Friday, June 19, 2009

ISI Web of Knowledge Alert - Hummer, G

ISI Web of Knowledge Citation Alert

Cited Article: Hummer, G. Water conduction through the hydrophobic channel of a carbon nanotube
Alert Expires: 22 OCT 2009
Number of Citing Articles: 6 new records this week (6 in this e-mail)
Organization ID: 3b97d1bbc1878baed0ab183d8b03130b
========================================================================
Note: Instructions on how to purchase the full text of an article and Help Desk Contact information are at the end of the e-mail.
========================================================================

*Record 1 of 6.
*View Full Record: http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000266515400011
*Order Full Text [ ]

Title:
Predicting gas diffusion regime within pores of different size, shape and composition

Authors:
Thornton, AW; Hilder, T; Hill, AJ; Hill, JM

Author Full Names:
Thornton, Aaron W.; Hilder, Tamsyn; Hill, Anita J.; Hill, James M.

Source:
JOURNAL OF MEMBRANE SCIENCE 336 (1-2): 101-108 JUL 1 2009

Language:
English

Document Type:
Article

Author Keywords:
Surface diffusion; Activation diffusion; Knudsen; Transport; Arrhenius; Separation; Membrane; Pore; Modelling

KeyWords Plus:
WALLED CARBON NANOTUBES; FREE-VOLUME; POSITRON LIFETIME; GLASSY-POLYMERS; MEMBRANES; MECHANICS; TRANSPORT; PERMEABILITY; FULLERENES; ADSORPTION

Abstract:
The ability to separate mixtures of molecules is a vital technology in a world that emits excess carbon dioxide into the atmosphere, needs purified water, desires artificial kidneys and requires hydrogen for sustainable energy alternatives. Membranes are composed of angstrom and nanometer-sized pores which may be designed to separate a gas, vapor or liquid mixture. In this paper we employ mathematical modeling, using the Lernnard-Jones interactions between the gas molecule and the pore wall, to determine the gas diffusion regime occurring within pores of different size, shape and composition. This novel approach is used to predict the transport of light gases, namely, He, H-2, CO2, O-2, N-2 and CH4, through carbon tubes, carbon slits, silica tubes and silica slits. Minimum pore size for barrier-free transport (d(min)) and the minimum pore size for Knudsen diffusion (d(k)) are calculated for each gas and a mechanism for the intermediate region is suggested in which the attrac!
tive van der Waals forces cause an accelerated entrance velocity of the gas at the pore opening. Experimental results for gas transport in carbon nanotube, carbon molecular sieving and molecular sieving silica membranes are explained well by the model. The aim of this work is to provide the guidelines for tailoring porosity in membranes and adsorbents, such that desired separations are achieved. Crown Copyright (C) 2009 Published by Elsevier B.V. All rights reserved.

Reprint Address:
Thornton, AW, Univ Wollongong, Nanomech Grp, Sch Math & Appl Stat, Wollongong, NSW 2522, Australia.

Research Institution addresses:
[Thornton, Aaron W.; Hilder, Tamsyn; Hill, James M.] Univ Wollongong, Nanomech Grp, Sch Math & Appl Stat, Wollongong, NSW 2522, Australia; [Thornton, Aaron W.; Hill, Anita J.] CSIRO Mat Sci & Engn, Clayton Sth Mdc, Vic 3169, Australia

E-mail Address:
aaron.thornton@csiro.au

Cited References:
ACHARYA M, 2000, AICHE J, V46, P911.
BAUSCHLICHER CW, 2000, CHEM PHYS LETT, V322, P237.
BRECK DW, 1973, MOL SIEVES STRUCTURE.
CHEN HB, 2006, J MEMBRANE SCI, V269, P152, DOI 10.1016/j.memsci.2005.06.030.
COX BJ, 2007, J PHYS A-MATH THEOR, V40, P13197.
COX BJ, 2007, P R SOC A, V463, P461, DOI 10.1098/rspa.2006.1771.
COX BJ, 2007, P R SOC A, V463, P477, DOI 10.1098/rspa.2006.1772.
COX BJ, 2007, Q J MECH APPL MATH 2, V60, P231, DOI 10.1093/qjmam/hbm005.
DELANGE RSA, 1995, J MEMBRANE SCI, V104, P81.
DEVOS RM, 1998, J MEMBRANE SCI, V143, P37.
DLUBEK G, 1996, PHYS STATUS SOLIDI A, V157, P351.
DUCKE MC, 2008, ADV FUNCT MATER, V18, P1.
DUREN T, 2004, LANGMUIR, V20, P2683, DOI 10.1021/la0355500.
EVERETT DH, 1976, J CHEM SOC FARADAY T, V72, P619.
FREEMAN BD, 1999, MACROMOLECULES, V32, P375.
GARBEROGLIO G, 2005, J PHYS CHEM B, V109, P13094, DOI 10.1021/jp0509481.
GILLILAND ER, 1974, IND ENG F, V13, P95.
GILRON J, 2002, J MEMBRANE SCI, V209, P339.
GRADSHTEYN IS, 2000, SERIES PRODUCTS.
GRAYWEALE AA, 1997, MACROMOLECULES, V30, P7296.
GREENFIELD ML, 1993, MACROMOLECULES, V26, P5461.
HEDSTROM JA, 2004, LANGMUIR, V20, P1535, DOI 10.1021/la0351515.
HILDER TA, 2007, J PHYS A-MATH THEOR, V40, P3851, DOI 10.1088/1751-8113/40/14/008.
HILDER TA, 2007, NANOTECHNOLOGY, V18, ARTN 275704.
HILDER TA, 2007, PHYS REV B, V75, ARTN 125415.
HILDER TA, 2009, J NANOSCI NANOTECHNO, V9, P1403, DOI 10.1166/jnn.2009.C166.
HINDS BJ, 2004, SCIENCE, V303, P62, DOI 10.1126/science.1092048.
HOFMANN D, 2003, MACROMOLECULES, V36, P8528, DOI 10.1021/ma0349711.
HOLT JK, 2006, SCIENCE, V312, P1034, DOI 10.1126/science.1126298.
HUMMER G, 2001, NATURE, V414, P188.
HWANG ST, 1984, MEMBRANES SEPARATION.
JINNAI H, 2000, PHYS REV E B, V61, P6773.
KALRA A, 2003, P NATL ACAD SCI USA, V100, P10175.
KNUDSEN M, 1909, ANN PHYS, V28, P75.
KOVACS AJ, 1979, J POLYM SCI POL PHYS, V17, P1097.
LIN YS, 2002, SEPAR PURIF METHOD, V31, P229, DOI 10.1081/SPM-120017009.
LIU P, 2005, J APPL PHYS, V97, ARTN 094313.
MERKEL TC, 2002, SCIENCE, V296, P519.
MERKEL TC, 2003, MACROMOLECULES, V36, P6844, DOI 10.1021/ma0341566.
MILLS AF, 2001, MASS TRANSFER.
PARK HB, 2007, SCIENCE, V318, P254, DOI 10.1126/science.1146744.
PARK JY, 1997, J MEMBRANE SCI, V125, P23.
PENG FB, 2005, CHEM MATER, V17, P6790, DOI 10.1021/cm051890q.
POLING BE, 2001, PROPERTIES GASES LIQ.
QIAN D, 2001, J PHYS CHEM B, V105, P10753.
RAPPE AK, 1992, J AM CHEM SOC, V114, P10024.
ROBESON LM, 1991, J MEMBRANE SCI, V62, P165.
SCHRADER DM, 1988, STUDIES PHYS THEORET.
SHELEKHIN AB, 1995, AICHE J, V41, P58.
TRIEBE RW, 1995, GAS SEP PURIF, V9, P223.
WANG XY, 2004, POLYMER, V45, P3907, DOI 10.1016/j.polymer.2004.01.080.
WHITBY M, 2007, NAT NANOTECHNOL, V2, P87, DOI 10.1038/nnano.2006.175.
YAMPOLSKII Y, 2006, MAT SCI MEMBRANES GA.
YAMPOLSKII YP, 1994, MACROMOLECULES, V27, P2872.

Cited Reference Count:
54

Times Cited:
0

Publisher:
ELSEVIER SCIENCE BV; PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS

Subject Category:
Engineering, Chemical; Polymer Science

ISSN:
0376-7388

DOI:
10.1016/j.memsci.2009.03.019

IDS Number:
452BU

========================================================================

*Record 2 of 6.
*View Full Record: http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000266500200038
*Order Full Text [ ]

Title:
Blowing bubbles in Lennard-Jonesium along the saturation curve

Authors:
Ashbaugh, HS

Author Full Names:
Ashbaugh, Henry S.

Source:
JOURNAL OF CHEMICAL PHYSICS 130 (20): Art. No. 204517 MAY 28 2009

Language:
English

Document Type:
Article

Author Keywords:
bubbles; chemical potential; critical points; enthalpy; Lennard-Jones potential; molecular dynamics method; solvation; solvent effects; surface tension

KeyWords Plus:
SCALED-PARTICLE THEORY; SOLVATION FREE-ENERGIES; CAVITY FORMATION; HYDROPHOBIC HYDRATION; MOLECULAR LIQUIDS; SURFACE-TENSION; LENGTH SCALES; N-HEXANE; WATER; THERMODYNAMICS

Abstract:
Extensive molecular simulations of the Lennard-Jones fluid have been performed to determine its liquid-vapor coexistence properties and solvent contact densities with cavities up to ten times the diameter of the solvent from the triple point to the critical point. These simulations are analyzed using a revised scaled-particle theory [H. S. Ashbaugh and L. R. Pratt, Rev. Mod. Phys. 78, 159 (2006)] to evaluate the thermodynamics of cavity solvation and curvature dependent interfacial properties along the saturation curve. While the thermodynamic signatures of cavity solvation are distinct from those in water, exhibiting a chemical potential dominated by a large temperature independent enthalpy, the solvent dewets cavities of increasing size similar with water near coexistence. The interfacial tension for forming a liquid-wall interface is found to be consistently greater than the liquid-vapor surface tension of the Lennard-Jones fluid by up to 10% and potentially reflects the !
suppression of high amplitude fluctuations at the cavity surface. The first-order curvature correction for the surface tension is negative and appears to diverge to negative infinity at temperatures approaching the critical point. Our results point to the success of the revised scaled-particle theory at bridging molecular and macroscopic descriptions of cavity solvation.

Reprint Address:
Ashbaugh, HS, Tulane Univ, Dept Chem & Biomol Engn, New Orleans, LA 70118 USA.

Research Institution addresses:
Tulane Univ, Dept Chem & Biomol Engn, New Orleans, LA 70118 USA

E-mail Address:
hanka@tulane.edu

Cited References:
*EPAPS, EJCPSA6130037922 EPA.
AGRAWAL R, 1995, MOL PHYS, V85, P43.
ANISIMOV MA, 2007, PHYS REV LETT, V98, ARTN 035702.
ASHBAUGH HS, 2001, J AM CHEM SOC, V123, P10721.
ASHBAUGH HS, 2006, REV MOD PHYS, V78, P159, DOI 10.1103/RevModPhys.78.159.
ASHBAUGH HS, 2007, J PHYS CHEM B, V111, P9330, DOI 10.1021/jp071969d.
ATTARD P, 1996, LANGMUIR, V12, P1693.
CHEUNG JK, 2006, BIOPHYS J, V91, P2427, DOI 10.1529/biophysj.106.081802.
CHOUDHURY N, 2007, J AM CHEM SOC, V129, P4847, DOI 10.1021/ja069242a.
ERRINGTON JR, 2003, J CHEM PHYS, V118, P9915, DOI 10.1063/1.1572463.
ERRINGTON JR, 2003, PHYS REV E 1, V67, ARTN 012102.
EVANS R, 2004, J CHEM PHYS, V121, P12074, DOI 10.1063/1.1819316.
FLORIS FM, 2005, J PHYS CHEM B, V109, P24061, DOI 10.1021/jp053457+.
GRAZIANO G, 1998, J CHEM SOC FARADAY T, V94, P3345.
GRAZIANO G, 2003, BIOPHYS CHEM, V104, P393, DOI 10.1016/S0301-4622(03)00027-9.
GRAZIANO G, 2003, BIOPHYS CHEM, V105, P241, DOI 10.1016/S0301-4622(03)00073-5.
GRAZIANO G, 2003, BIOPHYS CHEM, V105, P371, DOI 10.1016/S0301-4622(03)00102-9.
GRAZIANO G, 2006, J PHYS CHEM B, V110, P11421, DOI 10.1021/jp0571269.
GROSFILS P, 2009, J CHEM PHYS, V130, ARTN 054703.
HEYING M, 2004, J PHYS CHEM B, V108, P19756, DOI 10.1021/jp040398b.
HUANG DM, 2000, PHYS REV E, V61, P1501.
HUANG DM, 2001, J PHYS CHEM B, V105, P6704.
HUMMER G, 2001, NATURE, V414, P188.
JACKSON RM, 1994, PROTEIN ENG, V7, P371.
JAIN A, 2008, J CHEM PHYS, V129, ARTN 174505.
JOHNSON JK, 1993, MOL PHYS, V78, P591.
LEE B, 1991, BIOPOLYMERS, V31, P993.
LUM K, 1999, J PHYS CHEM B, V103, P4570.
MAIBAUM L, 2007, J PHYS CHEM B, V111, P9025, DOI 10.1021/jp072266z.
MASTNY EA, 2007, J CHEM PHYS, V127, ARTN 104504.
MITTAL J, 2008, P NATL ACAD SCI USA, V105, P20130, DOI 10.1073/pnas.0809029105.
MOODY MP, 2001, J CHEM PHYS, V115, P8967.
NIJMEIJER MJP, 1988, J CHEM PHYS, V89, P3789.
PARKER JL, 1994, J PHYS CHEM-US, V98, P8468.
PIEROTTI RA, 1976, CHEM REV, V76, P717.
POHORILLE A, 1990, J AM CHEM SOC, V112, P5066.
POTOFF JJ, 2000, J CHEM PHYS, V112, P6411.
PRATT LR, 1992, P NATL ACAD SCI USA, V89, P2995.
PREVOST M, 1996, J PHYS CHEM-US, V100, P2738.
REISS H, 1960, J CHEM PHYS, V32, P119.
REISS H, 1965, ADV CHEM PHYS, V9, P1.
ROWLINSON JS, 1982, LIQUIDS LIQUID MIXTU.
ROWLINSON JS, 2002, MOL THEORY CAPILARIT.
SMIT B, 1992, J CHEM PHYS, V96, P8639.
STILLINGER FH, 1971, J CHEM PHYS, V55, P3449.
STILLINGER FH, 1973, J SOLUTION CHEM, V2, P141.
TOLMAN RC, 1949, J CHEM PHYS, V17, P333.
TOMASOLIVEIRA I, 1999, J CHEM PHYS, V111, P8576.
TULLYSMI.DM, 1970, J CHEM PHYS, V53, P4015.

Cited Reference Count:
49

Times Cited:
0

Publisher:
AMER INST PHYSICS; CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA

Subject Category:
Physics, Atomic, Molecular & Chemical

ISSN:
0021-9606

DOI:
10.1063/1.3143716

IDS Number:
451VY

========================================================================

*Record 3 of 6.
*View Full Record: http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000266263300159
*Order Full Text [ ]

Title:
Analysis of the vibration characteristics of fluid-conveying double-walled carbon nanotubes

Authors:
Natsuki, T; Ni, QQ; Endo, M

Author Full Names:
Natsuki, Toshiaki; Ni, Qing-Qing; Endo, Morinobu

Source:
JOURNAL OF APPLIED PHYSICS 105 (9): Art. No. 094328 MAY 1 2009

Language:
English

Document Type:
Article

KeyWords Plus:
WAVE PROPAGATION; WATER; FIBER; MODEL

Abstract:
Vibration characteristics of double-walled carbon nanotubes (DWCNTs) with conveying fluid are analyzed based on the Euler-Bernoulli beam theory and using the wave propagation approach. The DWCNTs are considered as two nanotube shells coupled through the van der Waals interaction between them. The influences of internal moving fluids, such as flow velocity and mass density of fluids, on the vibration frequency of DWCNTs and the DWCNTs embedded in an elastic matrix are investigated in detail. The effect of matrix surrounding carbon nanotubes is considered as a spring element defined by the Winkler model. In this paper, we consider the double-walled nanotubes with an inner diameter of 2.2 nm and an outer diameter of 3.0 nm. According to this analysis, the numerical results indicate that the vibration frequency for the first mode (mode 1) reduces to zero at a critical flow velocity in the case of higher flow velocity, which coincides with the previous study based on a single bea!
m model. The critical flow velocity is largely affected by the fluid properties and the vibration modes. (C) 2009 American Institute of Physics. [DOI: 10.1063/1.3117511]

Reprint Address:
Natsuki, T, Shinshu Univ, Fac Text Sci & Technol, 3-15-1 Tokida, Ueda, Nagano 3868567, Japan.

Research Institution addresses:
[Natsuki, Toshiaki; Ni, Qing-Qing] Shinshu Univ, Fac Text Sci & Technol, Ueda, Nagano 3868567, Japan; [Endo, Morinobu] Shinshu Univ, Fac Engn, Nagano 3808553, Japan

E-mail Address:
natsuki@shinshu-u.ac.jp

Cited References:
AYDOGDU M, 2008, INT J MECH SCI, V50, P837, DOI 10.1016/j.ijmecsci.2007.10.003.
BABIC B, 2003, NANO LETT, V3, P1577, DOI 10.1021/nl0344716.
BAUGHMAN RH, 2002, SCIENCE, V297, P787.
HE XQ, 2005, J MECH PHYS SOLIDS, V53, P303, DOI 10.1016/j.jmps.2004.08.003.
HILDER TA, 2008, CURR APPL PHYS, V8, P258, DOI 10.1016/j.cap.2007.10.011.
HSU JC, 2008, PHYS LETT A, V372, P2757, DOI 10.1016/j.physleta.2008.01.007.
HUMMER G, 2001, NATURE, V414, P188.
KOZIOL K, 2007, SCIENCE, V318, P1892, DOI 10.1126/science.1147635.
LANIR Y, 1972, J COMPOS MATER, V6, P387.
LEISSA AW, 1973, VIBRATION SHELLS.
MAJUMDER M, 2005, NATURE, V438, P44, DOI 10.1038/43844a.
MASHL RJ, 2003, NANO LETT, V3, P589, DOI 10.1021/nl0340226.
NATSUKI T, 2005, J APPL PHYS, V97, ARTN 044307.
NATSUKI T, 2006, J APPL PHYS, V99, ARTN 034311.
NATSUKI T, 2008, J APPL PHYS, V103, ARTN 094312.
PAIDOUSSIS MP, 1974, J SOUND VIBRATION, V33, P267.
QIAN D, 2002, APPL MECH REV, V55, P495.
REDDY CD, 2007, APPL PHYS LETT, V90, ARTN 133122.
SAITO R, 2001, CHEM PHYS LETT, V348, P187.
THOSTENSON ET, 2001, COMPOS SCI TECHNOL, V61, P1899.
TREACY MMJ, 1996, NATURE, V381, P678.
WANG CM, 2006, J SOUND VIB, V294, P1060, DOI 10.1016/j.jsv.2006.01.005.
WANG CY, 2004, ASME, V71, P622.
WANG CY, 2005, PHYS REV B, V72, ARTN 075414.
WONG EW, 1971, SCIENCE, V277, P1997.
YANG F, 2008, MED HYPOTHESES, V70, P765, DOI 10.1016/j.mehy.2007.07.045.
YOON J, 2002, PHYS REV B, V66, ARTN 233402.
YOON J, 2003, COMPOS SCI TECHNOL, V63, P1533, DOI 10.1016/S0266-3538(03)00058-7.
YOON J, 2003, J APPL PHYS, V93, P4801, DOI 10.1063/1.1559932.
YOON J, 2004, COMPOS PART B-ENG, V35, P87, DOI 10.1016/j.compositesb.2003.09.002.
YOON J, 2005, COMPOS SCI TECHNOL, V65, P1326, DOI 10.1016/j.compscitech.2004.12.002.

Cited Reference Count:
31

Times Cited:
0

Publisher:
AMER INST PHYSICS; CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA

Subject Category:
Physics, Applied

ISSN:
0021-8979

DOI:
10.1063/1.3117511

IDS Number:
448LE

========================================================================

*Record 4 of 6.
*View Full Record: http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000266679500009
*Order Full Text [ ]

Title:
Structural Evidence for the Ordered Crystallites of Ionic Liquid in Confined Carbon Nanotubes

Authors:
Dong, K; Zhou, GH; Liu, XM; Yao, XQ; Zhang, SJ; Lyubartsev, A

Author Full Names:
Dong, Kun; Zhou, Guohui; Liu, Xiaomin; Yao, Xiaoqian; Zhang, Suojiang; Lyubartsev, Alexander

Source:
JOURNAL OF PHYSICAL CHEMISTRY C 113 (23): 10013-10020 JUN 11 2009

Language:
English

Document Type:
Article

KeyWords Plus:
MOLECULAR-DYNAMICS SIMULATION; ROOM-TEMPERATURE; 1-N-BUTYL-3-METHYLIMIDAZOLIUM HEXAFLUOROPHOSPHATE; ICE NANOTUBES; FREE-ENERGY; TRANSPORT; MIXTURES; SOLVENTS; METHANE; POTENTIALS

Abstract:
Ionic liquids (ILs) are a class of new green materials that have attracted extensive attention in recent decades. Many novel properties not evident under normal conditions may appear when ionic liquids are confined to a nanometer scale. As was observed in the experiment, an anomalous phase behavior from liquid to high melting point perfect crystal occurred when 1-n-butyl-3-methylimidazolium hexafluorophosphate ([bmim][PF6]) ionic liquid was confined in a carbon nanotube. In this work, we performed molecular dynamics (MD) simulations for [bmim][PF6] ionic liquid and provided direct structural evidence that the ionic crystallizes in a carbon nanotube. The ordered ionic arrangement in both the radial and the axial directions can be observed inside the channels of the CNTs to induce the form of crystallites. The ionic stacking and distributing can be determined by the sizes of the CNTs. Hydrogen bonds remain the dominant interactions between cations and anions when the ionic liq!
uid enters into the CNT from the bulk phase. The free energies as the thermal driven forces were calculated, and it is found that it is very difficult for a single anion to enter into the channel of the CNT spontaneously. A more favorable way is through an ion-pair in which a cation "pulls" an anion to enter into the channel of the CNT together. It is predicted that other ionic liquids that possess similar structures, even including the pyridinium-based ionic liquids, can show higher melting points when confined in CNTs.

Reprint Address:
Zhang, SJ, Chinese Acad Sci, State Key Lab Multiphase Complex Syst, Inst Proc Engn, Beijing 100190, Peoples R China.

Research Institution addresses:
[Dong, Kun; Zhou, Guohui; Liu, Xiaomin; Yao, Xiaoqian; Zhang, Suojiang] Chinese Acad Sci, State Key Lab Multiphase Complex Syst, Inst Proc Engn, Beijing 100190, Peoples R China; [Lyubartsev, Alexander] Stockholm Univ, Arrhenius Lab, Div Phys Chem, S-10691 Stockholm, Sweden

E-mail Address:
sjzhang@home.ipe.ac.cn

Cited References:
AJAYAN PM, 1997, REP PROG PHYS, V60, P1025.
BAI J, 2003, J CHEM PHYS, V118, P3913, DOI 10.1063/1.1555091.
BONDI A, 1964, J PHYS CHEM-US, V68, P441.
BYL O, 2006, J AM CHEM SOC, V128, P12090, DOI 10.1021/ja057856u.
CAO DP, 2003, J PHYS CHEM B, V107, P13286, DOI 10.1021/jp036094r.
CHEN SM, 2007, J AM CHEM SOC, V129, P2416, DOI 10.1021/ja067972c.
DELPOPOLO MG, 2004, J PHYS CHEM B, V108, P1744, DOI 10.1021/jp0364699.
DONG K, 2006, J PHYS CHEM A, V110, P9775, DOI 10.1021/jp054054c.
EARLE MJ, 1999, GREEN CHEM, V1, P23.
EARLE MJ, 2000, PURE APPL CHEM, V72, P1391.
FREDLAKE CP, 2004, J CHEM ENG DATA, V49, P954, DOI 10.1021/je034261a.
FUKUSHIMA T, 2003, SCIENCE, V300, P2072.
HANKE CG, 2001, MOL PHYS, V99, P801.
HANKE CG, 2003, J PHYS CHEM B, V107, P10873, DOI 10.1021/jp034221d.
HINDS BJ, 2004, SCIENCE, V303, P5654.
HOLT JK, 2006, SCIENCE, V312, P1034, DOI 10.1126/science.1126298.
HUANG XH, 2005, J AM CHEM SOC, V127, P17842, DOI 10.1021/ja055315z.
HUDDLESTON JG, 2001, GREEN CHEM, V3, P156.
HUMMER G, 2001, NATURE, V414, P188.
KALRA A, 2003, P NATL ACAD SCI USA, V100, P10175.
KALRA A, 2004, J PHYS CHEM B, V108, P544, DOI 10.1021/jp035828x.
KANAKUBO M, 2005, CHEM LETT, V34, P324, DOI 10.1246/cl.2005.324.
KELKAR MS, 2007, J PHYS CHEM B, V111, P9492.
KHLOBYSTOV AN, 2005, ACCOUNTS CHEM RES, V38, P901.
KOGA K, 2000, J CHEM PHYS, V113, P5037.
KOGA K, 2001, NATURE, V412, P802.
KONG J, 2000, SCIENCE, V287, P5453.
LIU C, 1999, SCIENCE, V286, P1127.
LIU YD, 2006, J AM CHEM SOC, V128, P7456, DOI 10.1021/ja062685u.
LIU ZP, 2004, J PHYS CHEM B, V108, P12978, DOI 10.1021/jp048369o.
LUDER K, 2006, J PHYS CHEM B, V110, P15514, DOI 10.1021/jp061245m.
LYUBARTSEV AP, 1996, MOL SIMULAT, V18, P43.
LYUBARTSEV AP, 1998, J CHEM PHYS, V108, P227.
LYUBARTSEV AP, 2000, COMPUT PHYS COMMUN, V128, P565.
LYUBARTSEV AP, 2001, J PHYS CHEM B, V105, P7775.
MARGULIS CJ, 2002, J PHYS CHEM B, V106, P12017, DOI 10.1021/jp021392u.
MARGULIS CJ, 2004, MOL PHYS, V102, P829, DOI 10.1080/00268970410001683843.
MARTYNA GJ, 1996, MOL PHYS, V87, P1117.
MORROW TI, 2002, J PHYS CHEM B, V106, P12807, DOI 10.1021/jp0267003.
SAZONOVA V, 2004, NATURE, V431, P284, DOI 10.1038/nature02905.
SHAH JK, 2002, GREEN CHEM, V4, P112.
SHELDON R, 2001, CHEM COMMUN, P2399.
SNOW ES, 2005, SCIENCE, V307, P1942, DOI 10.1126/science.1109128.
TALATY ER, 2004, J PHYS CHEM B, V108, P13177, DOI 10.1021/jp040199s.
TASIS D, 2006, CHEM REV, V106, P1105, DOI 10.1021/cr050569o.
TUCKERMAN M, 1992, J CHEM PHYS, V97, P1990.
WANG J, 2003, ACTA CHIM SINICA, V61, P1891.
WANG YT, 2005, J AM CHEM SOC, V127, P12192, DOI 10.1021/ja053796g.
WELTON T, 1999, CHEM REV, V99, P2071.
WILSON M, 2001, J AM CHEM SOC, V123, P2101.
WILSON M, 2004, NANO LETT, V4, P299, DOI 10.1021/nl035044v.
WILSON M, 2006, ACTA CRYSTALLOGR A 4, V62, P287, DOI 10.1107/S0108767306018101.
WILSON M, 2006, J CHEM PHYS, V124, ARTN 124706.
YAN TY, 2004, J PHYS CHEM B, V108, P11877, DOI 10.1021/jp047619y.

Cited Reference Count:
54

Times Cited:
0

Publisher:
AMER CHEMICAL SOC; 1155 16TH ST, NW, WASHINGTON, DC 20036 USA

Subject Category:
Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary

ISSN:
1932-7447

DOI:
10.1021/jp900533k

IDS Number:
454JZ

========================================================================

*Record 5 of 6.
*View Full Record: http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000266679500039
*Order Full Text [ ]

Title:
DF-DFT-SAPT Investigation of the Interaction of a Water Molecule to Coronene and Dodecabenzocoronene: Implications for the Water-Graphite Interaction

Authors:
Jenness, GR; Jordan, KD

Author Full Names:
Jenness, Glen R.; Jordan, Kenneth D.

Source:
JOURNAL OF PHYSICAL CHEMISTRY C 113 (23): 10242-10248 JUN 11 2009

Language:
English

Document Type:
Review

KeyWords Plus:
DENSITY-FUNCTIONAL THEORY; DISTRIBUTED MULTIPOLE ANALYSIS; ADAPTED PERTURBATION-THEORY; PI-PI INTERACTIONS; INTERMOLECULAR INTERACTION ENERGIES; DER-WAALS INTERACTIONS; KOHN-SHAM ORBITALS; CARBON NANOTUBES; BENZENE DIMER; BASIS-SETS

Abstract:
In the present study we revisit the problem of the interaction of a water molecule with a single graphite sheet. The density fitting-density functional theory-symmetry-adapted perturbation theory (DF-DFT-SAPT; J. Chem. Phys. 2005, 122, 014103) method is used to calculate the individual contributions arising from the interaction of a water molecule with various acenes, including benzene, coronene, and dodecabenzocoronene. These results are combined with calculations of the electrostatic interactions with water and a C216H36 acene to extrapolate to the limit of an infinite graphite sheet, giving a interaction energy of -2.2 kcal/mol for the water-graphite system, with the assumed geometrical structure with one hydrogen atom pointed down toward the ring system. The structure with two hydrogens pointed down is predicted to be more stable, with a net interaction energy of -2.7 kcal/mol.

Reprint Address:
Jordan, KD, Univ Pittsburgh, Dept Chem, Pittsburgh, PA 15620 USA.

Research Institution addresses:
[Jordan, Kenneth D.] Univ Pittsburgh, Dept Chem, Pittsburgh, PA 15620 USA; Univ Pittsburgh, Ctr Mol & Mat Simulat, Pittsburgh, PA 15620 USA

E-mail Address:
jordan@pitt.edu

Cited References:
ADAMO C, 1999, J CHEM PHYS, V110, P6158.
ALEXIADIS A, 2008, CHEM REV, V108, P5014, DOI 10.1021/cr078140f.
ALONSO JA, 2007, THEOR CHEM ACC, V117, P467, DOI 10.1007/s00214-006-0079-3.
ANDERSSON Y, 1996, PHYS REV LETT, V76, P102.
ARAI N, 2008, J AM CHEM SOC, V130, P7916, DOI 10.1021/ja7108739.
AVGUL NN, 1970, CHEMISTRY PHYSICS CA, V6, P1.
BARBER AH, 2005, PHYS REV B, V71, ARTN 115443.
BENEDICT LX, 1995, PHYS REV B, V52, P8541.
BENEDICT WS, 1956, J CHEM PHYS, V24, P1139.
BIRKETT GR, 2007, J PHYS CHEM C, V111, P5735, DOI 10.1021/jp068479q.
BOYS SF, 1970, MOL PHYS, V19, P553.
BUKOWSKI R, 2005, CHEM PHYS LETT, V414, P111, DOI 10.1016/j.cplett.2005.08.048.
BUSHUEV Y, 2005, SENSORS-BASEL, V5, P139.
CHAKAROV DV, 1995, LANGMUIR, V11, P1201.
COURTY A, 1998, J PHYS CHEM A, V102, P6590.
CYBULSKI SM, 2003, J CHEM PHYS, V119, P12704, DOI 10.1063/1.1635351.
DANG LX, 1997, J CHEM PHYS, V106, P8149.
DANG LX, 2000, J PHYS CHEM B, V104, P4403.
FELLER D, 1999, J PHYS CHEM A, V103, P7558.
FELLER D, 2000, J PHYS CHEM A, V104, P9971.
FRISCH MJ, 2004, GAUSSIAN 03 REVISION.
GONZALEZ BS, 2007, J PHYS CHEM C, V111, P14862, DOI 10.1021/jp074249f.
GORDILLO MC, 2000, CHEM PHYS LETT, V329, P341.
GRIMME S, 2006, J CHEM PHYS, V124, ARTN 034108.
GRIMME S, 2007, J PHYS CHEM C, V111, P11199, DOI 10.1021/jp0720791.
GRUNING M, 2001, J CHEM PHYS, V114, P652.
HESSELMANN A, 2002, CHEM PHYS LETT, V357, P464.
HESSELMANN A, 2002, CHEM PHYS LETT, V362, P319.
HESSELMANN A, 2003, CHEM PHYS LETT, V367, P778.
HESSELMANN A, 2005, J CHEM PHYS, V122, ARTN 014103.
HOBZA P, 1996, J PHYS CHEM-US, V100, P18790.
HOLT JK, 2006, SCIENCE, V312, P1034, DOI 10.1126/science.1126298.
HULT E, 1996, PHYS REV LETT, V77, P2029.
HUMMER G, 2001, NATURE, V414, P188.
JEZIORSKI B, 1993, METHODS TECHNIQUES C, B, P79.
JOHNSON ER, 2006, J CHEM PHYS, V124, ARTN 174104.
JORGENSEN WL, 1985, MOL PHYS, V56, P1381.
KAIRYS V, 1999, CHEM PHYS LETT, V315, P140.
KARAPETIAN K, 2003, WATER CONFINING GEOM, P139.
KENDALL RA, 1992, J CHEM PHYS, V96, P6769.
KHALIULLIN RZ, 2008, J CHEM PHYS, V128, ARTN 184112.
KING EC, 2007, J ENVIRON ENG GEOPH, V12, P15.
KOFINGER J, 2008, P NATL ACAD SCI USA, V105, P13218, DOI 10.1073/pnas.0801448105.
KOGA K, 2001, NATURE, V412, P802.
KOGA K, 2002, PHYSICA A, V314, P462.
KOHN W, 1998, PHYS REV LETT, V80, P4153.
KOLESNIKOV AI, 2004, PHYS REV LETT, V93, ARTN 035503.
KOLESNIKOV AI, 2006, PHYSICA B 1, V385, P272, DOI 10.1016/j.physb.2006.05.065.
LEENAERTS O, 2008, PHYS REV B, V77, ARTN 125416.
LIA SG, NIST CHEM WEBBOOK.
LIN IC, 2008, PHYS CHEM CHEM PHYS, V10, P2730, DOI 10.1039/b718594d.
MAMONTOV E, 2006, J CHEM PHYS, V124, ARTN 194703.
MARKOVIC N, 1999, CHEM PHYS, V247, P413.
MISQUITTA AJ, 2003, PHYS REV LETT, V91, ARTN 033201.
MISQUITTA AJ, 2005, J CHEM PHYS, V122, ARTN 214109.
MISQUITTA AJ, 2005, J CHEM PHYS, V123, ARTN 214103.
NANOK T, J PHYS CH A IN PRESS.
NOON WH, 2002, CHEM PHYS LETT, V355, P445.
PERTSIN A, 2004, J PHYS CHEM B, V108, P1357, DOI 10.1021/jp0356968.
PERTSIN A, 2006, J CHEM PHYS, V125, ARTN 114707.
PODESZWA R, 2005, CHEM PHYS LETT, V412, P488, DOI 10.1016/j.cplett.2005.07.029.
PODESZWA R, 2006, J CHEM THEORY COMPUT, V2, P400, DOI 10.1021/ct050304h.
PODESZWA R, 2006, J PHYS CHEM A, V110, P10345, DOI 10.1021/jp064095o.
PONDER JW, 2004, TINKER SOFTWARE TOOL.
PRICE SL, 1983, CHEM PHYS LETT, V98, P419.
PRICE SL, 1984, MOL PHYS, V52, P987.
RAGHAVACHARI K, 1989, CHEM PHYS LETT, V157, P479.
RASAIAH JC, 2008, ANNU REV PHYS CHEM, V59, P713.
REN PY, 2003, J PHYS CHEM B, V107, P5933, DOI 10.1021/jp027815+.
RUBES M, 2008, PHYS CHEM CHEM PHYS, V10, P2611, DOI 10.1039/b718701g.
RUBES M, 2009, J PHYS CHEM C, V113, P8412, DOI 10.1021/jp901410m.
RYBAK S, 1991, J CHEM PHYS, V95, P6576.
SALA FD, 2001, J CHEM PHYS, V115, P5718.
SHAO Y, 2006, PHYS CHEM CHEM PHYS, V8, P3172, DOI 10.1039/b517914a.
SILVESTRELLI PL, 2008, PHYS REV LETT, V100, ARTN 053002.
SINHA S, 2007, PHYS FLUIDS, V19, ARTN 013603.
SINNOKROT MO, 2002, J AM CHEM SOC, V124, P10887, DOI 10.1021/ja025896h.
SINNOKROT MO, 2004, J PHYS CHEM A, V108, P10200, DOI 10.1021/jp0469517.
STONE AJ, 1981, CHEM PHYS LETT, V83, P233.
STONE AJ, 1996, THEORY INTERMOLECULA.
STONE AJ, 2005, J CHEM THEORY COMPUT, V1, P1128, DOI 10.1021/ct050190+.
SUDIARTA IW, 2006, J PHYS CHEM A, V110, P10501, DOI 10.1021/jp060554+.
THOMAS JA, 2007, J CHEM PHYS, V126, ARTN 034707.
THOMAS JA, 2008, J CHEM PHYS, V128, ARTN 084715.
TSUZUKI S, 1996, CHEM PHYS LETT, V252, P206.
TSUZUKI S, 2000, CHEM PHYS LETT, V319, P547.
TSUZUKI S, 2002, J AM CHEM SOC, V124, P104.
VAHTRAS O, 1993, CHEM PHYS LETT, V213, P514.
VANLEEUWEN R, 1994, PHYS REV A, V49, P2421.
VANMOURIK T, 2002, J CHEM PHYS, V116, P9620.
VERNOV A, 1992, LANGMUIR, V8, P155.
WALTHER JH, 2001, J PHYS CHEM B, V105, P9980.
WEHLING TO, 2008, APPL PHYS LETT, V93, ARTN 202110.
WEIGEND F, 2002, J CHEM PHYS, V116, P3175.
WEIGEND F, 2002, PHYS CHEM CHEM PHYS, V4, P4285, DOI 10.1039/b204199p.
WERDER T, 2001, NANO LETT, V1, P697, DOI 10.1021/nl015640u.
WERDER T, 2003, J PHYS CHEM B, V107, P1345, DOI 10.1021/jp0268112.
WERNER HJ, 2006, MOLPRO VERSION 2006.
WHITBY M, 2008, NANO LETT, V8, P2632, DOI 10.1021/nl080705f.
WHITEHOUSE DB, 1993, J CHEM SOC FARADAY T, V89, P1909.
WILLIAMS HL, 2001, J PHYS CHEM A, V105, P646.
XU J, UNPUB.
ZHANG XH, 2007, LANGMUIR, V23, P23.
ZHAO Y, 2005, J CHEM THEORY COMPUT, V1, P415, DOI 10.1021/ct049851d.
ZHAO Y, 2005, J PHYS CHEM B, V109, P19046, DOI 10.1021/jp0534434.
ZHAO Z, 2005, MOL SIMULAT, V1, P1.

Cited Reference Count:
106

Times Cited:
0

Publisher:
AMER CHEMICAL SOC; 1155 16TH ST, NW, WASHINGTON, DC 20036 USA

Subject Category:
Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary

ISSN:
1932-7447

DOI:
10.1021/jp9015307

IDS Number:
454JZ

========================================================================

*Record 6 of 6.
*View Full Record: http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000266549300080
*Order Full Text [ ]

Title:
Gating of Water Flow Induced by Bending of a Carbon Nanotube

Authors:
Wang, S; Lu, HJ; Tu, YS; Wang, CL; Fang, HP

Author Full Names:
Wang Shen; Lu Hang-Jun; Tu Yu-Song; Wang Chun-Lei; Fang Hai-Ping

Source:
CHINESE PHYSICS LETTERS 26 (6): Art. No. 068702 JUN 2009

Language:
English

Document Type:
Article

KeyWords Plus:
BIOLOGICAL CHANNELS; PERMEATION; CONDUCTION; TRANSPORT; DYNAMICS; PIPES

Abstract:
The ON-OFF state transition of the water transport induced by the structural bending of a carbon nanotube is studied by molecule dynamics simulation. The water permeation through a bent carbon nanotube shows excellent gating property with a threshold bending angle of about 14.6 degrees. We also investigate the water density distribution inside the nanochannel to illustrate the mechanism.

Reprint Address:
Fang, HP, Chinese Acad Sci, Shanghai Inst Appl Phys, POB 800-204, Shanghai 201800, Peoples R China.

Research Institution addresses:
[Wang Shen; Tu Yu-Song; Wang Chun-Lei; Fang Hai-Ping] Chinese Acad Sci, Shanghai Inst Appl Phys, Shanghai 201800, Peoples R China; [Wang Shen; Tu Yu-Song; Wang Chun-Lei] Chinese Acad Sci, Grad Sch, Beijing 100049, Peoples R China; [Lu Hang-Jun] Zhejiang Normal Univ, Dept Phys, Jinhua 321004, Peoples R China; [Fang Hai-Ping] Chinese Acad Sci, TPCSF, Beijing 100049, Peoples R China

E-mail Address:
fanghaiping@sinap.ac.cn

Cited References:
BERENDSEN HJC, 1981, INTERMOLECULAR FORCE, P331.
BERENDSEN HJC, 1995, COMPUT PHYS COMMUN, V91, P43.
BERNE BJ, 2009, ANN REV PHY IN PRESS, V60.
BRENNER DW, 1990, PHYS REV B, V42, P9458.
DEGROOT BL, 2001, SCIENCE, V294, P2353.
FANG HP, 2008, J PHYS D APPL PHYS, V41, ARTN 103002.
GONG XJ, 2007, NAT NANOTECHNOL, V2, P709, DOI 10.1038/nnano.2007.320.
GONG XJ, 2008, CHINESE PHYS B, V17, P2739.
HOLT JK, 2006, SCIENCE, V312, P1034, DOI 10.1126/science.1126298.
HUMMER G, 2001, NATURE, V414, P188.
LI JY, 2007, CHINESE PHYS LETT, V24, P2710.
LI JY, 2007, P NATL ACAD SCI USA, V104, P3687, DOI 10.1073/pnas.0604541104.
LINDAHL E, 2001, J MOL MODEL, V7, P306.
LIU J, 1998, SCIENCE, V280, P1253.
LU HJ, 2008, CHINESE PHYS LETT, V25, P1145.
MAJUMDER M, 2005, NATURE, V438, P44, DOI 10.1038/43844a.
PAN ZW, 1998, NATURE, V394, P631.
TAJKHORSHID E, 2002, SCIENCE, V296, P525.
TERSOFF J, 1988, PHYS REV LETT, V61, P2879.
VANDERSPOEL D, 2005, GROMACS USER MANUAL.
WAN RZ, 2005, J AM CHEM SOC, V127, P7166, DOI 10.1021/ja050044d.
WHITBY M, 2008, NANO LETT, V8, P2632, DOI 10.1021/nl080705f.
ZHAO YC, 2008, ADV MATER, V20, P1772, DOI 10.1002/adma.200702956.
ZHU FQ, 2003, BIOPHYS J, V85, P236.

Cited Reference Count:
24

Times Cited:
0

Publisher:
IOP PUBLISHING LTD; DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND

Subject Category:
Physics, Multidisciplinary

ISSN:
0256-307X

IDS Number:
452OA

========================================================================
*Order Full Text*
All Customers
--------------
Please contact your library administrator, or person(s) responsible for
document delivery, to find out more about your organization's policy for
obtaining the full text of the above articles. If your organization does
not have a current document delivery provider, your administrator can
contact ISI Document Solution at service@isidoc.com, or call 800-603-4367
or 734-459-8565.

IDS Customers
--------------
IDS customers can purchase the full text of an article (having page number,
volume, and issue information) by returning this ENTIRE message as a Reply
to Sender or Forward to orders@isidoc.com. Mark your choices with an X in
the "Order Full Text: []" brackets for each item. For example, [X].

Please enter your account number here:

========================================================================
*Help Desk Contact Information*
If you have any questions, please visit the Thomson Scientific Technical Support Contact Information Web page:
http://www.thomsonscientific.com/support/techsupport
========================================================================

No comments: