Friday, June 11, 2010

ISI Web of Knowledge Alert - Hummer, G

ISI Web of Knowledge Citation Alert

Cited Article: Hummer, G. Water conduction through the hydrophobic channel of a carbon nanotube
Alert Expires: 09 NOV 2010
Number of Citing Articles: 4 new records this week (4 in this e-mail)
Organization ID: 3b97d1bbc1878baed0ab183d8b03130b
========================================================================
Note: Instructions on how to purchase the full text of an article and Help Desk Contact information are at the end of the e-mail.
========================================================================

*Record 1 of 4.
*View Full Record: http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000277945900051
*Order Full Text [ ]

Title:
Experimental Observation of Single-File Water Filling of Thin Single-Wall Carbon Nanotubes Down to Chiral Index (5,3)

Authors:
Cambre, S; Schoeters, B; Luyckx, S; Goovaerts, E; Wenseleers, W

Author Full Names:
Cambre, Sofie; Schoeters, Bob; Luyckx, Sten; Goovaerts, Etienne; Wenseleers, Wim

Source:
PHYSICAL REVIEW LETTERS 104 (20): Art. No. 207401 MAY 21 2010

Language:
English

Document Type:
Article

KeyWords Plus:
DENSITY DIFFERENTIATION; ICE-NANOTUBES; TRANSPORT; NANOFLUIDICS; TRANSITION; ADSORPTION; NANOSCALE; DIFFUSION; CHANNELS; NMR

Abstract:
Single-file transport of water into carbon nanotubes is experimentally demonstrated for the first time through the splitting of the radial breathing mode (RBM) vibration in Raman spectra of bile salt solubilized tubes when both empty (closed) and water-filled (open-ended) tubes are present. D2O filling is observed for a wide range of diameters, d, down to very thin tubes [e.g., (5,3) tube, d = 0.548 nm] for which only a single water molecule fits in the cross section of the internal nanotube channel. The shift in RBM frequency upon filling is found to display a very complex dependence on nanotube diameter and chirality, in support of a different yet well-defined ordering and orientation of water molecules at room temperature. Large shifts of the electronic transitions are also observed.

Reprint Address:
Cambre, S, Univ Antwerp, Dept Phys, Campus Drie Eiken,Univ Pl 1, B-2610 Antwerp, Belgium.

Research Institution addresses:
[Cambre, Sofie; Schoeters, Bob; Luyckx, Sten; Goovaerts, Etienne; Wenseleers, Wim] Univ Antwerp, Dept Phys, B-2610 Antwerp, Belgium

E-mail Address:
Wim.Wenseleers@ua.ac.be

Cited References:
AGRE P, 2002, J PHYSIOL-LONDON, V542, P3.
ALEXIADIS A, 2008, CHEM REV, V108, P5014, DOI 10.1021/cr078140f.
ARAUJO PT, 2007, PHYS REV LETT, V98, ARTN 067401.
ARAUJO PT, 2009, PHYS REV LETT, V103, ARTN 146802.
ARNOLD MS, 2006, NAT NANOTECHNOL, V1, P60, DOI 10.1038/nnano.2006.52.
BACHILO SM, 2002, SCIENCE, V298, P2361, DOI 10.1126/science.1078727.
BYL O, 2006, J AM CHEM SOC, V128, P12090, DOI 10.1021/ja057856u.
CHEN Q, 2008, NANO LETT, V8, P1902, DOI 10.1021/nl080569e.
CORRY B, 2008, J PHYS CHEM B, V112, P1427, DOI 10.1021/jp709845u.
DELLAGO C, 2006, PHYS REV LETT, V97, ARTN 245901.
DESOUZA NR, 2006, J PHYS-CONDENS MAT, V18, S2321, DOI 10.1088/0953-8984/18/36/s07.
DOORN SK, 2008, PHYS REV B, V78, ARTN 165408.
EIJKEL JCT, 2005, MICROFLUID NANOFLUID, V1, P249, DOI 10.1007/s10404-004-0012-9.
GHOSH S, 2004, EUROPHYS LETT, V65, P678, DOI 10.1209/epl/i2003-10160-9.
GONG XJ, 2007, NAT NANOTECHNOL, V2, P709, DOI 10.1038/nnano.2007.320.
GREEN AA, 2009, NANO RES, V2, P69, DOI 10.1007/s12274-009-9006-y.
HAHN K, 1996, PHYS REV LETT, V76, P2762.
HENNRICH F, 2008, PHYS STATUS SOLIDI B, V245, P1951, DOI 10.1002/pssb.200879555.
HOLT JK, 2006, SCIENCE, V312, P1034, DOI 10.1126/science.1126298.
HOLT JK, 2008, MICROFLUID NANOFLUID, V5, P425, DOI 10.1007/s10404-008-0301-9.
HOLT JK, 2009, ADV MATER, V21, P3542, DOI 10.1002/adma.200900867.
HUMMER G, 2001, NATURE, V414, P188.
KIM BM, 2004, NANO LETT, V4, P2203, DOI 10.1021/nl048620b.
KITIYANAN B, 2000, CHEM PHYS LETT, V317, P497.
KOGA K, 2001, NATURE, V412, P802.
KOLESNIKOV AI, 2004, PHYS REV LETT, V93, ARTN 035503.
LEENAERTS O, 2008, APPL PHYS LETT, V93, P93107, ARTN 193107.
LONGHURST MJ, 2006, J CHEM PHYS, V125, P84705, ARTN 184705.
LONGHURST MJ, 2007, PHYS REV LETT, V98, ARTN 145503.
MANIWA Y, 2002, J PHYS SOC JPN, V71, P2863, DOI 10.1143/JPSJ.71.2863.
MANIWA Y, 2005, CHEM PHYS LETT, V401, P534, DOI 10.1016/j.cplett.2004.11.112.
MANIWA Y, 2007, NAT MATER, V6, P135, DOI 10.1038/nmat1823.
MATSUDA K, 2006, PHYS REV B, V74, ARTN 073415.
MATTIA D, 2008, MICROFLUID NANOFLUID, V5, P289, DOI 10.1007/s10404-008-0293-5.
MENG LY, 2008, J CHEM PHYS, V128, P34703, ARTN 134703.
MERLEN A, 2005, PHYS REV B, V72, UNSP 035409.
MUKHERJEE B, 2007, J CHEM PHYS, V126, P24704, ARTN 124704.
NAGUIB N, 2004, NANO LETT, V4, P2237, DOI 10.1021/nl0484907.
NIKOLAEV P, 1999, CHEM PHYS LETT, V313, P91.
NOY A, 2007, NANO TODAY, V2, P22.
REICH S, 2004, CARBON NANOTUBES BAS.
SEKHANEH W, 2006, CHEM PHYS LETT, V428, P143, DOI 10.1016/j.cplett.2006.06.105.
SHARMA SC, 2005, J RAMAN SPECTROSC, V36, P755, DOI 10.1002/jrs.1345.
SMIT B, 2008, CHEM REV, V108, P4125, DOI 10.1021/cr8002642.
THOMAS JA, 2009, PHYS REV LETT, V102, ARTN 184502.
WANG HJ, 2008, SCIENCE, V322, P80, DOI 10.1126/science.1162412.
WANG J, 2004, PHYS CHEM CHEM PHYS, V6, P829, DOI 10.1039/b313307a.
WENSELEERS W, 2004, ADV FUNCT MATER, V14, P1105, DOI 10.1002/adfm.200400130.
WENSELEERS W, 2007, ADV MATER, V19, P2274, DOI 10.1002/adma.200700773.
ZHAO YC, 2008, ADV MATER, V20, P1772, DOI 10.1002/adma.200702956.
ZHENG LX, 2004, NAT MATER, V3, P673, DOI 10.1038/nmat1216.

Cited Reference Count:
51

Times Cited:
0

Publisher:
AMER PHYSICAL SOC; ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA

Subject Category:
Physics, Multidisciplinary

ISSN:
0031-9007

DOI:
10.1103/PhysRevLett.104.207401

IDS Number:
599WX

========================================================================

*Record 2 of 4.
*View Full Record: http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000278004300022
*Order Full Text [ ]

Title:
Liquid-Vapor Oscillations of Water Nanoconfined between Hydrophobic Disks: Thermodynamics and Kinetics

Authors:
Xu, LM; Molinero, V

Author Full Names:
Xu, Limei; Molinero, Valeria

Source:
JOURNAL OF PHYSICAL CHEMISTRY B 114 (21): 7320-7328 JUN 3 2010

Language:
English

Document Type:
Article

KeyWords Plus:
CARBON NANOTUBES; CONFINED WATER; BILAYER ICE; DEWETTING TRANSITION; COMPUTER-SIMULATION; FINITE SYSTEMS; DYNAMICS; PHASES; NANOPORES; FORCE

Abstract:
We use extensive molecular dynamics simulations with the monatomic model of water (mW) to characterize the thermodynamics and kinetics of the liquid vapor (wetting drying) equilibrium of water confined between nanoscopic hydrophobic plates. The transition in confined water is first-order-like, with two well-defined states (wet and dry) separated by a free energy barrier, Different from its bulk counterpart, the confined system oscillates between liquid and vapor: the two phases coexist in time but not in space. Also different from the phase behavior in bulk, there is a finite range of the thermodynamic variables (e.g., temperature or separation between the plates) for which the liquid and vapor state coexist M dynamical equilibrium. We determine the range of temperatures and plate separations for which reversible oscillations can be observed between a stable and metastable phase, compute the time scales of the phase transition along the equilibrium coexistence line, and inve!
stigate the pathway for drying along simple collective coordinates that describe the opening of a vapor bubble. The results of the simulations are compared with a simple capillary model for the thermodynamics and transition state theory for the kinetics of phase oscillations.

Reprint Address:
Molinero, V, Univ Utah, Dept Chem, 315 South 1400 East, Salt Lake City, UT 84112 USA.

Research Institution addresses:
[Molinero, Valeria] Univ Utah, Dept Chem, Salt Lake City, UT 84112 USA; Tohoku Univ, WPI Adv Inst Mat Res, Sendai, Miyagi 9808577, Japan

E-mail Address:
Valeria.Molinero@utah.edu

Cited References:
ANDREEV S, 2005, J CHEM PHYS, V123, ARTN 194502.
BAI J, 2003, MOL SIMULAT, V29, P619, DOI 10.1080/0892702031000103158.
BALL P, 2008, CHEMPHYSCHEM, V9, P2677, DOI 10.1002/cphc.200800515.
BECKSTEIN O, 2003, P NATL ACAD SCI USA, V100, P7063, DOI 10.1073/pnas.1136844100.
BERNE BJ, 2009, ANNU REV PHYS CHEM, V60, P85, DOI 10.1146/annurev.physchem.58.032806.104445.
BERRY RS, 1999, THEORY ATOMIC MOL CL.
BERRY RS, 2009, INT J MASS SPECTROM, V280, P204, DOI 10.1016/j.ijms.2008.09.012.
BOLHUIS PG, 2002, ANNU REV PHYS CHEM, V53, P291, DOI 10.1146/annurev.physchem.53.082301.113146.
CHANDLER D, 1978, J CHEM PHYS, V68, P2959.
CHANDLER D, 2005, NATURE, V437, P640, DOI 10.1038/nature04162.
CHOUDHURY N, 2007, J AM CHEM SOC, V129, P4847, DOI 10.1021/ja069242a.
ENGLAND JL, 2008, J AM CHEM SOC, V130, P11854, DOI 10.1021/ja803972g.
EYRING H, 1935, J CHEM PHYS, V3, P63.
FINDENEGG GH, 2008, CHEMPHYSCHEM, V9, P2651, DOI 10.1002/cphc.200800616.
GIOVAMBATTISTA N, 2006, PHYS REV E 1, V73, ARTN 041604.
HUA L, 2007, J PHYS CHEM B, V111, P9069, DOI 10.1021/jp0707923.
HUA L, 2009, J PHYS CHEM C, V113, P5244, DOI 10.1021/jp8088758.
HUANG X, 2003, P NATL ACAD SCI USA, V100, P11953, DOI 10.1073/pnas.1934837100.
HUMMER G, 2001, NATURE, V414, P188.
JOHNSTON JC, UNPUB.
KASTELOWITZ N, UNPUB.
KASTELOWITZ N, 2010, J CHEM PHYS, V132, ARTN 124511.
KIMMEL GA, 2009, J AM CHEM SOC, V131, P12838, DOI 10.1021/ja904708f.
KOGA K, 1997, PHYS REV LETT, V79, P5262.
KOGA K, 2000, J CHEM PHYS, V113, P5037.
KOGA K, 2000, NATURE, V408, P564.
KOGA K, 2001, NATURE, V412, P802.
KOGA K, 2002, PHYSICA A, V314, P462.
KOGA K, 2005, J CHEM PHYS, V122, ARTN 104711.
KRAMERS HA, 1940, PHYSICA, V7, P284.
KUNZ RE, 1994, PHYS REV E, V49, P1895.
LARIA D, 2001, J PHYS CHEM A, V105, P2646.
LEUNG K, 2000, J CHEM PHYS, V113, P5845.
LIU P, 2005, NATURE, V437, P159, DOI 10.1038/nature03926.
LUM K, 1998, INT J THERMOPHYS, V19, P845.
MACCARINI M, 2007, LANGMUIR, V23, P598, DOI 10.1021/la061943y.
MANIWA Y, 2002, J PHYS SOC JPN, V71, P2863, DOI 10.1143/JPSJ.71.2863.
MANIWA Y, 2005, CHEM PHYS LETT, V401, P534, DOI 10.1016/j.cplett.2004.11.112.
MEZGER M, 2008, J CHEM PHYS, V128, ARTN 244705.
MOLINERO V, 2009, J PHYS CHEM B, V113, P4008, DOI 10.1021/jp805227c.
NISHIO K, 2009, J CHEM PHYS, V130, ARTN 154302.
PATASHINSKI A, 2008, PHYS REV E 1, V78, ARTN 041106.
PLIMPTON S, 1995, J COMPUT PHYS, V117, P1.
POLLAK E, 2005, CHAOS, V5, UNSP 026116.
POYNOR A, 2006, PHYS REV LETT, V97, P4.
RASAIAH JC, 2008, ANNU REV PHYS CHEM, V59, P713, DOI 10.1146/annurev.physchem.59.032607.093815.
SCHENTER GK, 2003, J CHEM PHYS, V119, P5828, DOI 10.1063/1.1597477.
SLOVAK J, 2003, PHYSICA A, V319, P163.
STACCHIOLA D, 2009, J PHYS CHEM C, V113, P15102, DOI 10.1021/jp904875h.
STILLINGER FH, 1985, PHYS REV B, V31, P5262.
VEGA C, 2007, J CHEM PHYS, V126, ARTN 154707.
WALES DJ, 1993, J CHEM PHYS, V98, P7245.
WALES DJ, 1994, PHYS REV LETT, V73, P2875.
XU L, UNPUB.
ZANGI R, 2003, J CHEM PHYS, V119, P1694, DOI 10.1063/1.1580101.

Cited Reference Count:
55

Times Cited:
0

Publisher:
AMER CHEMICAL SOC; 1155 16TH ST, NW, WASHINGTON, DC 20036 USA

Subject Category:
Chemistry, Physical

ISSN:
1520-6106

DOI:
10.1021/jp102443m

IDS Number:
600RH

========================================================================

*Record 3 of 4.
*View Full Record: http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000278046000006
*Order Full Text [ ]

Title:
Recent developments in reverse osmosis desalination membranes

Authors:
Li, D; Wang, HT

Author Full Names:
Li, Dan; Wang, Huanting

Source:
JOURNAL OF MATERIALS CHEMISTRY 20 (22): 4551-4566 2010

Language:
English

Document Type:
Article

KeyWords Plus:
FILM COMPOSITE MEMBRANES; MFI ZEOLITE MEMBRANES; POLYELECTROLYTE MULTILAYER MEMBRANES; CARBON NANOTUBE MEMBRANES; CELLULOSE-ACETATE MEMBRANES; SELECTIVE ION-TRANSPORT; ETHER SULFONE KETONE); BY-LAYER ASSEMBLIES; SURFACE MODIFICATION; ULTRAFILTRATION MEMBRANES

Abstract:
Reverse osmosis (RO) desalination is one of the main technologies for producing fresh water from seawater and other saline water sources. The membrane properties greatly affect the water productivity and energy costs in the reverse osmosis desalinatin processes. Recent years have seen significant research efforts devoted to developing high-performance RO membranes. This article reviews recent activities in the development of RO membranes with improved flux and salt rejection, chlorine tolerance, fouling resistance and thermal stability. In particular, this review mainly focuses on the modification of current polymeric membrane materials, and synthesis and separation performance of new polymer membranes, inorganic membranes and mixed matrix membranes.

Reprint Address:
Wang, HT, Monash Univ, Dept Chem Engn, Clayton, Vic 3800, Australia.

Research Institution addresses:
[Li, Dan; Wang, Huanting] Monash Univ, Dept Chem Engn, Clayton, Vic 3800, Australia

E-mail Address:
haunting.wang@eng.monash.edu.au

Cited References:
*NAT RES COUNC US, 2009, DES NAT PERSP.
ALAMOUDI A, 2007, J MEMBRANE SCI, V303, P4.
ALEXIADIS A, 2008, CHEM REV, V108, P5014, DOI 10.1021/cr078140f.
ALLEGREZZA AE, 1988, REVERSE OSMOSIS TECH, P53.
AMNUAYPANICH S, 2009, CHEM ENG SCI, V64, P4908, DOI 10.1016/j.ces.2009.07.028.
ASANO T, 1998, WASTEWATER RECLAMATI.
BA CY, 2009, J MEMBRANE SCI, V327, P49, DOI 10.1016/j.memsci.2008.10.051.
BAKER RW, 2004, MEMBRANE TECHNOLOGY.
BASTA AH, 2003, DESALINATION, V159, P183.
BASTA AH, 2008, J MEMBRANE SCI, V310, P208, DOI 10.1016/j.memsci.2007.10.043.
BELFER S, 1998, ACTA POLYM, V49, P574.
BELFER S, 1998, J MEMBRANE SCI, V139, P175.
BELFER S, 1999, DESALINATION, V124, P175.
BELFER S, 2004, J MEMBRANE SCI, V239, P55, DOI 10.1016/j.memsci.2003.09.029.
BERNAL MP, 2001, CATAL TODAY, V67, P101.
BERND T, 2001, MACROMOL S, V163, P97.
BHATTACHARYYA D, 1992, MEMBRANE HDB, P281.
BRINK LES, 1990, DESALINATION, V78, P209.
BRINK LES, 1993, J MEMBRANE SCI, V76, P281.
BUCH PR, 2008, J MEMBRANE SCI, V309, P36, DOI 10.1016/j.memsci.2007.10.004.
BUSCH M, 2004, DESALINATION, V165, P299, DOI 10.1016/j.desal.2004.06.035.
CADOTTE JE, 1985, MAT SCI SYNTHETIC ME.
CATH TY, 2006, J MEMBRANE SCI, V281, P70, DOI 10.1016/j.memsci.2006.05.048.
CHARCOSSET C, 2009, DESALINATION, V245, P214, DOI 10.1016/j.desal.2008.06.020.
CHEN G, 2008, J MEMBRANE SCI, V310, P102, DOI 10.1016/j.memsci.2007.10.039.
CHEN SH, 2002, J APPL POLYM SCI, V83, P1112.
CHOI J, 2009, SCIENCE, V325, P590, DOI 10.1126/science.1176095.
CHOI O, 2008, WATER RES, V42, P3066, DOI 10.1016/j.watres.2008.02.021.
CORNELISSEN ER, 2008, J MEMBRANE SCI, V319, P158, DOI 10.1016/j.memsci.2008.03.048.
DAI Y, 2001, J APPL POLYM SCI, V79, P1685.
DAI Y, 2002, J MEMBRANE SCI, V207, P189.
DARWISH MA, 1996, APPL THERM ENG, V16, P523.
DECHER G, 1992, THIN SOLID FILMS, V831, P210.
DECHER G, 1992, TRENDS COLLOID INTER, V6, P160.
DECHER G, 2003, MULTILAYER THIN FILM.
DENG S, 2004, STUD SURF SCI CATAL, V154, P903.
DUKE MC, 2009, SEP PURIF TECHNOL, V68, P343, DOI 10.1016/j.seppur.2009.06.003.
ELDESSOUKY HT, 2002, FUNDAMENTALS SALT WA, P409.
ELHASHANI A, 2006, J NANOSCI NANOTECHNO, V6, P1710, DOI 10.1166/jnn.2006.215.
ELHASHANI A, 2008, J MEMBRANE SCI, V318, P65, DOI 10.1016/j.memsci.2008.02.037.
ELSAIED H, 2003, DESALINATION, V159, P171.
FERJANI E, 2000, EUR POLYM J, V36, P35.
FERJANI E, 2000, J MEMBRANE SCI, V165, P125.
FERJANI E, 2002, DESALINATION, V146, P325.
FREGER V, 2002, J MEMBRANE SCI, V209, P283.
GABELICH CJ, 2005, J MEMBRANE SCI, V258, P64, DOI 10.1016/j.memsci.2005.02.034.
GARCIACASTELLO EM, 2009, J MEMBRANE SCI, V338, P61, DOI 10.1016/j.memsci.2009.04.011.
GHOSH AK, 2008, J MEMBRANE SCI, V311, P34, DOI 10.1016/j.memsci.2007.11.038.
GHOSH AK, 2009, J MEMBRANE SCI, V336, P140, DOI 10.1016/j.memsci.2009.03.024.
GILRON J, 2001, DESALINATION, V140, P167.
GLATER J, 1994, DESALINATION, V95, P325.
GOOSEN MFA, 2004, SEPAR SCI TECHNOL, V39, P2261, DOI 10.1081/SS-120039343.
GOPALAKRISHNAN S, 2006, J MEMBRANE SCI, V274, P102, DOI 10.1016/j.memsci.2005.08.005.
GOWARIKER VR, 1986, POLYM SCI, P263.
GREENLEE LF, 2009, WATER RES, V43, P2317, DOI 10.1016/j.watres.2009.03.010.
HARRIS JJ, 2000, CHEM MATER, V12, P1941.
HINDS BJ, 2004, SCIENCE, V303, P62, DOI 10.1126/science.1092048.
HOLT JK, 2006, SCIENCE, V312, P1034, DOI 10.1126/science.1126298.
HONG J, 1991, BER BUSENGES PHYS CH, V95, P1430.
HULMAN M, 2004, CARBON, V42, P1071, DOI 10.1016/j.carbon.2003.12.039.
HUMMER G, 2001, NATURE, V414, P188.
HUSAIN S, 2007, J MEMBRANE SCI, V288, P195, DOI 10.1016/j.memsci.2006.11.016.
ILKIM H, 2006, J MEMBRANE SCI, V286, P193, DOI 10.1016/j.memsci.2006.09.037.
JADAV GL, 2009, J MEMBRANE SCI, V328, P257, DOI 10.1016/j.memsci.2008.12.014.
JAYARANI MM, 2000, DESALINATION, V130, P1.
JAYARANI MM, 2000, DESALINATION, V130, P17.
JEONG BH, 2007, J MEMBRANE SCI, V294, P1, DOI 10.1016/j.memsci.2007.02.025.
JIAN XG, 1999, J MEMBRANE SCI, V161, P185.
JIN WQ, 2003, LANGMUIR, V19, P2550, DOI 10.1021/la020926f.
JIN WQ, 2005, APPL SURF SCI, V246, P444, DOI 10.1016/j.apsusc.2004.11.067.
JIN Y, 2009, J MEMBRANE SCI, V330, P175, DOI 10.1016/j.memsci.2008.12.055.
JONSSON AS, 1991, J MEMBRANE SCI, V56, P49.
KABANOV VY, 2003, HIGH ENERG CHEM+, V37, P1.
KALOGIROU SA, 2005, PROG ENERG COMBUST, V31, P242, DOI 10.1016/j.pecs.2005.03.001.
KALRA A, 2003, P NATL ACAD SCI USA, V100, P10175.
KANG GD, 2007, POLYMER, V48, P1165, DOI 10.1016/j.polymer.2006.12.046.
KARANIKOLOS GN, 2007, CHEM MATER, V19, P792, DOI 10.1021/cm0622295.
KHAWAJI AD, 2008, DESALINATION, V221, P47, DOI 10.1016/j.desal.2007.01.067.
KIM BJ, 2004, OPTIK, V115, P121.
KIM CK, 2000, J MEMBRANE SCI, V165, P189.
KIM ES, 2009, J MEMBRANE SCI, V344, P71, DOI 10.1016/j.memsci.2009.07.036.
KIM HI, 2001, J MEMBRANE SCI, V190, P21.
KIM JH, 2003, J MEMBRANE SCI, V216, P107, DOI 10.1016/S0376-7388(03)00063-2.
KIM SH, 2003, J MEMBRANE SCI, V211, P157.
KIYONO R, 2004, J MEMBRANE SCI, V231, P109, DOI 10.1016/j.memsci.2003.11.008.
KONAGAYA S, 2000, J APPL POLYM SCI, V75, P1357.
KONAGAYA S, 2000, J APPL POLYM SCI, V76, P201.
KOROS WJ, 2000, J MEMBRANE SCI, V175, P181.
KOROS WJ, 2004, AICHE J, V50, P2326, DOI 10.1002/aic.10330.
KRASEMANN L, 2000, LANGMUIR, V16, P287.
KRAVATH RE, 1975, DESALINATION, V16, P151.
KUMAKIRI I, 2000, J CHEM ENG JPN, V33, P333.
KUMAKIRI I, 2000, J CHEM ENG JPN, V33, P414.
KUMAR M, 2007, P NATL ACAD SCI USA, V104, P20719, DOI 10.1073/pnas.0708762104.
KWAK SY, 2001, ENVIRON SCI TECHNOL, V35, P2388.
LEE HS, 2008, DESALINATION, V219, P48, DOI 10.1016/j.desal.2007.06.003.
LEE SY, 2007, POLYM ADVAN TECHNOL, V18, P562, DOI 10.1002/pat.918.
LI L, 2007, J MEMBRANE SCI, V289, P258, DOI 10.1016/j.memsci.2006.12.007.
LI L, 2008, J MEMBRANE SCI, V315, P20, DOI 10.1016/j.memsci.2008.02.022.
LI LX, 2003, APPL CLAY SCI, V24, P59, DOI 10.1016/S0169-1317(03)00148-0.
LI LX, 2004, DESALINATION, V170, P309, DOI 10.1016/j.desal.2004.02.102.
LI LX, 2004, J COLLOID INTERF SCI, V273, P540, DOI 10.1016/j.jcis.2003.09.008.
LI LX, 2004, J MEMBRANE SCI, V243, P401, DOI 10.1016/j.memsci.2004.06.045.
LI LX, 2007, SEP PURIF TECHNOL, V53, P42, DOI 10.1016/j.seppur.2006.06.012.
LI LX, 2008, DESALINATION, V228, P217, DOI 10.1016/j.desal.2007.10.010.
LIANG QZ, 2005, POLYMER, V46, P6258, DOI 10.1016/j.polymer.2005.05.059.
LIN J, 2001, MOL PHYS, V99, P1175.
LIND ML, 2009, J MATER RES, V24, P1624, DOI 10.1557/JMR.2009.0189.
LIND ML, 2009, LANGMUIR, V25, P10139, DOI 10.1021/la900938x.
LIU LF, 2006, J MEMBRANE SCI, V281, P88, DOI 10.1016/j.memsci.2006.03.012.
LIU MH, 2008, J MEMBRANE SCI, V325, P947, DOI 10.1016/j.memsci.2008.09.033.
LIU N, 2008, J MEMBRANE SCI, V325, P357, DOI 10.1016/j.memsci.2008.07.056.
LOUIE JS, 2006, J MEMBRANE SCI, V280, P762, DOI 10.1016/j.memsci.2006.02.041.
LV YH, 2009, J MEMBRANE SCI, V331, P50, DOI 10.1016/j.memsci.2009.01.007.
LVOV Y, 1993, LANGMUIR, V9, P481.
MADAENI SS, 2009, POLYM POLYM COMPOS, V17, P101.
MAJUMDER M, 2005, NATURE, V438, P44, DOI 10.1038/43844a.
MALEKPOUR A, 2008, DESALINATION, V225, P199, DOI 10.1016/j.desal.2007.02.096.
MANSOURPANAH Y, 2009, SEP PURIF TECHNOL, V69, P234, DOI 10.1016/j.seppur.2009.07.025.
MARCOVECCHIO MG, 2005, DESALINATION, V182, P111, DOI 10.1016/j.desal.2005.03.011.
MENG YZ, 1997, J APPL POLYM SCI, V66, P1425.
MI BX, 2010, J MEMBRANE SCI, V348, P337, DOI 10.1016/j.memsci.2009.11.021.
MOHAMED NA, 2003, EUR POLYM J, V39, P1653, DOI 10.1016/S0014-3057(03)00059-4.
MOON EJ, 2004, J MEMBRANE SCI, V243, P311, DOI 10.1016/j.memsci.2004.07.002.
MURAD S, 1993, J CHEM PHYS, V98, P9771.
MURAD S, 1993, J CHEM PHYS, V99, P7271.
MURAD S, 1996, ADSORPTION, V2, P95.
OH HJ, 2009, DESALINATION, V238, P128, DOI 10.1016/j.desal.2008.01.043.
PARK HB, 2008, ANGEW CHEM INT EDIT, V120, P6108.
PAUL DR, 2004, J MEMBRANE SCI, V241, P371, DOI 10.1016/j.memsci.2004.05.026.
PAUL WM, 1959, J POLYM SCI, V40, P299.
PERRY RH, 1997, PERRYS CHEM ENG HDB.
PETERSEN RJ, 1990, HDB IND MEMBRANE TEC, P307.
PETERSEN RJ, 1993, J MEMBRANE SCI, V83, P81.
POTTS DE, 1981, DESALINATION, V36, P235.
REDDY AVR, 2003, J MEMBRANE SCI, V214, P211, DOI 10.1016/S0376-7388(02)00547-1.
RITTIGSTEIN P, 2007, NAT MATER, V6, P278, DOI 10.1038/nmat1870.
ROH IJ, 2006, DESALINATION, V191, P279, DOI 10.1016/j.desa1.2006.03.004.
SAHA NK, 2009, J MEMBRANE SCI, V342, P60, DOI 10.1016/j.memsci.2009.06.025.
SAVAGE N, 2005, J NANOPART RES, V7, P331, DOI 10.1007/s11051-005-7523-5.
SCHIFFLER M, 2004, DESALINATION, V165, P1, DOI 10.1016/j.desal.2004.06.001.
SCOTT K, 1998, HDB IND MEMBRANES.
SEMIAT R, 2000, WATER INT, V25, P54.
SEO YS, 2004, J MEMBRANE SCI, V245, P219, DOI 10.1016/j.memesci.2004.08.008.
SHANNON MA, 2008, NATURE, V452, P301, DOI 10.1038/nature06599.
SHAWKY HA, 2009, J MEMBRANE SCI, V339, P209, DOI 10.1016/j.memsci.2009.04.052.
SHINTANI T, 2007, DESALINATION, V207, P340, DOI 10.1016/j.desal.2006.08.009.
SHOLL DS, 2006, SCIENCE, V312, P1003, DOI 10.1126/science.1127261.
SINGH PS, 2008, J COLLOID INTERF SCI, V326, P176, DOI 10.1016/j.jcis.2008.07.025.
SKLUZACEK JM, 2008, J POROUS MAT, V15, P303, DOI 10.1007/s10934-006-9083-1.
SOYDAS B, 2010, MICROPOR MESOPOR MAT, V127, P96, DOI 10.1016/j.micromeso.2009.07.004.
STAIR JL, 2001, CHEM MATER, V13, P2641.
STANTON BW, 2003, LANGMUIR, V19, P7038, DOI 10.1021/la034603a.
STEEN ML, 2001, J MEMBRANE SCI, V188, P97.
SUN L, 2000, J AM CHEM SOC, V122, P12340, DOI 10.1021/ja002429w.
TANG ZK, 1998, APPL PHYS LETT, V73, P2287.
TARBOUSH BJA, 2008, J MEMBRANE SCI, V325, P166.
TIEKE B, 2001, EUR PHYS J E, V5, P29.
TIEKE B, 2005, ADV COLLOID INTERFAC, V116, P121, DOI 10.1016/j.cis.2005.05.003.
TOSHEVA L, 2005, CHEM MATER, V17, P2494, DOI 10.1021/cm047908z.
TOUTIANOUSH A, 2005, ADV FUNCT MATER, V15, P700, DOI 10.1002/adfm.200400223.
TOUTIANOUSH A, 2005, APPL SURF SCI, V246, P430, DOI 10.1016/j.apsusc.2004.11.048.
TOUTIANOUSH A, 2005, APPL SURF SCI, V246, P437, DOI 10.1016/j.apsusc.2004.11.068.
TULARAM GA, 2007, J ENVIRON MONITOR, V9, P805, DOI 10.1039/b708455m.
VU DQ, 2003, J MEMBRANE SCI, V211, P311.
WANG HT, 2002, J MATER CHEM, V12, P3640, DOI 10.1039/b207394c.
WANG HT, 2003, J AM CHEM SOC, V125, P9928, DOI 10.1021/ja036071q.
WANG N, 2000, NATURE, V408, P51.
WEI J, 2005, J MEMBRANE SCI, V256, P116, DOI 10.1016/j.memsci.2005.02.012.
WEI XY, 2010, J MEMBRANE SCI, V346, P152, DOI 10.1016/j.memsci.2009.09.032.
WETHERN M, 1995, DESALINATION, V102, P293.
WIJMANS JG, 1995, J MEMBRANE SCI, V107, P1.
WON CY, 2007, J AM CHEM SOC, V129, P2748, DOI 10.1021/ja0687318.
WU CR, 2006, J MEMBRANE SCI, V279, P238, DOI 10.1016/j.memsci.2005.11.054.
WU CR, 2009, J MEMBRANE SCI, V326, P429, DOI 10.1016/j.memsci.2008.10.033.
YAMPOLSKII Y, 2006, MAT SCI MEMBRANES GA.
YANG D, 2009, CHEM ENG SCI, V64, P3130, DOI 10.1016/j.ces.2009.03.042.
YANG FJ, 2007, J MEMBRANE SCI, V301, P85, DOI 10.1016/j.memsci.2007.06.009.
YANG W, 2009, INORGANIC MEMBRANES, P275.
YOUNOS T, 2005, J CONT WATER RES ED, P3.
YU SC, 2009, J MEMBRANE SCI, V342, P313, DOI 10.1016/j.memsci.2009.07.003.
YU SC, 2009, J MEMBRANE SCI, V344, P155, DOI 10.1016/j.memsci.2009.07.046.
ZHOU MJ, 2007, J AM CHEM SOC, V129, P9574, DOI 10.1021/ja073067w.
ZHOU Y, 2005, DESALINATION, V180, P189, DOI 10.1016/j.desal.2004.12.037.
ZHOU Y, 2009, SEP PURIF TECHNOL, V66, P287, DOI 10.1016/j.seppur.2008.12.021.
ZHU XH, 1997, ENVIRON SCI TECHNOL, V31, P3654.
ZHU XL, 2004, J POLYM SCI POL CHEM, V42, P2026, DOI 10.1002/pola.11027.

Cited Reference Count:
187

Times Cited:
0

Publisher:
ROYAL SOC CHEMISTRY; THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND

Subject Category:
Chemistry, Physical; Materials Science, Multidisciplinary

ISSN:
0959-9428

DOI:
10.1039/b924553g

IDS Number:
601GJ

========================================================================

*Record 4 of 4.
*View Full Record: http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000277976400015
*Order Full Text [ ]

Title:
Water Transport through Ultrathin Graphene

Authors:
Suk, ME; Aluru, NR

Author Full Names:
Suk, Myung E.; Aluru, N. R.

Source:
JOURNAL OF PHYSICAL CHEMISTRY LETTERS 1 (10): 1590-1594 MAY 20 2010

Language:
English

Document Type:
Article

KeyWords Plus:
CARBON NANOTUBE MEMBRANES; MOLECULAR-DYNAMICS; CHANNEL; SEPARATION; NANOPORES; PORES; SIZE; FLOW

Abstract:
Graphene can be considered as an ideal membrane since its thickness is only one carbon diameter In this study, using molecular dynamics simulations, we investigate water transport through a porous graphene membrane and compare the results with water transport,through thin (less than 10 nm in thickness/length) carbon nanotube (CNT) mernbranes. For smaller diameter pores, where a single file water structure is obtained, CNT membranes provide higher water flux compared to graphene membranes. For larger diameter pores, where the water structure is not single-file, graphene membranes provide higher water flux compared to CNT membranes. Furthermore, in thin CNT membranes, the water flux did not vary significantly with the thickness of the membrane. We explain the results through a detailed analysis considering pressure distribution, velocity profiles, and potential of mean force. This work opens up opportunities for graphene-based membranes in molecular sieving, water filtration, !
fuel cells, and so forth.

Reprint Address:
Aluru, NR, Univ Illinois Urbana Champaign, Beckman Inst Adv Sci & Technol, Dept Mech Sci & Engn, Urbana, IL 61801 USA.

Research Institution addresses:
[Suk, Myung E.; Aluru, N. R.] Univ Illinois Urbana Champaign, Beckman Inst Adv Sci & Technol, Dept Mech Sci & Engn, Urbana, IL 61801 USA

E-mail Address:
aluru@illinois.edu

Cited References:
BEREZHKOVSKII A, 2002, PHYS REV LETT, V89, P64503.
BOOTH TJ, 2008, NANO LETT, V8, P2442, DOI 10.1021/nl801412y.
BUNCH JS, 2008, NANO LETT, V8, P2458, DOI 10.1021/nl801457b.
CHEN GH, 1993, PHYS REV B, V48, P13959.
CORRY B, 2008, J PHYS CHEM B, V112, P1427, DOI 10.1021/jp709845u.
DELLAGO C, 2003, PHYS REV LETT, V90, ARTN 105902.
FISCHBEIN MD, 2008, APPL PHYS LETT, V93, ARTN 113107.
FORNASIERO F, 2008, P NATL ACAD SCI USA, V105, P17250, DOI 10.1073/pnas.0710437105.
GEIM AK, 2009, SCIENCE, V324, P1530, DOI 10.1126/science.1158877.
GIRIT CO, 2009, SCIENCE, V323, P1705, DOI 10.1126/science.1166999.
GOLDSMITH J, 2009, PHYS CHEM CHEM PHYS, V11, P528, DOI 10.1039/b807823h.
GONG XJ, 2007, NAT NANOTECHNOL, V2, P709, DOI 10.1038/nnano.2007.320.
HASHIMOTO A, 2004, NATURE, V430, P870, DOI 10.1038/nature02817.
HILLIE T, 2007, NAT NANOTECHNOL, V2, P663, DOI 10.1038/nnano.2007.350.
HINDS BJ, 2004, SCIENCE, V303, P62, DOI 10.1126/science.1092048.
HOLT JK, 2006, SCIENCE, V312, P1034, DOI 10.1126/science.1126298.
HUANG CK, 2006, J CHEM PHYS, V124, ARTN 234701.
HUMMER G, 2001, NATURE, V414, P188.
JIANG DE, 2009, NANO LETT, V9, P4019, DOI 10.1021/nl9021946.
JOSEPH S, 2008, NANO LETT, V8, P452, DOI 10.1021/nl072385q.
KALRA A, 2003, P NATL ACAD SCI USA, V100, P10175.
KUMAR M, 2007, P NATL ACAD SCI USA, V104, P20719, DOI 10.1073/pnas.0708762104.
LI J, 1998, PHYS REV E, V57, P7259.
LI JY, 2007, P NATL ACAD SCI USA, V104, P3687, DOI 10.1073/pnas.0604541104.
MAJUMDER M, 2005, NATURE, V438, P44, DOI 10.1038/43844a.
PENG XS, 2009, NAT NANOTECHNOL, V4, P353, DOI 10.1038/NNANO.2009.90.
PORTELLA G, 2007, BIOPHYS J, V92, P3930, DOI 10.1529/biophysj.106.102921.
SHANNON MA, 2008, NATURE, V452, P301, DOI 10.1038/nature06599.
SINT K, 2008, J AM CHEM SOC, V130, P16448, DOI 10.1021/ja804409f.
STRIEMER CC, 2007, NATURE, V445, P749, DOI 10.1038/nature05532.
SUK ME, 2008, APPL PHYS LETT, V92, ARTN 133120.
SUK ME, 2009, PHYS CHEM CHEM PHYS, V11, P8614, DOI 10.1039/b903541a.
VANDERSPOEL D, 2005, J COMPUT CHEM, V26, P1701, DOI 10.1002/jcc.20291.
WON CY, 2006, J CHEM PHYS, V125, ARTN 114701.
YAMAGUCHI A, 2004, NAT MATER, V3, P337, DOI 10.1038/nmat1107.
ZHAO H, 2009, NANO LETT, V9, P3012, DOI 10.1021/nl901448z.
ZHU FQ, 2002, BIOPHYS J, V83, P154.
ZHU FQ, 2004, PHYS REV LETT, V93, ARTN 224501.

Cited Reference Count:
38

Times Cited:
0

Publisher:
AMER CHEMICAL SOC; 1155 16TH ST, NW, WASHINGTON, DC 20036 USA

ISSN:
1948-7185

DOI:
10.1021/jz100240r

IDS Number:
600HP

========================================================================
*Order Full Text*
All Customers
--------------
Please contact your library administrator, or person(s) responsible for
document delivery, to find out more about your organization's policy for
obtaining the full text of the above articles. If your organization does
not have a current document delivery provider, your administrator can
contact ISI Document Solution at service@isidoc.com, or call 800-603-4367
or 734-459-8565.

IDS Customers
--------------
IDS customers can purchase the full text of an article (having page number,
volume, and issue information) by returning this ENTIRE message as a Reply
to Sender or Forward to orders@isidoc.com. Mark your choices with an X in
the "Order Full Text: []" brackets for each item. For example, [X].

Please enter your account number here:

========================================================================
*Help Desk Contact Information*
If you have any questions, please visit the Thomson Scientific Technical Support Contact Information Web page:
http://www.thomsonscientific.com/support/techsupport
========================================================================

No comments: