Friday, June 18, 2010

ISI Web of Knowledge Alert - Holt JK

ISI Web of Knowledge Citation Alert

Cited Article: Holt JK. Fast mass transport through sub-2-nanometer carbon nanotubes
Alert Expires: 09 NOV 2010
Number of Citing Articles: 3 new records this week (3 in this e-mail)
Organization ID: 3b97d1bbc1878baed0ab183d8b03130b
========================================================================
Note: Instructions on how to purchase the full text of an article, import the records into an
ISI ResearchSoft product, and Help Desk Contact information are at the end of the e-mail.
========================================================================

FN ISI Export Format
VR 1.0

PT J
*Record 1 of 3.
L5 <http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;UT=000278202000002>
*Order Full Text [ ]
AU Wan, RZ
Fang, HP
AF Wan, Rongzheng
Fang, Haiping
TI Water transportation across narrow channel of nanometer dimension
SO SOLID STATE COMMUNICATIONS
LA English
DT Article
DE Nanochannel; Single-file water; Molecule dynamics simulations
ID CARBON NANOTUBE MEMBRANES; MOLECULAR-DYNAMICS; GATING MECHANISM; H+
CONDUCTION; FREE-ENERGY; PROTEIN; PROTON; MICROFLUIDICS; AQUAPORIN-1;
RECOGNITION
AB Since the discovery of the carbon nanotube and aquaporin, the study of
the transportation of water across nanochannels has become one of the
hot subjects. When the radius of a nanochannel is only about one
nanometer or a little larger, water confined in those nanoscale
channels usually exhibits dynamics different from those in bulk system,
such as the wet-dry transition due to the confinement, concerted
hydrogen-bond orientations and flipping, concerted motion of water
molecules, and strong interactions with external charges. Those
dynamics correlate with the unique behavior of the water transportation
across the channels, such as the extra-high permeability, excellent
on-off gating behavior with response to the external mechanical and
electrical signals and noises, enhancement by structure outside the
channel, directional transportation driven by charges close to a
channel or electric field. In this article, we review some of the
recent progress on the study of the water molecules inside those narrow
nanochannels. (C) 2010 Elsevier Ltd. All rights reserved.
C1 [Wan, Rongzheng; Fang, Haiping] Chinese Acad Sci, Shanghai Inst Appl Phys, Shanghai 201800, Peoples R China.
RP Fang, HP, Chinese Acad Sci, Shanghai Inst Appl Phys, POB 800-204,
Shanghai 201800, Peoples R China.
EM fanghaiping@sinap.ac.cn
CR 2004, SCIENCE, V306, P2013
2005, SCIENCE, V309, P78
AARTS IMP, 2005, PHYS REV LETT, V95, ARTN 166104
AGMON N, 1995, CHEM PHYS LETT, V244, P456
AKESON M, 1991, BIOPHYS J, V60, P101
ALLEN R, 2002, PHYS REV LETT, V89, ARTN 175502
ANISHKIN A, 2004, BIOPHYS J, V86, P2883
BALL P, 2008, CHEM REV, V108, P74, DOI 10.1021/cr068037a
BALL P, 2009, NEW SCI, V201, P33
BAUER WR, 2006, P NATL ACAD SCI USA, V103, P11446, DOI
10.1073/pnas.0601769103
BECKSTEIN O, 2001, J PHYS CHEM B, V105, P12902, DOI 10.1021/jp012233y
BECKSTEIN O, 2003, P NATL ACAD SCI USA, V100, P7063, DOI
10.1073/pnas.1136844100
BENNAIM A, 2002, BIOPHYS CHEM, V101, P309
BEST RB, 2005, P NATL ACAD SCI USA, V102, P6732, DOI
10.1073/pnas.0408098102
BIGGIN PC, 2003, CURR BIOL, V13, R183
BRANDEN C, 1991, INTRO PROTEIN STRUCT
BREWER ML, 2001, BIOPHYS J, V80, P1691
CAO H, 2002, APPL PHYS LETT, V81, P174
CHENG JX, 2003, P NATL ACAD SCI USA, V100, P9826, DOI
10.1073/pnas.1732202100
CHEUNG MS, 2002, P NATL ACAD SCI USA, V99, P685
CORRY B, 2008, J PHYS CHEM B, V112, P1427, DOI 10.1021/jp709845u
CUKIERMAN S, 2006, BBA-BIOENERGETICS, V1757, P876, DOI
10.1016/j.bbabio.2005.12.001
DAVID JM, 2003, PHYS REV LETT, V90, UNSP 195503
DEGROOT BL, 2001, SCIENCE, V294, P2353
DEGROOT BL, 2003, J MOL BIOL, V333, P279, DOI 10.1016/j.jmb.2003.08.003
DELLAGO C, 2003, PHYS REV LETT, V90, ARTN 105902
DEMELLO AJ, 2006, NATURE, V442, P394, DOI 10.1038/nature05062
DENKER BM, 1988, J BIOL CHEM, V263, P15634
DILL KA, 1997, NAT STRUCT BIOL, V4, P10
DILL KA, 2007, CURR OPIN STRUC BIOL, V17, P342, DOI
10.1016/j.sbi.2007.06.001
ELALI J, 2006, NATURE, V442, P403, DOI 10.1038/nature05063
FANG HP, 2008, J PHYS D APPL PHYS, V41, ARTN 103002
FRAUENFELDER H, 2006, P NATL ACAD SCI USA, V103, P15469, DOI
10.1073/pnas.0607168103
FRENKEL D, 1996, UNDERSTANDING MOL SI
FUXREITER M, 2005, BIOPHYS J, V89, P903, DOI 10.1529/biophysj.105.063263
GHOSH S, 2003, SCIENCE, V299, P1042, DOI 10.1126/science.1079080
GONG XJ, 2007, NAT NANOTECHNOL, V2, P709, DOI 10.1038/nnano.2007.320
GONG XJ, 2008, PHYS REV LETT, V101, ARTN 257801
GRUBMULLER H, 2003, P NATL ACAD SCI USA, V100, P7421, DOI
10.1073/pnas.1533175100
GRUEBELE M, 2005, CR BIOL, V328, P701, DOI 10.1016/j.crvi.2005.02.007
HILLE B, 2001, ION CHANNELS EXCITAB
HOFINGER J, 2008, P NATL ACAD SCI USA, V105, P13218
HOLT JK, 2006, SCIENCE, V312, P1034, DOI 10.1126/science.1126298
HU J, 1995, SCIENCE, V268, P267
HUMMER G, 2001, NATURE, V414, P188
HUMMER G, 2007, MOL PHYS, V105, P201, DOI 10.1080/00268970601140784
JOERGER AC, 2007, ONCOGENE, V26, P2226, DOI 10.1038/sj.onc.1210291
JOSEPH S, 2008, PHYS REV LETT, V101, ARTN 064502
KALRA A, 2003, P NATL ACAD SCI USA, V100, P10175
KARPLUS M, 2005, PHILOS T ROY SOC A, V363, P331, DOI
10.1098/rsta.2004.1496
KAYA H, 2003, J MOL BIOL, V326, P911, DOI 10.1016/S0022-2836(02)01434-1
KREUER KD, 2004, CHEM REV, V104, P4637, DOI 10.1021/cr020715f
LI JY, 2007, P NATL ACAD SCI USA, V104, P3687, DOI
10.1073/pnas.0604541104
LIJIMA S, 1991, NATURE, V354, P56
LINKE H, 2006, PHYS REV LETT, V96, ARTN 154502
LONGHURST MJ, 2007, NANO LETT, V7, P3324, DOI 10.1021/nl071537e
LU HJ, 2008, PHYS REV B, V77, ARTN 174115
LUBCHENKO V, 2005, J PHYS CHEM B, V109, P7488, DOI 10.1021/jp045205z
LUCENT D, 2007, P NATL ACAD SCI USA, V104, P10430, DOI
10.1073/pnas.0608256104
LUM K, 1999, J PHYS CHEM B, V103, P4570
MAGNASCO MO, 1993, PHYS REV LETT, V71, P1477
MAIBAUM L, 2003, J PHYS CHEM B, V107, P1189, DOI 10.1021/jp0267196
MEI HS, 1998, J PHYS CHEM B, V102, P10446
MIRANDA PB, 1998, PHYS REV LETT, V81, P5876
MIYAZAWA A, 2003, NATURE, V423, P949, DOI 10.1038/nature01748
ONUCHIC JN, 1997, ANNU REV PHYS CHEM, V48, P545
PAL SK, 2002, J PHYS CHEM B, V106, P12376, DOI 10.1021/jp0213506
PAL SK, 2003, P NATL ACAD SCI USA, V100, P8113, DOI
10.1073/pnas.1433066100
PAN ZW, 1998, NATURE, V394, P631
PAPOIAN GA, 2003, J AM CHEM SOC, V125, P9170, DOI 10.1021/ja034729u
POMES R, 1998, BIOPHYS J, V75, P33
POMES R, 2002, BIOPHYS J, V82, P2304
PORTELLA G, 2007, BIOPHYS J, V92, P3930, DOI 10.1529/biophysj.106.102921
PSALTIS D, 2006, NATURE, V442, P381, DOI 10.1038/nature05060
RASAIAH JC, 2008, ANNU REV PHYS CHEM, V59, P713, DOI
10.1146/annurev.physchem.59.032607.093815
REEDIJK MF, 2003, PHYS REV LETT, V90, ARTN 066103
REHMEYER J, 2006, NEW SCI, V30
REITER G, 2006, PHYS REV LETT, V97, ARTN 247801
SANSOM MSP, 2001, NATURE, V414, P156
SAPAROV SM, 2004, P NATL ACAD SCI USA, V101, P4805, DOI
10.1073/pnas.0308309101
SERINGHAUS M, 2007, SCIENCE, V315, P40
SHAKHNOVICH E, 2006, CHEM REV, V106, P1559, DOI 10.1021/cr040425u
SHEA JE, 2001, ANNU REV PHYS CHEM, V52, P499
SQUIRES TM, 2005, REV MOD PHYS, V77, P977
SUI HX, 2001, NATURE, V414, P872
TAJKHORSHID E, 2002, SCIENCE, V296, P525
VAITHEESWARAN S, 2004, J CHEM PHYS, V121, P7599
VIDOSSICH P, 2004, PROTEINS, V55, P924
WALLQVIST A, 1995, J PHYS CHEM-US, V99, P2885
WAN RZ, 2005, J AM CHEM SOC, V127, P7166, DOI 10.1021/ja050044d
WAN RZ, 2009, PHYS CHEM CHEM PHYS, V11, P9898, DOI 10.1039/b907926m
WEBER AZ, 2004, CHEM REV, V104, P4679, DOI 10.1021/cr020729l
WHITBY M, 2007, NAT NANOTECHNOL, V2, P87, DOI 10.1038/nnano.2006.175
WHITESIDES GM, 2006, NATURE, V442, P368, DOI 10.1038/nature05058
YAGER P, 2006, NATURE, V442, P412, DOI 10.1038/nature05064
YANG L, 2007, J CHEM PHYS, V126, ARTN 084706
ZHAO Y, 2008, ADV MATER, V20, P1
ZHOU RH, 2004, SCIENCE, V305, P1605
ZHU FQ, 2002, BIOPHYS J, V83, P154
ZHU FQ, 2003, BIOPHYS J, V85, P236
ZHU FQ, 2004, BIOPHYS J 1, V86, P50
ZHU FQ, 2004, PHYS REV LETT, V93, ARTN 224501
ZUO GH, 2007, CHINESE PHYS LETT, V24, P2426
ZUO GH, 2009, PHYS REV E 1, V79, ARTN 031925
NR 104
TC 0
PU PERGAMON-ELSEVIER SCIENCE LTD; THE BOULEVARD, LANGFORD LANE,
KIDLINGTON, OXFORD OX5 1GB, ENGLAND
SN 0038-1098
DI 10.1016/j.ssc.2010.01.016
PD JUN
VL 150
IS 21-22
SI Sp. Iss. SI
BP 968
EP 975
SC Physics, Condensed Matter
GA 603IL
UT ISI:000278202000002
ER

PT J
*Record 2 of 3.
L5 <http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;UT=000278233600011>
*Order Full Text [ ]
AU Jamaati, J
Niazmand, H
Renksizbulut, M
AF Jamaati, J.
Niazmand, H.
Renksizbulut, M.
TI Pressure-driven electrokinetic slip-flow in planar microchannels
SO INTERNATIONAL JOURNAL OF THERMAL SCIENCES
LA English
DT Article
DE Electrokinetic flow; Poisson-Boltzmann equation; Slip-flow; Microchannel
ID POISSON-BOLTZMANN EQUATION; DOUBLE-LAYER OVERLAP; NANOFLUIDIC CHANNELS;
ENERGY-CONVERSION; HYDROPHOBIC MICROCHANNELS; CARBON NANOTUBES;
ELECTROOSMOSIS; NANOCHANNELS; COEFFICIENT; TRANSPORT
AB This paper presents an analytical solution for pressure-driven
electrokinetic flows in planar microchannels with velocity slip at the
walls. The Navier-Stokes equations for an incompressible viscous fluid
have been solved along with the Poisson-Boltzmann equation for the
electric double layer. Analytical expressions for the velocity profile,
average electrical conductivity, and induced voltage are presented
without invoking the Debye-Huckel approximation. It is known that an
increase in the zeta-potential leads to an increase in the flow-induced
voltage: however, it is demonstrated that the induced voltage reaches a
maximum value at a certain zeta-potential depending on the slip
coefficient and the Debye-Huckel parameter, while decreasing rapidly at
higher zeta-potentials. The present parametric study indicates that
liquid slip at the walls can increase the maximum induced voltage very
significantly. (C) 2010 Elsevier Masson SAS. All rights reserved.
C1 [Renksizbulut, M.] Univ Waterloo, Mech & Mechatron Engn Dept, Waterloo, ON N2L 3G1, Canada.
[Jamaati, J.; Niazmand, H.] Ferdowsi Univ Mashhad, Dept Mech Engn, Mashhad, Iran.
RP Renksizbulut, M, Univ Waterloo, Mech & Mechatron Engn Dept, Waterloo,
ON N2L 3G1, Canada.
EM metin@uwaterloo.ca
CR BALDESSARI F, 2008, J COLLOID INTERF SCI, V325, P526, DOI
10.1016/j.jcis.2008.06.007
BEHRENS SH, 1999, PHYS REV E B, V60, P7040
BIESHEUVEL PM, 2001, J COLLOID INTERF SCI, V238, P362
BOUZIGUES CI, 2008, PHYS REV LETT, V101, ARTN 114503
CHAKRABORTY S, 2008, PHYS REV E 2, V77, ARTN 037303
CHAKRABORTY S, 2008, PHYS REV LETT, V100, ARTN 097801
CHENG JT, 2002, PHYS REV E 1, V65, ARTN 031206
DAIGUJI H, 2004, NANO LETT, V4, P2315, DOI 10.1021/nl0489945
DAVIDSON C, 2008, ELECTROPHORESIS, V29, P1125, DOI
10.1002/elps.200700549
DAVIDSON C, 2008, J POWER SOURCES, V179, P297, DOI
10.1016/j.jpowsour.2007.12.050
DUTTA P, 2001, ANAL CHEM, V73, P1979
DUTTA P, 2006, COMPUT MATH APPL, V52, P651, DOI
10.1016/j.camwa.2006.10.002
HOLT JK, 2006, SCIENCE, V312, P1034, DOI 10.1126/science.1126298
HUNTER RJ, 1981, ZETA POTENTIAL COLLO
HWANG PW, 2008, INT J HEAT MASS TRAN, V51, P210, DOI
10.1016/j.ijheatmasstransfer.2007.04.010
JOLY L, 2006, J CHEM PHYS, V125, UNSP 204716(14)
MAJUMDER M, 2005, NATURE, V438, P44, DOI 10.1038/43844a
MIN JY, 2006, SENSOR ACTUAT B-CHEM, V120, P305, DOI
10.1016/j.snb.2006.02.028
MIRBOZORGI SA, 2007, J FLUID ENG-T ASME, V129, P1346
NETO C, 2005, REP PROG PHYS, V68, P2859, DOI 10.1088/0034-4885/68/12/R05
OLTHUIS W, 2005, SENSOR ACTUAT B-CHEM, V111, P385, DOI
10.1016/j.snb.2005.03.039
OYANADER M, 2005, J COLLOID INTERF SCI, V284, P315, DOI
10.1016/j.jcis.2004.10.035
PARK HM, 2007, ANAL CHIM ACTA, V593, P171, DOI 10.1016/j.aca.2007.04.054
PARK HM, 2008, ANAL CHIM ACTA, V616, P160, DOI 10.1016/j.aca.2008.04.021
PHILIP JR, 1970, J CHEM PHYS, V52, P953
QU WL, 2000, J COLLOID INTERF SCI, V224, P397
REN Y, 2008, NANOTECHNOLOGY, V19, UNSP 195707(6)
TALAPATRA S, 2008, EUR J MECH B-FLUID, V27, P297, DOI
10.1016/j.euromechflu.2007.06.005
TRETHEWAY DC, 2004, PHYS FLUIDS, V16, P1509, DOI 10.1063/1.1669400
TYRRELL JWG, 2001, PHYS REV LETT, V87, ARTN 176104
VANDERHEYDEN FHJ, 2006, PHYS REV LETT, V96, ARTN 224502
VANDERHEYDEN FHJ, 2007, NANO LETT, V7, P1022, DOI 10.1021/nl070194h
WANG XM, 2006, J COLLOID INTERF SCI, V293, P483, DOI
10.1016/j.jcis.2005.06.080
YANG J, 2003, J COLLOID INTERF SCI, V260, P225, DOI
10.1016/S0021-9797(02)00158-3
ZHU Y, 2001, PHYS REV LETT, V87, UNSP 96105(4)
NR 35
TC 0
PU ELSEVIER FRANCE-EDITIONS SCIENTIFIQUES MEDICALES ELSEVIER; 23 RUE
LINOIS, 75724 PARIS, FRANCE
SN 1290-0729
DI 10.1016/j.ijthermalsci.2010.01.008
PD JUL
VL 49
IS 7
BP 1165
EP 1174
SC Thermodynamics; Engineering, Mechanical
GA 603UM
UT ISI:000278233600011
ER

PT J
*Record 3 of 3.
L5 <http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;UT=000278232400007>
*Order Full Text [ ]
AU Kuang, YD
Shi, SQ
Chan, PKL
Chen, CY
AF Kuang, Y. D.
Shi, S. Q.
Chan, P. K. L.
Chen, C. Y.
TI A Continuum Model of the Van der Waals Interface for Determining the
Critical Diameter of Nanopumps and its Application to Analysis of the
Vibration and Stability of Nanopump Systems
SO INTERNATIONAL JOURNAL OF NONLINEAR SCIENCES AND NUMERICAL SIMULATION
LA English
DT Article
DE Carbon nanotubes; Critical diameter; Nanoscale effects; Vibration and
stability
ID WALLED CARBON NANOTUBES; WAVE-PROPAGATION; FLUID; WATER; SINGLE; FLOW;
TRANSPORT; INSTABILITY; MECHANICS; DYNAMICS
AB Carbon nanotubes make ideal nanopumps for the transport of fluid. To
analyze the vibration and stability of nanopump systems with inner
fluid effectively, it is necessary to incorporate nanoscale effects
into continuum-based simulations. This paper first proposes a continuum
model for the van der Waals (vdW) interface between a single-wall
carbon nanotube (SWCNT) and incompressible inner fluid to determine the
critical tube diameter above which continuum fluid mechanics may be
reasonably applied to that inner fluid. Then, with overall
consideration of the scale effects, including the nonlocal effects of
the carbon nanotube, the surface tension of the inner fluid and the vdW
interface, an improved Euler beam/plug fluid model is developed to
investigate the vibration and stability of the nanopump system. The two
models are both validated by comparing with molecular dynamic
simulations. The results show that the critical diameter for water flow
is about 1.8 nm. Nanopump stability is noticeably enhanced by the
surface tension of the inner fluid for a high slenderness ratio. Both
coaxial vibration frequency and stability decline as the system
temperature is increased. Moreover, the proposed models predict that
the transverse vibration of the inner fluid inside a nearly rigid SWCNT
occurs due to the existence of the vdW interface gap and the negligible
bending rigidity of the fluid.
C1 [Kuang, Y. D.; Shi, S. Q.; Chan, P. K. L.] Hong Kong Polytech Univ, Dept Mech Engn, Kowloon, Hong Kong, Peoples R China.
[Kuang, Y. D.; Chen, C. Y.] Huazhong Univ Sci & Technol, Sch Civil Engn & Mech, Wuhan 430074, Hubei, Peoples R China.
RP Shi, SQ, Hong Kong Polytech Univ, Dept Mech Engn, Kowloon, Hong Kong,
Peoples R China.
EM mmsqshi@polyu.edu.hk
CR BERENDSEN HJC, 1987, J PHYS CHEM-US, V91, P6269
CHANG T, 2008, PHYS REV LETT, V101, ARTN 175501
CHEN X, 2008, NANO LETT, V8, P2988, DOI 10.1021/nl802046b
DEASIS ED, 2008, APPL PHYS LETT, V93, ARTN 023129
DONG K, 2008, COMP MATER SCI, V42, P139, DOI
10.1016/j.commatsci.2007.07.007
GARG A, 1998, PHYS REV LETT, V81, P2260
GONG XJ, 2007, NAT NANOTECHNOL, V2, P709, DOI 10.1038/nnano.2007.320
HANASAKI I, 2006, J CHEM PHYS, V14, UNSP 144708
HANASAKI I, 2008, J PHYS-CONDENS MAT, V20, ARTN 015213
HE XQ, 2005, J MECH PHYS SOLIDS, V53, P303, DOI
10.1016/j.jmps.2004.08.003
HOLT JK, 2006, SCIENCE, V312, P1034, DOI 10.1126/science.1126298
HU YG, 2008, J MECH PHYS SOLIDS, V56, P3475, DOI
10.1016/j.jmps.2008.08.010
HU ZL, 2007, NANOTECHNOLOGY, V18, ARTN 485712
IIJIMA S, 1991, NATURE, V354, P56
INSEPOV Z, 2006, NANO LETT, V6, P1893, DOI 10.1021/nl060932m
JIANG LY, 2006, J MECH PHYS SOLIDS, V54, P2436, DOI
10.1016/j.jmps.2006.04.009
JOSEPH S, 2008, NANO LETT, V8, P452, DOI 10.1021/nl072385q
KOGA K, 2001, NATURE, V412, P802
LEE HL, 2009, J PHYS-CONDENS MAT, V21, ARTN 115302
LIU TT, 2007, PHYS LETT A, V365, P144, DOI
10.1016/j.physleta.2006.12.059
LONGHURST MJ, 2007, NANO LETT, V7, P3324, DOI 10.1021/nl071537e
MAJUMDER M, 2005, NATURE, V438, P44, DOI 10.1038/43844a
MAO ZG, 2000, J PHYS CHEM B, V104, P4618
MASHL RJ, 2003, NANO LETT, V3, P589, DOI 10.1021/nl0340226
MATTIA D, 2008, MICROFLUID NANOFLUID, V5, P289, DOI
10.1007/s10404-008-0293-5
NANOK T, 2009, J PHYS CHEM A, V113, P2103, DOI 10.1021/jp8088676
NATSUKI T, 2007, J APPL PHYS, V10, UNSP 034319
PAIDOUSSIS MP, 1998, FLUID STRUCTURE INTE
PONCHARAL P, 1999, SCIENCE, V283, P1513
RAO AM, 2001, PHYS REV LETT, V86, P3895
RAPPE AK, 1992, J AM CHEM SOC, V114, P10024
REDDY CD, 2007, APPL PHYS LETT, V90, ARTN 133122
RU CQ, 2000, PHYS REV B, V62, P962
SHOLL DS, 2006, SCIENCE, V312, P1003, DOI 10.1126/science.1127261
SUDAK LJ, 2003, J APPL PHYS, V94, P7281, DOI 10.1063/1.1625437
SUPPLE S, 2003, PHYS REV LETT, V90, ARTN 214501
THOMAS JA, 2009, PHYS REV LETT, V102, ARTN 184502
TREACY MMJ, 1996, NATURE, V381, P678
WANG J, 2004, PHYS CHEM CHEM PHYS, V6, P829, DOI 10.1039/b313307a
WANG XY, 2007, J PHYS D APPL PHYS, V40, P2563, DOI
10.1088/0022-3727/40/8/022
WHITBY M, 2007, NAT NANOTECHNOL, V2, P87, DOI 10.1038/nnano.2006.175
YOON J, 2005, COMPOS SCI TECHNOL, V65, P1326, DOI
10.1016/j.compscitech.2004.12.002
YOON J, 2006, INT J SOLIDS STRUCT, V43, P3337, DOI
10.1016/j.ijsolstr.2005.04.039
ZHANG CL, 2006, APPL PHYS LETT, V89, ARTN 081904
ZHANG NH, 2008, CHAOS SOLITON FRACT, V35, P291, DOI
10.1016/j.chaos.2006.05.021
ZHENG J, 2005, J CHEM PHYS, V122, ARTN 214702
NR 46
TC 0
PU FREUND PUBLISHING HOUSE LTD; PO BOX 35010, TEL AVIV 61350, ISRAEL
SN 1565-1339
PD FEB
VL 11
IS 2
BP 121
EP 133
SC Engineering, Multidisciplinary; Mathematics, Applied; Mechanics;
Physics, Mathematical
GA 603UA
UT ISI:000278232400007
ER

EF

========================================================================
*Order Full Text*
All Customers
--------------
Please contact your library administrator, or person(s) responsible for
document delivery, to find out more about your organization's policy for
obtaining the full text of the above articles. If your organization does
not have a current document delivery provider, your administrator can
contact ISI Document Solution at service@isidoc.com, or call 800-603-4367
or 734-459-8565.

IDS Customers
--------------
IDS customers can purchase the full text of an article (having page number,
volume, and issue information) by returning this ENTIRE message as a Reply
to Sender or Forward to orders@isidoc.com. Mark your choices with an X in
the "Order Full Text: []" brackets for each item. For example, [X].

Please enter your account number here:

========================================================================
*Import Records into an ISI ResearchSoft product*
1) Save the email as a text file. If your e-mail software removed extra line breaks, restore them before saving.
2) From within an ISI ResearchSoft product, import the text file using the ISI-CE filter.
========================================================================
*Help Desk Contact Information*
If you have any questions, please visit the Thomson Scientific Technical Support Contact Information Web page:
http://www.thomsonscientific.com/support/techsupport
========================================================================

No comments: