Cited Article:    Holt JK. Fast mass transport through sub-2-nanometer carbon nanotubes
 Alert Expires:    09 NOV 2010
 Number of Citing Articles:    3 new records this week (3 in this e-mail)
 Organization ID:  3b97d1bbc1878baed0ab183d8b03130b
========================================================================
 Note:  Instructions on how to purchase the full text of an article, import the records into an 
 ISI ResearchSoft product, and Help Desk Contact information are at the end of the e-mail.
========================================================================
FN ISI Export Format
VR 1.0
PT J
*Record 1 of 3. 
L5 <http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;UT=000278202000002>
*Order Full Text [ ]
AU Wan, RZ
   Fang, HP
AF Wan, Rongzheng
   Fang, Haiping
TI Water transportation across narrow channel of nanometer dimension
SO SOLID STATE COMMUNICATIONS
LA English
DT Article
DE Nanochannel; Single-file water; Molecule dynamics simulations
ID CARBON NANOTUBE MEMBRANES; MOLECULAR-DYNAMICS; GATING MECHANISM; H+
   CONDUCTION; FREE-ENERGY; PROTEIN; PROTON; MICROFLUIDICS; AQUAPORIN-1;
   RECOGNITION
AB Since the discovery of the carbon nanotube and aquaporin, the study of
   the transportation of water across nanochannels has become one of the
   hot subjects. When the radius of a nanochannel is only about one
   nanometer or a little larger, water confined in those nanoscale
   channels usually exhibits dynamics different from those in bulk system,
   such as the wet-dry transition due to the confinement, concerted
   hydrogen-bond orientations and flipping, concerted motion of water
   molecules, and strong interactions with external charges. Those
   dynamics correlate with the unique behavior of the water transportation
   across the channels, such as the extra-high permeability, excellent
   on-off gating behavior with response to the external mechanical and
   electrical signals and noises, enhancement by structure outside the
   channel, directional transportation driven by charges close to a
   channel or electric field. In this article, we review some of the
   recent progress on the study of the water molecules inside those narrow
   nanochannels. (C) 2010 Elsevier Ltd. All rights reserved.
C1 [Wan, Rongzheng; Fang, Haiping] Chinese Acad Sci, Shanghai Inst Appl Phys, Shanghai 201800, Peoples R China.
RP Fang, HP, Chinese Acad Sci, Shanghai Inst Appl Phys, POB 800-204,
   Shanghai 201800, Peoples R China.
EM fanghaiping@sinap.ac.cn
CR 2004, SCIENCE, V306, P2013
   2005, SCIENCE, V309, P78
   AARTS IMP, 2005, PHYS REV LETT, V95, ARTN 166104
   AGMON N, 1995, CHEM PHYS LETT, V244, P456
   AKESON M, 1991, BIOPHYS J, V60, P101
   ALLEN R, 2002, PHYS REV LETT, V89, ARTN 175502
   ANISHKIN A, 2004, BIOPHYS J, V86, P2883
   BALL P, 2008, CHEM REV, V108, P74, DOI 10.1021/cr068037a
   BALL P, 2009, NEW SCI, V201, P33
   BAUER WR, 2006, P NATL ACAD SCI USA, V103, P11446, DOI
   10.1073/pnas.0601769103
   BECKSTEIN O, 2001, J PHYS CHEM B, V105, P12902, DOI 10.1021/jp012233y
   BECKSTEIN O, 2003, P NATL ACAD SCI USA, V100, P7063, DOI
   10.1073/pnas.1136844100
   BENNAIM A, 2002, BIOPHYS CHEM, V101, P309
   BEST RB, 2005, P NATL ACAD SCI USA, V102, P6732, DOI
   10.1073/pnas.0408098102
   BIGGIN PC, 2003, CURR BIOL, V13, R183
   BRANDEN C, 1991, INTRO PROTEIN STRUCT
   BREWER ML, 2001, BIOPHYS J, V80, P1691
   CAO H, 2002, APPL PHYS LETT, V81, P174
   CHENG JX, 2003, P NATL ACAD SCI USA, V100, P9826, DOI
   10.1073/pnas.1732202100
   CHEUNG MS, 2002, P NATL ACAD SCI USA, V99, P685
   CORRY B, 2008, J PHYS CHEM B, V112, P1427, DOI 10.1021/jp709845u
   CUKIERMAN S, 2006, BBA-BIOENERGETICS, V1757, P876, DOI
   10.1016/j.bbabio.2005.12.001
   DAVID JM, 2003, PHYS REV LETT, V90, UNSP 195503
   DEGROOT BL, 2001, SCIENCE, V294, P2353
   DEGROOT BL, 2003, J MOL BIOL, V333, P279, DOI 10.1016/j.jmb.2003.08.003
   DELLAGO C, 2003, PHYS REV LETT, V90, ARTN 105902
   DEMELLO AJ, 2006, NATURE, V442, P394, DOI 10.1038/nature05062
   DENKER BM, 1988, J BIOL CHEM, V263, P15634
   DILL KA, 1997, NAT STRUCT BIOL, V4, P10
   DILL KA, 2007, CURR OPIN STRUC BIOL, V17, P342, DOI
   10.1016/j.sbi.2007.06.001
   ELALI J, 2006, NATURE, V442, P403, DOI 10.1038/nature05063
   FANG HP, 2008, J PHYS D APPL PHYS, V41, ARTN 103002
   FRAUENFELDER H, 2006, P NATL ACAD SCI USA, V103, P15469, DOI
   10.1073/pnas.0607168103
   FRENKEL D, 1996, UNDERSTANDING MOL SI
   FUXREITER M, 2005, BIOPHYS J, V89, P903, DOI 10.1529/biophysj.105.063263
   GHOSH S, 2003, SCIENCE, V299, P1042, DOI 10.1126/science.1079080
   GONG XJ, 2007, NAT NANOTECHNOL, V2, P709, DOI 10.1038/nnano.2007.320
   GONG XJ, 2008, PHYS REV LETT, V101, ARTN 257801
   GRUBMULLER H, 2003, P NATL ACAD SCI USA, V100, P7421, DOI
   10.1073/pnas.1533175100
   GRUEBELE M, 2005, CR BIOL, V328, P701, DOI 10.1016/j.crvi.2005.02.007
   HILLE B, 2001, ION CHANNELS EXCITAB
   HOFINGER J, 2008, P NATL ACAD SCI USA, V105, P13218
   HOLT JK, 2006, SCIENCE, V312, P1034, DOI 10.1126/science.1126298
   HU J, 1995, SCIENCE, V268, P267
   HUMMER G, 2001, NATURE, V414, P188
   HUMMER G, 2007, MOL PHYS, V105, P201, DOI 10.1080/00268970601140784
   JOERGER AC, 2007, ONCOGENE, V26, P2226, DOI 10.1038/sj.onc.1210291
   JOSEPH S, 2008, PHYS REV LETT, V101, ARTN 064502
   KALRA A, 2003, P NATL ACAD SCI USA, V100, P10175
   KARPLUS M, 2005, PHILOS T ROY SOC A, V363, P331, DOI
   10.1098/rsta.2004.1496
   KAYA H, 2003, J MOL BIOL, V326, P911, DOI 10.1016/S0022-2836(02)01434-1
   KREUER KD, 2004, CHEM REV, V104, P4637, DOI 10.1021/cr020715f
   LI JY, 2007, P NATL ACAD SCI USA, V104, P3687, DOI
   10.1073/pnas.0604541104
   LIJIMA S, 1991, NATURE, V354, P56
   LINKE H, 2006, PHYS REV LETT, V96, ARTN 154502
   LONGHURST MJ, 2007, NANO LETT, V7, P3324, DOI 10.1021/nl071537e
   LU HJ, 2008, PHYS REV B, V77, ARTN 174115
   LUBCHENKO V, 2005, J PHYS CHEM B, V109, P7488, DOI 10.1021/jp045205z
   LUCENT D, 2007, P NATL ACAD SCI USA, V104, P10430, DOI
   10.1073/pnas.0608256104
   LUM K, 1999, J PHYS CHEM B, V103, P4570
   MAGNASCO MO, 1993, PHYS REV LETT, V71, P1477
   MAIBAUM L, 2003, J PHYS CHEM B, V107, P1189, DOI 10.1021/jp0267196
   MEI HS, 1998, J PHYS CHEM B, V102, P10446
   MIRANDA PB, 1998, PHYS REV LETT, V81, P5876
   MIYAZAWA A, 2003, NATURE, V423, P949, DOI 10.1038/nature01748
   ONUCHIC JN, 1997, ANNU REV PHYS CHEM, V48, P545
   PAL SK, 2002, J PHYS CHEM B, V106, P12376, DOI 10.1021/jp0213506
   PAL SK, 2003, P NATL ACAD SCI USA, V100, P8113, DOI
   10.1073/pnas.1433066100
   PAN ZW, 1998, NATURE, V394, P631
   PAPOIAN GA, 2003, J AM CHEM SOC, V125, P9170, DOI 10.1021/ja034729u
   POMES R, 1998, BIOPHYS J, V75, P33
   POMES R, 2002, BIOPHYS J, V82, P2304
   PORTELLA G, 2007, BIOPHYS J, V92, P3930, DOI 10.1529/biophysj.106.102921
   PSALTIS D, 2006, NATURE, V442, P381, DOI 10.1038/nature05060
   RASAIAH JC, 2008, ANNU REV PHYS CHEM, V59, P713, DOI
   10.1146/annurev.physchem.59.032607.093815
   REEDIJK MF, 2003, PHYS REV LETT, V90, ARTN 066103
   REHMEYER J, 2006, NEW SCI, V30
   REITER G, 2006, PHYS REV LETT, V97, ARTN 247801
   SANSOM MSP, 2001, NATURE, V414, P156
   SAPAROV SM, 2004, P NATL ACAD SCI USA, V101, P4805, DOI
   10.1073/pnas.0308309101
   SERINGHAUS M, 2007, SCIENCE, V315, P40
   SHAKHNOVICH E, 2006, CHEM REV, V106, P1559, DOI 10.1021/cr040425u
   SHEA JE, 2001, ANNU REV PHYS CHEM, V52, P499
   SQUIRES TM, 2005, REV MOD PHYS, V77, P977
   SUI HX, 2001, NATURE, V414, P872
   TAJKHORSHID E, 2002, SCIENCE, V296, P525
   VAITHEESWARAN S, 2004, J CHEM PHYS, V121, P7599
   VIDOSSICH P, 2004, PROTEINS, V55, P924
   WALLQVIST A, 1995, J PHYS CHEM-US, V99, P2885
   WAN RZ, 2005, J AM CHEM SOC, V127, P7166, DOI 10.1021/ja050044d
   WAN RZ, 2009, PHYS CHEM CHEM PHYS, V11, P9898, DOI 10.1039/b907926m
   WEBER AZ, 2004, CHEM REV, V104, P4679, DOI 10.1021/cr020729l
   WHITBY M, 2007, NAT NANOTECHNOL, V2, P87, DOI 10.1038/nnano.2006.175
   WHITESIDES GM, 2006, NATURE, V442, P368, DOI 10.1038/nature05058
   YAGER P, 2006, NATURE, V442, P412, DOI 10.1038/nature05064
   YANG L, 2007, J CHEM PHYS, V126, ARTN 084706
   ZHAO Y, 2008, ADV MATER, V20, P1
   ZHOU RH, 2004, SCIENCE, V305, P1605
   ZHU FQ, 2002, BIOPHYS J, V83, P154
   ZHU FQ, 2003, BIOPHYS J, V85, P236
   ZHU FQ, 2004, BIOPHYS J 1, V86, P50
   ZHU FQ, 2004, PHYS REV LETT, V93, ARTN 224501
   ZUO GH, 2007, CHINESE PHYS LETT, V24, P2426
   ZUO GH, 2009, PHYS REV E 1, V79, ARTN 031925
NR 104
TC 0
PU PERGAMON-ELSEVIER SCIENCE LTD; THE BOULEVARD, LANGFORD LANE,
   KIDLINGTON, OXFORD OX5 1GB, ENGLAND
SN 0038-1098
DI 10.1016/j.ssc.2010.01.016
PD JUN
VL 150
IS 21-22
SI Sp. Iss. SI
BP 968
EP 975
SC Physics, Condensed Matter
GA 603IL
UT ISI:000278202000002
ER
PT J
*Record 2 of 3. 
L5 <http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;UT=000278233600011>
*Order Full Text [ ]
AU Jamaati, J
   Niazmand, H
   Renksizbulut, M
AF Jamaati, J.
   Niazmand, H.
   Renksizbulut, M.
TI Pressure-driven electrokinetic slip-flow in planar microchannels
SO INTERNATIONAL JOURNAL OF THERMAL SCIENCES
LA English
DT Article
DE Electrokinetic flow; Poisson-Boltzmann equation; Slip-flow; Microchannel
ID POISSON-BOLTZMANN EQUATION; DOUBLE-LAYER OVERLAP; NANOFLUIDIC CHANNELS;
   ENERGY-CONVERSION; HYDROPHOBIC MICROCHANNELS; CARBON NANOTUBES;
   ELECTROOSMOSIS; NANOCHANNELS; COEFFICIENT; TRANSPORT
AB This paper presents an analytical solution for pressure-driven
   electrokinetic flows in planar microchannels with velocity slip at the
   walls. The Navier-Stokes equations for an incompressible viscous fluid
   have been solved along with the Poisson-Boltzmann equation for the
   electric double layer. Analytical expressions for the velocity profile,
   average electrical conductivity, and induced voltage are presented
   without invoking the Debye-Huckel approximation. It is known that an
   increase in the zeta-potential leads to an increase in the flow-induced
   voltage: however, it is demonstrated that the induced voltage reaches a
   maximum value at a certain zeta-potential depending on the slip
   coefficient and the Debye-Huckel parameter, while decreasing rapidly at
   higher zeta-potentials. The present parametric study indicates that
   liquid slip at the walls can increase the maximum induced voltage very
   significantly. (C) 2010 Elsevier Masson SAS. All rights reserved.
C1 [Renksizbulut, M.] Univ Waterloo, Mech & Mechatron Engn Dept, Waterloo, ON N2L 3G1, Canada.
   [Jamaati, J.; Niazmand, H.] Ferdowsi Univ Mashhad, Dept Mech Engn, Mashhad, Iran.
RP Renksizbulut, M, Univ Waterloo, Mech & Mechatron Engn Dept, Waterloo,
   ON N2L 3G1, Canada.
EM metin@uwaterloo.ca
CR BALDESSARI F, 2008, J COLLOID INTERF SCI, V325, P526, DOI
   10.1016/j.jcis.2008.06.007
   BEHRENS SH, 1999, PHYS REV E B, V60, P7040
   BIESHEUVEL PM, 2001, J COLLOID INTERF SCI, V238, P362
   BOUZIGUES CI, 2008, PHYS REV LETT, V101, ARTN 114503
   CHAKRABORTY S, 2008, PHYS REV E 2, V77, ARTN 037303
   CHAKRABORTY S, 2008, PHYS REV LETT, V100, ARTN 097801
   CHENG JT, 2002, PHYS REV E 1, V65, ARTN 031206
   DAIGUJI H, 2004, NANO LETT, V4, P2315, DOI 10.1021/nl0489945
   DAVIDSON C, 2008, ELECTROPHORESIS, V29, P1125, DOI
   10.1002/elps.200700549
   DAVIDSON C, 2008, J POWER SOURCES, V179, P297, DOI
   10.1016/j.jpowsour.2007.12.050
   DUTTA P, 2001, ANAL CHEM, V73, P1979
   DUTTA P, 2006, COMPUT MATH APPL, V52, P651, DOI
   10.1016/j.camwa.2006.10.002
   HOLT JK, 2006, SCIENCE, V312, P1034, DOI 10.1126/science.1126298
   HUNTER RJ, 1981, ZETA POTENTIAL COLLO
   HWANG PW, 2008, INT J HEAT MASS TRAN, V51, P210, DOI
   10.1016/j.ijheatmasstransfer.2007.04.010
   JOLY L, 2006, J CHEM PHYS, V125, UNSP 204716(14)
   MAJUMDER M, 2005, NATURE, V438, P44, DOI 10.1038/43844a
   MIN JY, 2006, SENSOR ACTUAT B-CHEM, V120, P305, DOI
   10.1016/j.snb.2006.02.028
   MIRBOZORGI SA, 2007, J FLUID ENG-T ASME, V129, P1346
   NETO C, 2005, REP PROG PHYS, V68, P2859, DOI 10.1088/0034-4885/68/12/R05
   OLTHUIS W, 2005, SENSOR ACTUAT B-CHEM, V111, P385, DOI
   10.1016/j.snb.2005.03.039
   OYANADER M, 2005, J COLLOID INTERF SCI, V284, P315, DOI
   10.1016/j.jcis.2004.10.035
   PARK HM, 2007, ANAL CHIM ACTA, V593, P171, DOI 10.1016/j.aca.2007.04.054
   PARK HM, 2008, ANAL CHIM ACTA, V616, P160, DOI 10.1016/j.aca.2008.04.021
   PHILIP JR, 1970, J CHEM PHYS, V52, P953
   QU WL, 2000, J COLLOID INTERF SCI, V224, P397
   REN Y, 2008, NANOTECHNOLOGY, V19, UNSP 195707(6)
   TALAPATRA S, 2008, EUR J MECH B-FLUID, V27, P297, DOI
   10.1016/j.euromechflu.2007.06.005
   TRETHEWAY DC, 2004, PHYS FLUIDS, V16, P1509, DOI 10.1063/1.1669400
   TYRRELL JWG, 2001, PHYS REV LETT, V87, ARTN 176104
   VANDERHEYDEN FHJ, 2006, PHYS REV LETT, V96, ARTN 224502
   VANDERHEYDEN FHJ, 2007, NANO LETT, V7, P1022, DOI 10.1021/nl070194h
   WANG XM, 2006, J COLLOID INTERF SCI, V293, P483, DOI
   10.1016/j.jcis.2005.06.080
   YANG J, 2003, J COLLOID INTERF SCI, V260, P225, DOI
   10.1016/S0021-9797(02)00158-3
   ZHU Y, 2001, PHYS REV LETT, V87, UNSP 96105(4)
NR 35
TC 0
PU ELSEVIER FRANCE-EDITIONS SCIENTIFIQUES MEDICALES ELSEVIER; 23 RUE
   LINOIS, 75724 PARIS, FRANCE
SN 1290-0729
DI 10.1016/j.ijthermalsci.2010.01.008
PD JUL
VL 49
IS 7
BP 1165
EP 1174
SC Thermodynamics; Engineering, Mechanical
GA 603UM
UT ISI:000278233600011
ER
PT J
*Record 3 of 3. 
L5 <http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;UT=000278232400007>
*Order Full Text [ ]
AU Kuang, YD
   Shi, SQ
   Chan, PKL
   Chen, CY
AF Kuang, Y. D.
   Shi, S. Q.
   Chan, P. K. L.
   Chen, C. Y.
TI A Continuum Model of the Van der Waals Interface for Determining the
   Critical Diameter of Nanopumps and its Application to Analysis of the
   Vibration and Stability of Nanopump Systems
SO INTERNATIONAL JOURNAL OF NONLINEAR SCIENCES AND NUMERICAL SIMULATION
LA English
DT Article
DE Carbon nanotubes; Critical diameter; Nanoscale effects; Vibration and
   stability
ID WALLED CARBON NANOTUBES; WAVE-PROPAGATION; FLUID; WATER; SINGLE; FLOW;
   TRANSPORT; INSTABILITY; MECHANICS; DYNAMICS
AB Carbon nanotubes make ideal nanopumps for the transport of fluid. To
   analyze the vibration and stability of nanopump systems with inner
   fluid effectively, it is necessary to incorporate nanoscale effects
   into continuum-based simulations. This paper first proposes a continuum
   model for the van der Waals (vdW) interface between a single-wall
   carbon nanotube (SWCNT) and incompressible inner fluid to determine the
   critical tube diameter above which continuum fluid mechanics may be
   reasonably applied to that inner fluid. Then, with overall
   consideration of the scale effects, including the nonlocal effects of
   the carbon nanotube, the surface tension of the inner fluid and the vdW
   interface, an improved Euler beam/plug fluid model is developed to
   investigate the vibration and stability of the nanopump system. The two
   models are both validated by comparing with molecular dynamic
   simulations. The results show that the critical diameter for water flow
   is about 1.8 nm. Nanopump stability is noticeably enhanced by the
   surface tension of the inner fluid for a high slenderness ratio. Both
   coaxial vibration frequency and stability decline as the system
   temperature is increased. Moreover, the proposed models predict that
   the transverse vibration of the inner fluid inside a nearly rigid SWCNT
   occurs due to the existence of the vdW interface gap and the negligible
   bending rigidity of the fluid.
C1 [Kuang, Y. D.; Shi, S. Q.; Chan, P. K. L.] Hong Kong Polytech Univ, Dept Mech Engn, Kowloon, Hong Kong, Peoples R China.
   [Kuang, Y. D.; Chen, C. Y.] Huazhong Univ Sci & Technol, Sch Civil Engn & Mech, Wuhan 430074, Hubei, Peoples R China.
RP Shi, SQ, Hong Kong Polytech Univ, Dept Mech Engn, Kowloon, Hong Kong,
   Peoples R China.
EM mmsqshi@polyu.edu.hk
CR BERENDSEN HJC, 1987, J PHYS CHEM-US, V91, P6269
   CHANG T, 2008, PHYS REV LETT, V101, ARTN 175501
   CHEN X, 2008, NANO LETT, V8, P2988, DOI 10.1021/nl802046b
   DEASIS ED, 2008, APPL PHYS LETT, V93, ARTN 023129
   DONG K, 2008, COMP MATER SCI, V42, P139, DOI
   10.1016/j.commatsci.2007.07.007
   GARG A, 1998, PHYS REV LETT, V81, P2260
   GONG XJ, 2007, NAT NANOTECHNOL, V2, P709, DOI 10.1038/nnano.2007.320
   HANASAKI I, 2006, J CHEM PHYS, V14, UNSP 144708
   HANASAKI I, 2008, J PHYS-CONDENS MAT, V20, ARTN 015213
   HE XQ, 2005, J MECH PHYS SOLIDS, V53, P303, DOI
   10.1016/j.jmps.2004.08.003
   HOLT JK, 2006, SCIENCE, V312, P1034, DOI 10.1126/science.1126298
   HU YG, 2008, J MECH PHYS SOLIDS, V56, P3475, DOI
   10.1016/j.jmps.2008.08.010
   HU ZL, 2007, NANOTECHNOLOGY, V18, ARTN 485712
   IIJIMA S, 1991, NATURE, V354, P56
   INSEPOV Z, 2006, NANO LETT, V6, P1893, DOI 10.1021/nl060932m
   JIANG LY, 2006, J MECH PHYS SOLIDS, V54, P2436, DOI
   10.1016/j.jmps.2006.04.009
   JOSEPH S, 2008, NANO LETT, V8, P452, DOI 10.1021/nl072385q
   KOGA K, 2001, NATURE, V412, P802
   LEE HL, 2009, J PHYS-CONDENS MAT, V21, ARTN 115302
   LIU TT, 2007, PHYS LETT A, V365, P144, DOI
   10.1016/j.physleta.2006.12.059
   LONGHURST MJ, 2007, NANO LETT, V7, P3324, DOI 10.1021/nl071537e
   MAJUMDER M, 2005, NATURE, V438, P44, DOI 10.1038/43844a
   MAO ZG, 2000, J PHYS CHEM B, V104, P4618
   MASHL RJ, 2003, NANO LETT, V3, P589, DOI 10.1021/nl0340226
   MATTIA D, 2008, MICROFLUID NANOFLUID, V5, P289, DOI
   10.1007/s10404-008-0293-5
   NANOK T, 2009, J PHYS CHEM A, V113, P2103, DOI 10.1021/jp8088676
   NATSUKI T, 2007, J APPL PHYS, V10, UNSP 034319
   PAIDOUSSIS MP, 1998, FLUID STRUCTURE INTE
   PONCHARAL P, 1999, SCIENCE, V283, P1513
   RAO AM, 2001, PHYS REV LETT, V86, P3895
   RAPPE AK, 1992, J AM CHEM SOC, V114, P10024
   REDDY CD, 2007, APPL PHYS LETT, V90, ARTN 133122
   RU CQ, 2000, PHYS REV B, V62, P962
   SHOLL DS, 2006, SCIENCE, V312, P1003, DOI 10.1126/science.1127261
   SUDAK LJ, 2003, J APPL PHYS, V94, P7281, DOI 10.1063/1.1625437
   SUPPLE S, 2003, PHYS REV LETT, V90, ARTN 214501
   THOMAS JA, 2009, PHYS REV LETT, V102, ARTN 184502
   TREACY MMJ, 1996, NATURE, V381, P678
   WANG J, 2004, PHYS CHEM CHEM PHYS, V6, P829, DOI 10.1039/b313307a
   WANG XY, 2007, J PHYS D APPL PHYS, V40, P2563, DOI
   10.1088/0022-3727/40/8/022
   WHITBY M, 2007, NAT NANOTECHNOL, V2, P87, DOI 10.1038/nnano.2006.175
   YOON J, 2005, COMPOS SCI TECHNOL, V65, P1326, DOI
   10.1016/j.compscitech.2004.12.002
   YOON J, 2006, INT J SOLIDS STRUCT, V43, P3337, DOI
   10.1016/j.ijsolstr.2005.04.039
   ZHANG CL, 2006, APPL PHYS LETT, V89, ARTN 081904
   ZHANG NH, 2008, CHAOS SOLITON FRACT, V35, P291, DOI
   10.1016/j.chaos.2006.05.021
   ZHENG J, 2005, J CHEM PHYS, V122, ARTN 214702
NR 46
TC 0
PU FREUND PUBLISHING HOUSE LTD; PO BOX 35010, TEL AVIV 61350, ISRAEL
SN 1565-1339
PD FEB
VL 11
IS 2
BP 121
EP 133
SC Engineering, Multidisciplinary; Mathematics, Applied; Mechanics;
   Physics, Mathematical
GA 603UA
UT ISI:000278232400007
ER
EF
========================================================================
 *Order Full Text* 
 All Customers
--------------
    Please contact your library administrator, or person(s) responsible for 
    document delivery, to find out more about your organization's policy for 
    obtaining the full text of the above articles. If your organization does 
    not have a current document delivery provider, your administrator can 
    contact ISI Document Solution at service@isidoc.com, or call 800-603-4367 
    or 734-459-8565.
 IDS Customers
--------------
    IDS customers can purchase the full text of an article (having page number, 
    volume, and issue information) by returning this ENTIRE message as a Reply 
    to Sender or Forward to orders@isidoc.com. Mark your choices with an X in 
    the "Order Full Text: []" brackets for each item. For example, [X].
Please enter your account number here:
========================================================================
 *Import Records into an ISI ResearchSoft product*
 1) Save the email as a text file. If your e-mail software removed extra line breaks, restore them before saving.
 2) From within an ISI ResearchSoft product, import the text file using the ISI-CE filter.
========================================================================
 *Help Desk Contact Information*
 If you have any questions, please visit the Thomson Scientific Technical Support Contact Information Web page:
http://www.thomsonscientific.com/support/techsupport
========================================================================
 
No comments:
Post a Comment