Friday, June 25, 2010

ISI Web of Knowledge Alert - Thompson, P

ISI Web of Knowledge Citation Alert

Cited Article: Thompson, P. A general boundary condition for liquid flow at solid surfaces
Alert Expires: 09 NOV 2010
Number of Citing Articles: 3 new records this week (3 in this e-mail)
Organization ID: 3b97d1bbc1878baed0ab183d8b03130b
========================================================================
Note: Instructions on how to purchase the full text of an article and Help Desk Contact information are at the end of the e-mail.
========================================================================

*Record 1 of 3.
*View Full Record: http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000278493400002
*Order Full Text [ ]

Title:
Corrected second-order slip boundary condition for fluid flows in nanochannels

Authors:
Zhang, HW; Zhang, ZQ; Zheng, YG; Ye, HF

Author Full Names:
Zhang, Hongwu; Zhang, Zhongqiang; Zheng, Yonggang; Ye, Hongfei

Source:
PHYSICAL REVIEW E 81 (6): Art. No. 066303 Part 2 JUN 8 2010

Language:
English

Document Type:
Article

KeyWords Plus:
MOLECULAR-DYNAMICS SIMULATION; INHOMOGENEOUS FLUIDS; CONFINED LIQUIDS; SOLID INTERFACE; GAS; SOLIDIFICATION; SURFACES

Abstract:
A corrected second-order slip boundary condition is proposed to solve the Navier-Stokes equations for fluid flows confined in parallel-plate nanochannels. Compared with the classical second-order slip boundary condition proposed by Beskok and Karniadakis, the corrected slip boundary condition is not only dependent on the Knudsen number and the tangential momentum accommodation coefficient, but also dependent on the relative position of the slip surface in the Knudsen layer. For the fluid flows in slip-flow regime with the Knudsen number less than 0.3, Couette cell is investigated using molecular-dynamics simulations to verify Newtonian flow behaviors by examining the constitutive relationship between shear stress and strain rate. By comparing the velocity profiles of Poiseuille flows predicted from the Navier-Stokes equations with the corrected slip boundary condition with that from molecular-dynamics simulations, it is found that the flow behaviors in our models can be effe!
ctively captured.

Reprint Address:
Zhang, HW, Dalian Univ Technol, Fac Vehicle Engn & Mech, Dept Engn Mech, State Key Lab Struct Anal Ind Equipment, Dalian 116024, Peoples R China.

Research Institution addresses:
[Zhang, Hongwu; Zhang, Zhongqiang; Zheng, Yonggang; Ye, Hongfei] Dalian Univ Technol, Fac Vehicle Engn & Mech, Dept Engn Mech, State Key Lab Struct Anal Ind Equipment, Dalian 116024, Peoples R China

E-mail Address:
zhanghw@dlut.edu.cn

Cited References:
ALLEN MP, 1987, COMPUTER SIMULATION.
BARRAT JL, 1999, FARADAY DISCUSS, V112, P119.
BARRAT JL, 1999, PHYS REV LETT, V82, P4671.
BATCHELOR GK, 1967, INTRO FLUID MECH.
BEEBE DJ, 2002, ANNU REV BIOMED ENG, V4, P261, DOI 10.1146/annurev.bioeng.4.112601.125916.
BESKOK A, 1996, J FLUID ENG-T ASME, V118, P448.
BITSANIS I, 1988, J CHEM PHYS, V89, P3152.
BOCQUET L, 1994, PHYS REV E A, V49, P3079.
CAO BY, 2005, APPL PHYS LETT, V86, P91905, ARTN 066311.
CAO BY, 2006, PHYS REV E 2, V74, ARTN 066311.
CIEPLAK M, 2001, PHYS REV LETT, V86, P803.
COLIN S, 2004, HEAT TRANSFER ENG, V25, P23, DOI 10.1080/01457630490280047.
DEMIREL AL, 2001, J CHEM PHYS, V115, P1498.
FINGER GW, 2007, ASME J FLUIDS ENG, V129, P31.
GRANICK S, 1991, SCIENCE, V253, P1374.
GREST GS, 1986, PHYS REV A, V33, P3628.
GUO ZL, 2007, EPL-EUROPHYS LETT, V80, ARTN 24001.
HO CM, 1998, ANNU REV FLUID MECH, V30, P579.
KARNIADAKIS GE, 2002, MICROFLOWS FUNDAMENT.
KOPLIK J, 1989, PHYS FLUIDS A-FLUID, V1, P781.
LAMB H, 1932, HYDRODYNAMICS.
LI J, 1998, PHYS REV E, V57, P7259.
MORRIS DL, 1992, PHYS REV A, V46, P5279.
PRIEZJEV NV, 2007, PHYS REV E 1, V75, ARTN 051605.
SCHAAF SA, 1961, FLOW RAREFIED GASES.
SOKHAN VP, 2001, J CHEM PHYS, V115, P3878.
THOMPSON PA, 1990, PHYS REV A, V41, P6830.
THOMPSON PA, 1997, NATURE, V389, P360.
TODD BD, 1995, PHYS REV E, V52, P1627.
TODD BD, 2008, PHYS REV E 1, V78, ARTN 051202.
TODD BD, 2008, PHYS REV LETT, V100, ARTN 195901.
TRAVIS KP, 1997, PHYS REV E, V55, P4288.
ZHANG H, 2004, CHEM PHYS LETT, V397, P233, DOI 10.1016/j.cplett.2004.08.122.
ZHANG HW, 2007, APPL PHYS LETT, V90, P44105, ARTN 144105.
ZHANG ZQ, 2009, APPL PHYS LETT, V95, P54101, ARTN 154101.
ZHU Y, 2003, LANGMUIR, V19, P8148, DOI 10.1021/la035155+.

Cited Reference Count:
36

Times Cited:
0

Publisher:
AMER PHYSICAL SOC; ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA

Subject Category:
Physics, Fluids & Plasmas; Physics, Mathematical

ISSN:
1539-3755

DOI:
10.1103/PhysRevE.81.066303

IDS Number:
607II

========================================================================

*Record 2 of 3.
*View Full Record: http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000278526300003
*Order Full Text [ ]

Title:
Viscous heating in nanoscale shear driven liquid flows

Authors:
Kim, BH; Beskok, A; Cagin, T

Author Full Names:
Kim, Bo Hung; Beskok, Ali; Cagin, Tahir

Source:
MICROFLUIDICS AND NANOFLUIDICS 9 (1): 31-40 JUL 2010

Language:
English

Document Type:
Article

Author Keywords:
Nano-scale heat transfer; Kapitza resistance; Kapitza length; Shear flow; Viscous heating

KeyWords Plus:
MOLECULAR-DYNAMICS SIMULATION; BOUNDARY-CONDITIONS; THERMAL TRANSPORT; SOLID INTERFACE; FOURIER-LAW; FLUID-FLOW; EQUILIBRIUM; MECHANICS; SURFACES; STATES

Abstract:
Three-dimensional Molecular Dynamics (MD) simulations of heat and momentum transport in liquid Argon filled shear-driven nano-channels are performed using 6-12 Lennard-Jones potential interactions. Work done by the viscous stresses heats the fluid, which is dissipated through the channel walls, maintained at isothermal conditions through a recently developed interactive thermal wall model. Shear driven nano-flows for weak wetting surfaces (epsilon (wf) /epsilon a parts per thousand currency sign 0.6) are investigated. Spatial variations in the fluid density, kinematic viscosity, shear- and energy dissipation rates are presented. Temperature profiles in the nano-channel are obtained as a function of the surface wettability, shear rate and the intermolecular stiffness of wall molecules. The energy dissipation rate is almost a constant for epsilon (wf) /epsilon a parts per thousand currency sign 0.6, which results in parabolic temperature profiles in the domain with temperature!
jumps due to the well known Kapitza resistance at the liquid/solid interfaces. Using the energy dissipation rates predicted by MD simulations and the continuum energy equation subjected to the temperature jump boundary conditions developed in [Kim et al. Journal of Chemical Physics, 129, 174701, 2008b], we obtain analytical solutions for the temperature profiles, which agree well with the MD results.

Reprint Address:
Beskok, A, Old Dominion Univ, Dept Aerosp Engn, Norfolk, VA 23529 USA.

Research Institution addresses:
[Kim, Bo Hung; Beskok, Ali] Old Dominion Univ, Dept Aerosp Engn, Norfolk, VA 23529 USA; [Cagin, Tahir] Texas A&M Univ, Dept Chem Engn, College Stn, TX 77840 USA

E-mail Address:
abeskok@odu.edu

Cited References:
ALLEN MP, 1989, COMPUTER SIMULATION.
CAHILL DG, 2003, J APPL PHYS, V93, P793, DOI 10.1063/1.1524305.
CIEPLAK M, 1999, PHYSICA A, V274, P281.
CIEPLAK M, 2001, PHYS REV LETT, V86, P803.
EVANS DJ, 1986, ANNU REV FLUID MECH, V18, P243.
GE ZB, 2006, PHYS REV LETT, V96, ARTN 186101.
JABBARZADEH A, 1999, J CHEM PHYS, V110, P2612.
KAPITZA PL, 1941, J PHYS-USSR, V4, P181.
KARNIADAKIS G, 2005, MICROFLOWS NANOFLOWS.
KHARE R, 1997, J CHEM PHYS, V107, P2589.
KIM BH, 2008, J CHEM PHYS, V129, ARTN 174701.
KIM BH, 2008, MICROFLUID NANOFLUID, V5, P551, DOI 10.1007/s10404-008-0267-7.
KOPLIK J, 1988, PHYS REV LETT, V60, P1282.
KOPLIK J, 1989, PHYS FLUIDS A-FLUID, V1, P781.
KOPLIK J, 1995, ANNU REV FLUID MECH, V27, P257.
LIEM SY, 1992, PHYS REV A, V45, P3706.
NAGAYAMA G, 2004, INT J HEAT MASS TRAN, V47, P501, DOI 10.1016/j.ijheatmasstransfer.2003.07.013.
OHARA T, 2005, J CHEM PHYS, V122, ARTN 214717.
PRIEZJEV NV, 2005, PHYS REV E 1, V71, ARTN 041608.
PRIEZJEV NV, 2007, PHYS REV E 1, V75, ARTN 051605.
SOFOS F, 2009, CONT ENG SCI, V2, P283.
SOFOS F, 2009, INT J HEAT MASS TRAN, V52, P735, DOI 10.1016/j.ijheatmasstransfer.2008.07.022.
TENENBAUM A, 1982, PHYS REV A, V25, P2778.
TENENBAUM A, 1983, PHYS REV A, V28, P3132.
THOMAS JA, 2007, J CHEM PHYS, V126, ARTN 034707.
THOMPSON PA, 1990, PHYS REV A, V41, P6830.
THOMPSON PA, 1997, NATURE, V389, P360.
TSENG HC, 2008, J CHEM PHYS, V129, ARTN 014502.
VOLZ S, 1996, PHYS REV B, V54, P340.
XU P, 2005, J CHEM PHYS, V123, ARTN 104506.
XUE L, 2004, INT J HEAT MASS TRAN, V47, P4277, DOI 10.1016/ijheatmasstransfer.2004.05.016.

Cited Reference Count:
31

Times Cited:
0

Publisher:
SPRINGER HEIDELBERG; TIERGARTENSTRASSE 17, D-69121 HEIDELBERG, GERMANY

Subject Category:
Nanoscience & Nanotechnology; Instruments & Instrumentation; Physics, Fluids & Plasmas

ISSN:
1613-4982

DOI:
10.1007/s10404-009-0515-5

IDS Number:
607SH

========================================================================

*Record 3 of 3.
*View Full Record: http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000278613500066
*Order Full Text [ ]

Title:
Direct transition of potential of water droplets to electric energy using aligned single-walled carbon nanotubes

Authors:
Liu, J; Zheng, KH; Liu, Z; Hu, LJ; Sun, LF

Author Full Names:
Liu Ji; Zheng Kai-Hong; Liu Zheng; Hu Li-Jun; Sun Lian-Feng

Source:
CHINESE PHYSICS B 19 (6): Art. No. 066101 JUN 2010

Language:
English

Document Type:
Article

Author Keywords:
single-walled carbon nanotube; water; energy conversion

KeyWords Plus:
FLOW

Abstract:
In this paper, we report that an electromotive force (EMF) can be induced in a rope of aligned single-walled carbon nanotubes (SWNTs) when water droplets fall on this rope. The magnitude of this EMF depends sensitively on the slant angle of the SWNTs. Most interestingly, both the magnitude and the direction of the induced EFM can be modulated by applying a current to the SWNTs. The concepts of electrical slip and no-slip are proposed and can be quantitatively described by "electrical slip resistance". This kind of generator does not need any magnet, rotor, etc and shows quite a different operating mechanism and design compared with a conventional large scale hydroelectric power generator.

Reprint Address:
Sun, LF, Natl Ctr Nanosci & Technol, Beijing 100190, Peoples R China.

Research Institution addresses:
[Liu Ji; Zheng Kai-Hong; Liu Zheng; Hu Li-Jun; Sun Lian-Feng] Natl Ctr Nanosci & Technol, Beijing 100190, Peoples R China; [Liu Ji; Liu Zheng; Hu Li-Jun] Chinese Acad Sci, Grad Sch, Beijing 100049, Peoples R China

E-mail Address:
slf@nanoctr.cn

Cited References:
CHESNOKOV SA, 1999, PHYS REV LETT, V82, P343.
COHEN AE, 2003, SCIENCE, V300, P1235.
COLLINS PG, 2000, SCIENCE, V287, P1801.
EBBESEN TW, 1996, NATURE, V382, P54.
GHOSH S, 2003, SCIENCE, V299, P1042, DOI 10.1126/science.1079080.
GHOSH S, 2003, SCIENCE, V300, P1235.
GHOSH S, 2004, PHYS REV B, V70, ARTN 205423.
HOLT JK, 2006, SCIENCE, V312, P1034, DOI 10.1126/science.1126298.
KRAL P, 2001, PHYS REV LETT, V86, P131.
LIU GT, 2008, NANO LETT, V8, P1071, DOI 10.1021/nl073007o.
LIU JW, 2007, J APPL PHYS, V101, ARTN 064312.
MAJUMDER M, 2005, NATURE, V438, P44, DOI 10.1038/43844a.
PARADISO JA, 2005, IEEE PERVAS COMPUT, V4, P18.
PERSSON BNJ, 2006, PHYS REV B, V69, UNSP 235410.
QIN Y, 2008, NATURE, V451, P809, DOI 10.1038/nature06601.
SOOD AK, 2004, PHYS REV LETT, V93, ARTN 086601.
THOMPSON PA, 1997, NATURE, V389, P360.
TIAN BZ, 2007, NATURE, V449, P885, DOI 10.1038/nature06181.
WANG G, 2007, IET NANOBIOTECHNOL, V1, P102, DOI 10.1049/iet-nbt:20070011.
WANG Y, 2003, CHINESE PHYS, V12, P1007.
WANG ZL, 2006, SCIENCE, V312, P242, DOI 10.1126/science.1124005.
XU Z, 2005, APPL PHYS LETT, V87, ARTN 163106.
YANG RS, 2009, NAT NANOTECHNOL, V4, P34, DOI 10.1038/NNANO.2008.314.
ZHANG Y, 2008, CHINESE PHYS B, V17, P1881.
ZHAO YC, 2008, ADV MATER, V20, P1772, DOI 10.1002/adma.200702956.
ZHOU XY, 2007, CHINESE PHYS, V16, P335.

Cited Reference Count:
26

Times Cited:
0

Publisher:
IOP PUBLISHING LTD; DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND

Subject Category:
Physics, Multidisciplinary

ISSN:
1674-1056

DOI:
10.1088/1674-1056/19/6/066101

IDS Number:
608VG

========================================================================
*Order Full Text*
All Customers
--------------
Please contact your library administrator, or person(s) responsible for
document delivery, to find out more about your organization's policy for
obtaining the full text of the above articles. If your organization does
not have a current document delivery provider, your administrator can
contact ISI Document Solution at service@isidoc.com, or call 800-603-4367
or 734-459-8565.

IDS Customers
--------------
IDS customers can purchase the full text of an article (having page number,
volume, and issue information) by returning this ENTIRE message as a Reply
to Sender or Forward to orders@isidoc.com. Mark your choices with an X in
the "Order Full Text: []" brackets for each item. For example, [X].

Please enter your account number here:

========================================================================
*Help Desk Contact Information*
If you have any questions, please visit the Thomson Scientific Technical Support Contact Information Web page:
http://www.thomsonscientific.com/support/techsupport
========================================================================

No comments: