Friday, June 18, 2010

ISI Web of Knowledge Alert - Majumder M

ISI Web of Knowledge Citation Alert

Cited Article: Majumder M. Nanoscale hydrodynamics - Enhanced flow in carbon nanotubes
Alert Expires: 09 NOV 2010
Number of Citing Articles: 4 new records this week (4 in this e-mail)
Organization ID: 3b97d1bbc1878baed0ab183d8b03130b
========================================================================
Note: Instructions on how to purchase the full text of an article and Help Desk Contact information are at the end of the e-mail.
========================================================================

*Record 1 of 4.
*View Full Record: http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000278402600004
*Order Full Text [ ]

Title:
Molecular Simulation at Solid-Liquid Interface

Authors:
Yasuoka, K; Koishi, T; Mima, T; Arai, N

Author Full Names:
Yasuoka, Kenji; Koishi, Takahiro; Mima, Toshiki; Arai, Noriyoshi

Source:
JOURNAL OF JAPANESE SOCIETY OF TRIBOLOGISTS 55 (4): 236-241 Sp. Iss. SI 2010

Language:
Japanese

Document Type:
Article

Author Keywords:
molecular dynamics simulation; solid/liquid interface; confined fluid; water droplet; liquid crystal; surfactant; self-assembly

KeyWords Plus:
CARBON NANOTUBES; DYNAMICS; SURFACE; TRANSITION

Reprint Address:
Yasuoka, K, Keio Univ, Dept Mech Engn, Fac Sci & Technol, Kohoku Ku, 14-1 Hiyoshi,3 Chome, Yokohama, Kanagawa 2238522, Japan.

Research Institution addresses:
[Yasuoka, Kenji] Keio Univ, Dept Mech Engn, Fac Sci & Technol, Kohoku Ku, Yokohama, Kanagawa 2238522, Japan; [Koishi, Takahiro] Univ Fukui, Fac Engn, Dept Appl Phys, Fukui 9108507, Japan; [Mima, Toshiki] AIST Tsukuba, Res Inst Computat Sci, Tsukuba, Ibaraki 3088568, Japan; [Arai, Noriyoshi] Univ Electrocommun, Fac Electrocommun, Dept Mech Engn & Intelligent Syst, Chofu, Tokyo 1828585, Japan

E-mail Address:
yasuoka@mech.keio.ac.jp

Cited References:
ANDOH Y, 2007, CHEM PHYS LETT, V448, P253, DOI 10.1016/j.cplett.2007.10.008.
ARAI N, 2008, J AM CHEM SOC, V130, P7916, DOI 10.1021/ja7108739.
DEMIGUEL E, 1992, PHYS REV A, V45, P3813.
DEMIGUEL E, 2002, J CHEM PHYS, V117, P6313, DOI 10.1063/1.1504430.
GAY JG, 1981, J CHEM PHYS, V74, P3316.
GOLDBERGER J, 2003, NATURE, V422, P599, DOI 10.1038/nature01551.
GUEGAN R, 2007, J CHEM PHYS, V129, UNSP 064902.
HOOGERBRUGGE PJ, 1992, EUROPHYS LETT, V19, P155.
KOGA K, 2001, NATURE, V412, P802.
KOISHI T, 2009, P NATL ACAD SCI USA, V106, P8435, DOI 10.1073/pnas.0902027106.
LI X, 2006, J AM CHEM SOC, V128, P12439, DOI 10.1021/ja057944e.
LUNDGREN M, 2002, LANGMUIR, V18, P10462, DOI 10.1021/la026191w.
LUNDGREN M, 2003, LANGMUIR, V19, P7127, DOI 10.1021/la034224h.
LUNDGREN M, 2007, LANGMUIR, V23, P1187, DOI 10.1021/la060712o.
MAJUMDER M, 2005, NATURE, V438, P44, DOI 10.1038/43844a.
MIMA T, 2008, PHYS REV E, V77, P11705.
PERSSON F, 2007, NANOTECHNOLOGY, V18, ARTN 246301.

Cited Reference Count:
17

Times Cited:
0

Publisher:
JAPAN SOC TRIBOLOGISTS; KIKAI SHINKO KAIKAN NO 407-2 5-8 SHIBA-KOEN 3-CHOME MINATO-KU, TOKYO, 105, JAPAN

Subject Category:
Engineering, Mechanical

ISSN:
0915-1168

IDS Number:
606DS

========================================================================

*Record 2 of 4.
*View Full Record: http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000278233600011
*Order Full Text [ ]

Title:
Pressure-driven electrokinetic slip-flow in planar microchannels

Authors:
Jamaati, J; Niazmand, H; Renksizbulut, M

Author Full Names:
Jamaati, J.; Niazmand, H.; Renksizbulut, M.

Source:
INTERNATIONAL JOURNAL OF THERMAL SCIENCES 49 (7): 1165-1174 JUL 2010

Language:
English

Document Type:
Article

Author Keywords:
Electrokinetic flow; Poisson-Boltzmann equation; Slip-flow; Microchannel

KeyWords Plus:
POISSON-BOLTZMANN EQUATION; DOUBLE-LAYER OVERLAP; NANOFLUIDIC CHANNELS; ENERGY-CONVERSION; HYDROPHOBIC MICROCHANNELS; CARBON NANOTUBES; ELECTROOSMOSIS; NANOCHANNELS; COEFFICIENT; TRANSPORT

Abstract:
This paper presents an analytical solution for pressure-driven electrokinetic flows in planar microchannels with velocity slip at the walls. The Navier-Stokes equations for an incompressible viscous fluid have been solved along with the Poisson-Boltzmann equation for the electric double layer. Analytical expressions for the velocity profile, average electrical conductivity, and induced voltage are presented without invoking the Debye-Huckel approximation. It is known that an increase in the zeta-potential leads to an increase in the flow-induced voltage: however, it is demonstrated that the induced voltage reaches a maximum value at a certain zeta-potential depending on the slip coefficient and the Debye-Huckel parameter, while decreasing rapidly at higher zeta-potentials. The present parametric study indicates that liquid slip at the walls can increase the maximum induced voltage very significantly. (C) 2010 Elsevier Masson SAS. All rights reserved.

Reprint Address:
Renksizbulut, M, Univ Waterloo, Mech & Mechatron Engn Dept, Waterloo, ON N2L 3G1, Canada.

Research Institution addresses:
[Renksizbulut, M.] Univ Waterloo, Mech & Mechatron Engn Dept, Waterloo, ON N2L 3G1, Canada; [Jamaati, J.; Niazmand, H.] Ferdowsi Univ Mashhad, Dept Mech Engn, Mashhad, Iran

E-mail Address:
metin@uwaterloo.ca

Cited References:
BALDESSARI F, 2008, J COLLOID INTERF SCI, V325, P526, DOI 10.1016/j.jcis.2008.06.007.
BEHRENS SH, 1999, PHYS REV E B, V60, P7040.
BIESHEUVEL PM, 2001, J COLLOID INTERF SCI, V238, P362.
BOUZIGUES CI, 2008, PHYS REV LETT, V101, ARTN 114503.
CHAKRABORTY S, 2008, PHYS REV E 2, V77, ARTN 037303.
CHAKRABORTY S, 2008, PHYS REV LETT, V100, ARTN 097801.
CHENG JT, 2002, PHYS REV E 1, V65, ARTN 031206.
DAIGUJI H, 2004, NANO LETT, V4, P2315, DOI 10.1021/nl0489945.
DAVIDSON C, 2008, ELECTROPHORESIS, V29, P1125, DOI 10.1002/elps.200700549.
DAVIDSON C, 2008, J POWER SOURCES, V179, P297, DOI 10.1016/j.jpowsour.2007.12.050.
DUTTA P, 2001, ANAL CHEM, V73, P1979.
DUTTA P, 2006, COMPUT MATH APPL, V52, P651, DOI 10.1016/j.camwa.2006.10.002.
HOLT JK, 2006, SCIENCE, V312, P1034, DOI 10.1126/science.1126298.
HUNTER RJ, 1981, ZETA POTENTIAL COLLO.
HWANG PW, 2008, INT J HEAT MASS TRAN, V51, P210, DOI 10.1016/j.ijheatmasstransfer.2007.04.010.
JOLY L, 2006, J CHEM PHYS, V125, UNSP 204716(14).
MAJUMDER M, 2005, NATURE, V438, P44, DOI 10.1038/43844a.
MIN JY, 2006, SENSOR ACTUAT B-CHEM, V120, P305, DOI 10.1016/j.snb.2006.02.028.
MIRBOZORGI SA, 2007, J FLUID ENG-T ASME, V129, P1346.
NETO C, 2005, REP PROG PHYS, V68, P2859, DOI 10.1088/0034-4885/68/12/R05.
OLTHUIS W, 2005, SENSOR ACTUAT B-CHEM, V111, P385, DOI 10.1016/j.snb.2005.03.039.
OYANADER M, 2005, J COLLOID INTERF SCI, V284, P315, DOI 10.1016/j.jcis.2004.10.035.
PARK HM, 2007, ANAL CHIM ACTA, V593, P171, DOI 10.1016/j.aca.2007.04.054.
PARK HM, 2008, ANAL CHIM ACTA, V616, P160, DOI 10.1016/j.aca.2008.04.021.
PHILIP JR, 1970, J CHEM PHYS, V52, P953.
QU WL, 2000, J COLLOID INTERF SCI, V224, P397.
REN Y, 2008, NANOTECHNOLOGY, V19, UNSP 195707(6).
TALAPATRA S, 2008, EUR J MECH B-FLUID, V27, P297, DOI 10.1016/j.euromechflu.2007.06.005.
TRETHEWAY DC, 2004, PHYS FLUIDS, V16, P1509, DOI 10.1063/1.1669400.
TYRRELL JWG, 2001, PHYS REV LETT, V87, ARTN 176104.
VANDERHEYDEN FHJ, 2006, PHYS REV LETT, V96, ARTN 224502.
VANDERHEYDEN FHJ, 2007, NANO LETT, V7, P1022, DOI 10.1021/nl070194h.
WANG XM, 2006, J COLLOID INTERF SCI, V293, P483, DOI 10.1016/j.jcis.2005.06.080.
YANG J, 2003, J COLLOID INTERF SCI, V260, P225, DOI 10.1016/S0021-9797(02)00158-3.
ZHU Y, 2001, PHYS REV LETT, V87, UNSP 96105(4).

Cited Reference Count:
35

Times Cited:
0

Publisher:
ELSEVIER FRANCE-EDITIONS SCIENTIFIQUES MEDICALES ELSEVIER; 23 RUE LINOIS, 75724 PARIS, FRANCE

Subject Category:
Thermodynamics; Engineering, Mechanical

ISSN:
1290-0729

DOI:
10.1016/j.ijthermalsci.2010.01.008

IDS Number:
603UM

========================================================================

*Record 3 of 4.
*View Full Record: http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000278232400007
*Order Full Text [ ]

Title:
A Continuum Model of the Van der Waals Interface for Determining the Critical Diameter of Nanopumps and its Application to Analysis of the Vibration and Stability of Nanopump Systems

Authors:
Kuang, YD; Shi, SQ; Chan, PKL; Chen, CY

Author Full Names:
Kuang, Y. D.; Shi, S. Q.; Chan, P. K. L.; Chen, C. Y.

Source:
INTERNATIONAL JOURNAL OF NONLINEAR SCIENCES AND NUMERICAL SIMULATION 11 (2): 121-133 FEB 2010

Language:
English

Document Type:
Article

Author Keywords:
Carbon nanotubes; Critical diameter; Nanoscale effects; Vibration and stability

KeyWords Plus:
WALLED CARBON NANOTUBES; WAVE-PROPAGATION; FLUID; WATER; SINGLE; FLOW; TRANSPORT; INSTABILITY; MECHANICS; DYNAMICS

Abstract:
Carbon nanotubes make ideal nanopumps for the transport of fluid. To analyze the vibration and stability of nanopump systems with inner fluid effectively, it is necessary to incorporate nanoscale effects into continuum-based simulations. This paper first proposes a continuum model for the van der Waals (vdW) interface between a single-wall carbon nanotube (SWCNT) and incompressible inner fluid to determine the critical tube diameter above which continuum fluid mechanics may be reasonably applied to that inner fluid. Then, with overall consideration of the scale effects, including the nonlocal effects of the carbon nanotube, the surface tension of the inner fluid and the vdW interface, an improved Euler beam/plug fluid model is developed to investigate the vibration and stability of the nanopump system. The two models are both validated by comparing with molecular dynamic simulations. The results show that the critical diameter for water flow is about 1.8 nm. Nanopump stabili!
ty is noticeably enhanced by the surface tension of the inner fluid for a high slenderness ratio. Both coaxial vibration frequency and stability decline as the system temperature is increased. Moreover, the proposed models predict that the transverse vibration of the inner fluid inside a nearly rigid SWCNT occurs due to the existence of the vdW interface gap and the negligible bending rigidity of the fluid.

Reprint Address:
Shi, SQ, Hong Kong Polytech Univ, Dept Mech Engn, Kowloon, Hong Kong, Peoples R China.

Research Institution addresses:
[Kuang, Y. D.; Shi, S. Q.; Chan, P. K. L.] Hong Kong Polytech Univ, Dept Mech Engn, Kowloon, Hong Kong, Peoples R China; [Kuang, Y. D.; Chen, C. Y.] Huazhong Univ Sci & Technol, Sch Civil Engn & Mech, Wuhan 430074, Hubei, Peoples R China

E-mail Address:
mmsqshi@polyu.edu.hk

Cited References:
BERENDSEN HJC, 1987, J PHYS CHEM-US, V91, P6269.
CHANG T, 2008, PHYS REV LETT, V101, ARTN 175501.
CHEN X, 2008, NANO LETT, V8, P2988, DOI 10.1021/nl802046b.
DEASIS ED, 2008, APPL PHYS LETT, V93, ARTN 023129.
DONG K, 2008, COMP MATER SCI, V42, P139, DOI 10.1016/j.commatsci.2007.07.007.
GARG A, 1998, PHYS REV LETT, V81, P2260.
GONG XJ, 2007, NAT NANOTECHNOL, V2, P709, DOI 10.1038/nnano.2007.320.
HANASAKI I, 2006, J CHEM PHYS, V14, UNSP 144708.
HANASAKI I, 2008, J PHYS-CONDENS MAT, V20, ARTN 015213.
HE XQ, 2005, J MECH PHYS SOLIDS, V53, P303, DOI 10.1016/j.jmps.2004.08.003.
HOLT JK, 2006, SCIENCE, V312, P1034, DOI 10.1126/science.1126298.
HU YG, 2008, J MECH PHYS SOLIDS, V56, P3475, DOI 10.1016/j.jmps.2008.08.010.
HU ZL, 2007, NANOTECHNOLOGY, V18, ARTN 485712.
IIJIMA S, 1991, NATURE, V354, P56.
INSEPOV Z, 2006, NANO LETT, V6, P1893, DOI 10.1021/nl060932m.
JIANG LY, 2006, J MECH PHYS SOLIDS, V54, P2436, DOI 10.1016/j.jmps.2006.04.009.
JOSEPH S, 2008, NANO LETT, V8, P452, DOI 10.1021/nl072385q.
KOGA K, 2001, NATURE, V412, P802.
LEE HL, 2009, J PHYS-CONDENS MAT, V21, ARTN 115302.
LIU TT, 2007, PHYS LETT A, V365, P144, DOI 10.1016/j.physleta.2006.12.059.
LONGHURST MJ, 2007, NANO LETT, V7, P3324, DOI 10.1021/nl071537e.
MAJUMDER M, 2005, NATURE, V438, P44, DOI 10.1038/43844a.
MAO ZG, 2000, J PHYS CHEM B, V104, P4618.
MASHL RJ, 2003, NANO LETT, V3, P589, DOI 10.1021/nl0340226.
MATTIA D, 2008, MICROFLUID NANOFLUID, V5, P289, DOI 10.1007/s10404-008-0293-5.
NANOK T, 2009, J PHYS CHEM A, V113, P2103, DOI 10.1021/jp8088676.
NATSUKI T, 2007, J APPL PHYS, V10, UNSP 034319.
PAIDOUSSIS MP, 1998, FLUID STRUCTURE INTE.
PONCHARAL P, 1999, SCIENCE, V283, P1513.
RAO AM, 2001, PHYS REV LETT, V86, P3895.
RAPPE AK, 1992, J AM CHEM SOC, V114, P10024.
REDDY CD, 2007, APPL PHYS LETT, V90, ARTN 133122.
RU CQ, 2000, PHYS REV B, V62, P962.
SHOLL DS, 2006, SCIENCE, V312, P1003, DOI 10.1126/science.1127261.
SUDAK LJ, 2003, J APPL PHYS, V94, P7281, DOI 10.1063/1.1625437.
SUPPLE S, 2003, PHYS REV LETT, V90, ARTN 214501.
THOMAS JA, 2009, PHYS REV LETT, V102, ARTN 184502.
TREACY MMJ, 1996, NATURE, V381, P678.
WANG J, 2004, PHYS CHEM CHEM PHYS, V6, P829, DOI 10.1039/b313307a.
WANG XY, 2007, J PHYS D APPL PHYS, V40, P2563, DOI 10.1088/0022-3727/40/8/022.
WHITBY M, 2007, NAT NANOTECHNOL, V2, P87, DOI 10.1038/nnano.2006.175.
YOON J, 2005, COMPOS SCI TECHNOL, V65, P1326, DOI 10.1016/j.compscitech.2004.12.002.
YOON J, 2006, INT J SOLIDS STRUCT, V43, P3337, DOI 10.1016/j.ijsolstr.2005.04.039.
ZHANG CL, 2006, APPL PHYS LETT, V89, ARTN 081904.
ZHANG NH, 2008, CHAOS SOLITON FRACT, V35, P291, DOI 10.1016/j.chaos.2006.05.021.
ZHENG J, 2005, J CHEM PHYS, V122, ARTN 214702.

Cited Reference Count:
46

Times Cited:
0

Publisher:
FREUND PUBLISHING HOUSE LTD; PO BOX 35010, TEL AVIV 61350, ISRAEL

Subject Category:
Engineering, Multidisciplinary; Mathematics, Applied; Mechanics; Physics, Mathematical

ISSN:
1565-1339

IDS Number:
603UA

========================================================================

*Record 4 of 4.
*View Full Record: http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000278449100004
*Order Full Text [ ]

Title:
MOLECULAR DYNAMICS STUDY OF THE SPECIMEN SIZE AND IMPERFECTION EFFECTS ON THE FAILURE RESPONSES OF MULTI-NANOBAR STRUCTURES

Authors:
Shen, LM; Chen, Z

Author Full Names:
Shen, Luming; Chen, Zhen

Source:
INTERNATIONAL JOURNAL FOR MULTISCALE COMPUTATIONAL ENGINEERING 8 (2): 181-194 2010

Language:
English

Document Type:
Article

Author Keywords:
molecular dynamics; hierarchical structures; softening; vacancy; crack; nanobar

KeyWords Plus:
EMBEDDED-ATOM METHOD; HIERARCHICAL STRUCTURES; FCC METALS; STRESS; MECHANICS; CONDUCTIVITY; NANOWIRES; ADHESIVE; SYSTEM; GECKO

Abstract:
Based on the recent analytical and numerical studies of the size effect on the structural failure response of bar members in parallel arrangement at the macroscopic level, molecular dynamics simulations are performed to investigate the effects of size, imperfection, and number of nanobars on the failure mechanism of nanoscale hierarchical structures with one-dimensional members arranged in parallel. It appears that at the nanoscale the possibility of being in the stable softening regime increases with the decrease of nanobar length, and the energy dissipation associated with the postlimit softening regime increases with the increase of the number of nanobars in the system, regardless of imperfection types. The results obtained at the nanoscale not only match well the analytical and numerical predictions at the macroscopic level, but also provide more insight into the effects of imperfections on the postlimit structural response.

Reprint Address:
Shen, LM, Univ Sydney, Sch Civil Engn, Sydney, NSW 2006, Australia.

Research Institution addresses:
[Shen, Luming] Univ Sydney, Sch Civil Engn, Sydney, NSW 2006, Australia; [Chen, Zhen] Univ Missouri, Dept Civil & Environm Engn, Columbia, MO 65211 USA; [Chen, Zhen] Dalian Univ Technol, Dept Engn Mech, State Key Lab Struct Anal Ind Equipment, Dalian 116024, Peoples R China

E-mail Address:
L.Shen@usyd.edu.au

Cited References:
ACKBAROW T, 2007, P NATL ACAD SCI USA, V104, P16410, DOI 10.1073/pnas.0705759104.
ANDIA PC, 2006, MODEL SIMUL MATER SC, V14, P741, DOI 10.1088/0965-0393/14/4/015.
AUTUMN K, 2000, NATURE, V405, P681.
BAZANT ZP, 1997, APPL MECH REV, V50, P593.
BAZANT ZP, 2007, MECHANICS, V36, P5.
CHEN Z, 2005, INT J MULTISCALE COM, V3, P451.
CHEN Z, 2008, INT J MULTISCALE COM, V6, P339.
CHEUNG KS, 1991, J APPL PHYS 1, V70, P5688.
CLAUSIUS R, 1870, PHILOS MAG, V40, P122.
CURREY JD, 1984, MECH ADAPTATIONS BON.
DAW MS, 1984, PHYS REV B, V29, P6443.
FRATZL P, 2004, J MATER CHEM, V14, P2115, DOI 10.1039/b402005g.
GAO HJ, 2005, MECH MATER, V37, P275, DOI 10.1016/j.mechmat.2004.03.008.
GU ZY, 2005, JOM-US, V57, P60.
HORSTEMEYER MF, 2001, ACTA MATER, V49, P4363.
HUMPHREY W, 1996, J MOL GRAPHICS, V14, P33.
IRVING JH, 1950, J CHEM PHYS, V18, P817.
JOHNSON RA, 1988, PHYS REV B, V37, P3924.
JOHNSON RA, 1989, PHYS REV B, V39, P12554.
KAMAT S, 2000, NATURE, V405, P1036.
LI C, 2007, NANOTECHNOLOGY, V18, ARTN 155702.
LI YL, 2004, SCIENCE, V304, P276, DOI 10.1126/science.1094982.
LIANG HY, 2005, PHYS REV B, V71, ARTN 241403.
LIANG HY, 2006, COMPUTATIONAL METHOD, P1667.
LIANG W, 2003, NANOTECHNOLOGY, V2, P452.
LIU B, 2009, J COMPUT THEOR NANOS, V6, P1081, DOI 10.1166/jctn.2009.1148.
LOVETT R, 1997, J CHEM PHYS, V106, P635.
MAJUMDER M, 2005, NATURE, V438, P44, DOI 10.1038/43844a.
NAKAMURA A, 2003, NAT MATER, V2, P453, DOI 10.1038/nmat920.
ROWLINSON JS, 1982, MOL THEORY CAPILLARI, P85.
SHEN LM, 2004, MODEL SIMUL MATER SC, V12, S347, DOI 10.1088/0965-0393/12/4/S05.
SHEN LM, 2005, INT J SOLIDS STRUCT, V42, P5036, DOI 10.1016/j.ijsolstr.2005.02.021.
SHI S, 2005, PHYSICA B, V362, P266, DOI 10.1016/j.physb.2005.02.022.
SUBRAMANIYAN AK, 2007, EQUIVALENCE VIRIAL S.
UPLAZNIK M, 2006, NANOTECHNOLOGY, V17, P5142, DOI 10.1088/0957-4484/17/20/017.
VERWEIJ H, 2007, SMALL, V3, P1996, DOI 10.1002/smll.200700368.
YAO H, 2006, J MECH PHYS SOLIDS, V54, P1120, DOI 10.1016/j.jmps.2006.01.002.
YAO HM, 2007, INT J SOLIDS STRUCT, V44, P8177, DOI 10.1016/j.ijsolstr.2007.06.007.
ZHANG SL, 2007, INT J NUMER METH ENG, V70, P913, DOI 10.1002/nme.1895.
ZHOU M, 2003, P ROY SOC LOND A MAT, V459, P2347, DOI 10.1098/rspa.2003.1127.

Cited Reference Count:
40

Times Cited:
0

Publisher:
BEGELL HOUSE INC; 50 CROSS HIGHWAY, REDDING, CT 06896 USA

Subject Category:
Engineering, Multidisciplinary; Mathematics, Interdisciplinary Applications

ISSN:
1543-1649

IDS Number:
606TA

========================================================================
*Order Full Text*
All Customers
--------------
Please contact your library administrator, or person(s) responsible for
document delivery, to find out more about your organization's policy for
obtaining the full text of the above articles. If your organization does
not have a current document delivery provider, your administrator can
contact ISI Document Solution at service@isidoc.com, or call 800-603-4367
or 734-459-8565.

IDS Customers
--------------
IDS customers can purchase the full text of an article (having page number,
volume, and issue information) by returning this ENTIRE message as a Reply
to Sender or Forward to orders@isidoc.com. Mark your choices with an X in
the "Order Full Text: []" brackets for each item. For example, [X].

Please enter your account number here:

========================================================================
*Help Desk Contact Information*
If you have any questions, please visit the Thomson Scientific Technical Support Contact Information Web page:
http://www.thomsonscientific.com/support/techsupport
========================================================================

No comments: