS Customers
--------------
IDS customers can purchase the full text of an article (having page number,
volume, and issue information) by returning this ENTIRE message as a Reply
to Sender or Forward to orders@isidoc.com. Mark your choices with an X in
the "Order Full Text: []" brackets for each item. For example, [X].

Please enter your account number here:

========================================================================
*Help Desk Contact Information*
If you have any questions, please visit the Thomson Scientific Technical Support Contact Information Web page:
http://www.thomsonscientific.com/support/techsupport
========================================================================

No comments: