Friday, June 25, 2010

ISI Web of Knowledge Alert - Hummer, G

ISI Web of Knowledge Citation Alert

Cited Article: Hummer, G. Water conduction through the hydrophobic channel of a carbon nanotube
Alert Expires: 09 NOV 2010
Number of Citing Articles: 1 new records this week (1 in this e-mail)
Organization ID: 3b97d1bbc1878baed0ab183d8b03130b
========================================================================
Note: Instructions on how to purchase the full text of an article and Help Desk Contact information are at the end of the e-mail.
========================================================================

*Record 1 of 1.
*View Full Record: http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000278479900023
*Order Full Text [ ]

Title:
Confined Polar Mixtures within Cylindrical Nanocavities

Authors:
Rodriguez, J; Elola, MD; Laria, D

Author Full Names:
Rodriguez, Javier; Dolores Elola, M.; Laria, Daniel

Source:
JOURNAL OF PHYSICAL CHEMISTRY B 114 (23): 7900-7908 JUN 17 2010

Language:
English

Document Type:
Article

KeyWords Plus:
MOLECULAR-DYNAMICS SIMULATIONS; WATER-ACETONITRILE MIXTURES; BINARY-LIQUID MIXTURES; CARBON NANOTUBES; SILICA-NANOCHANNELS; ULTRAFAST DYNAMICS; SOLVATION DYNAMICS; PHASE-SEPARATION; REVERSE MICELLES; SURFACE POLARITY

Abstract:
Using molecular dynamics experiments, we have extended our previous analysis of equimolar mixtures of water and acetonitrile confined between silica walls [J. Phys. Chem. B 2009, 113, 12744] to examine similar solutions trapped within carbon nanotubes and cylindrical silica pores. Two different carbon tube sizes were investigated, (8,8) tubes, with radius R-cnt = 0.55 nm, and (16,16) ones, with R-cnt = 1.1 nm. In the narrowest tubes, we found that the cylindrical cavity is filled exclusively by acetonitrile; as the radius of the tube reaches similar to 1 nm, water begins to get incorporated within the inner cavities. In (16,16) tubes, the analysis of global and local concentration fluctuations shows a net increment of the global acetonitrile concentration; in addition, the aprotic solvent is also the prevailing species at the vicinity of the tube walls. Mixtures confined within silica nanopores of radius similar to 1.5 nm were also investigated. Three pores, differing in the!
effective wall/solvent interactions, were analyzed, (i) a first class, in which dispersive forces prevail (hydrophobic cavities), (ii) a second type, where oxygen sites at the pore walls are transformed into polar silanol groups (hydrophilic cavities), and (iii) finally, an intermediate scenario, in which 60% of the OH groups are replaced by mobile trimethylsilyl groups. Within the different pores, we found clear distinctions between the solvent layers that lie in close contact with the silica substrate and those with more central locations. Dynamical modes of the confined liquid phases were investigated in terms of diffusive and rotational time correlation functions. Compared to bulk results, the characteristic time scales describing different solvent motions exhibit significant increments. In carbon nanotubes, the most prominent modifications operate in the narrower tubes, where translations and rotations become severely hindered. In silica nanopores, the manifestations !
of the overall retardations are more dramatic for solvent spec!
ies lyin
g at the vicinity of trimethylsilyl groups.

Reprint Address:
Laria, D, Comis Nacl Energia Atom, Dept Fis, Ave Libertador 8250, RA-1429 Buenos Aires, DF, Argentina.

Research Institution addresses:
[Rodriguez, Javier; Dolores Elola, M.; Laria, Daniel] Comis Nacl Energia Atom, Dept Fis, RA-1429 Buenos Aires, DF, Argentina; [Rodriguez, Javier] UNSAM, ECyT, RA-1650 San Martin, Buenos Aires, Argentina; [Laria, Daniel] Univ Buenos Aires, Fac Ciencias Exactas & Nat, Dept Quim Inorgan Analit & Quim Fis & INQUIMAE, RA-1428 Buenos Aires, DF, Argentina

E-mail Address:
dhlaria@cnea.gov.ar

Cited References:
ALEXIADIS A, 2008, MOL SIMULAT, V34, P671, DOI 10.1080/08927020802073057.
BERGMAN DL, 1998, PHYS REV E, V58, P4706.
BLANDAMER MJ, 1990, J CHEM SOC FARADAY T, V86, P277.
BRODKA A, 1991, J CHEM PHYS, V95, P3710.
BYL O, 2006, J AM CHEM SOC, V128, P12090, DOI 10.1021/ja057856u.
CASTRILLON SRV, 2009, J PHYS CHEM B, V113, P1438, DOI 10.1021/jp809032n.
CHANDLER D, 2005, NATURE, V437, P640, DOI 10.1038/nature04162.
CHANDLER D, 2007, NATURE, V445, P831, DOI 10.1038/445831a.
DARVE E, 2001, J CHEM PHYS, V115, P9169.
FAEDER J, 2000, J PHYS CHEM B, V104, P1033.
FARRER RA, 2003, ACCOUNTS CHEM RES, V36, P605, DOI 10.1021/ar0200302.
FORMISANO F, 2000, EUR PHYS J E, V1, P1.
FORMISANO F, 2000, J PHYS CONDENS MATT, V12, P351.
FOURKAS JT, 2006, MAT RES SOC S P E, V899.
FURUKAWA S, 2005, J CHEM ENG JPN, V38, P999.
GELB LD, 1997, PHYS REV E, V55, P1290.
GELB LD, 1998, FUNDAMENTALS ADSORPT, V6.
GELB LD, 1999, REP PROG PHYS, V62, P1573.
GIOVAMBATTISTA N, 2006, PHYS REV E 1, V73, ARTN 041604.
GIOVAMBATTISTA N, 2007, J PHYS CHEM C, V111, P1323, DOI 10.1021/jp065419b.
GIOVAMBATTISTA N, 2009, P NATL ACAD SCI USA, V106, P15181, DOI 10.1073/pnas.0905468106.
GRANDE MDC, 2006, J CHEM THERMODYN, V38, P760, DOI 10.1016/j.jct.2005.08.009.
GREBERG H, 2001, J CHEM PHYS, V114, P7182.
GULMEN TS, DYNAMICS SMALL CONFI, V8.
GULMEN TS, 2009, LANGMUIR, V25, P1103, DOI 10.1021/la801896g.
HANDA YP, 1981, J SOLUTION CHEM, V10, P291.
HEMMING CJ, 2006, J PHYS CHEM B, V110, P3764, DOI 10.1021/jp0563311.
HENIN J, 2004, J CHEM PHYS, V121, P2904, DOI 10.1063/1.1773132.
HUMMER G, 2001, NATURE, V414, P188.
HWANG H, 2006, J PHYS CHEM B, V110, P26448, DOI 10.1021/jp0657888.
JIANG JW, 2004, NANO LETT, V4, P241, DOI 10.1021/nl034961y.
JIRAGE KB, 1997, SCIENCE, V278, P655.
KALRA A, 2003, P NATL ACAD SCI USA, V100, P10175.
KALUGIN ON, 2008, NANO LETT, V8, P2126, DOI 10.1021/nl072976g.
KAMIJO T, 2008, J PHYS CHEM A, V112, P11535, DOI 10.1021/jp8034743.
KAWATO S, 1981, BIOPHYS J, V36, P277.
KINOSITA K, 1977, BIOPHYS J, V20, P289.
KITTAKA S, 2007, J CHEM PHYS, V126, ARTN 091103.
KOONE N, 1995, J PHYS CHEM-US, V99, P16976.
KOVACS H, 1991, J AM CHEM SOC, V113, P5596.
LEVINGER NE, 2009, ANNU REV PHYS CHEM, V60, P385, DOI 10.1146/annurev.physchem.040808.090438.
LIPARI G, 1980, BIOPHYS J, V30, P489.
LIU C, 1999, SCIENCE, V286, P1127.
LIU GY, 1989, J CHEM PHYS, V90, P5881.
LOPEZ CF, 2004, J PHYS CHEM B, V108, P6603, DOI 10.1021/jp037618q.
MAO ZG, 2001, J PHYS CHEM B, V105, P6916, DOI 10.1021/jp0103272.
MARCHI M, 2002, J AM CHEM SOC, V124, P6787, DOI 10.1021/ja025905m.
MARCUS Y, 1991, J PHYS CHEM-US, V95, P400.
MARTI J, 2001, J CHEM PHYS, V114, P10486.
MARTI J, 2003, J CHEM PHYS, V119, P12540, DOI 10.1063/1.1625912.
MASHL RJ, 2003, NANO LETT, V3, P589, DOI 10.1021/nl0340226.
MORALES CM, 2009, J PHYS CHEM A, V113, P1922, DOI 10.1021/jp8072969.
MOUNTAIN RD, 1999, J PHYS CHEM A, V103, P10744.
MUKHERJEE B, 2007, J CHEM PHYS, V126, ARTN 124704.
PAL SK, 2002, P NATL ACAD SCI USA, V99, P1763.
PAL SK, 2003, P NATL ACAD SCI USA, V100, P8113, DOI 10.1073/pnas.1433066100.
PIZZITUTTI F, 2007, J PHYS CHEM B, V111, P7584, DOI 10.1021/jp0717185.
RODRIGUEZ J, 2008, J PHYS CHEM B, V112, P8990, DOI 10.1021/jp8023765.
RODRIGUEZ J, 2009, J PHYS CHEM B, V113, P1241, DOI 10.1021/jp8106815.
RODRIGUEZ J, 2009, J PHYS CHEM B, V113, P12744, DOI 10.1021/jp905920m.
RODRIGUEZ J, 2009, J PHYS CHEM B, V113, P14844, DOI 10.1021/jp908791b.
ROTHER G, 2004, J CHEM PHYS, V120, P11864, DOI 10.1063/1.1755667.
SCHRODER GF, 2005, BIOPHYS J, V89, P3757, DOI 10.1529/biophysj.105.069500.
SINGH R, 2006, P NATL ACAD SCI USA, V103, P3357, DOI 10.1073/pnas.0509009103.
STRIOLO A, 2006, NANO LETT, V6, P633, DOI 10.1021/nl052254u.
TAKAHASHI R, 2003, PHYS CHEM CHEM PHYS, V5, P2476, DOI 10.1039/b211750a.
VANMEURS N, 1993, J SOLUTION CHEM, V22, P427.
VENABLES DS, 2000, J CHEM PHYS, V113, P11222.
WAGHE A, 2002, J CHEM PHYS, V117, P10789, DOI 10.1063/1.1519861.
WARNOCK J, 1986, PHYS REV B, V34, P475.
WOYWOD D, 2005, J CHEM PHYS, V122, ARTN 124510.
YAMAGUCHI A, 2006, ANAL SCI, V22, P1501.
YU YM, 2006, J PHYS CHEM B, V110, P6372, DOI 10.1021/jp056751a.
YU YM, 2008, J PHYS CHEM B, V112, P5268, DOI 10.1021/jp711413a.
ZANG J, 2009, ACS NANO, V3, P1548, DOI 10.1021/nn9001837.
ZHENG J, 2005, J CHEM PHYS, V122, ARTN 214702.

Cited Reference Count:
76

Times Cited:
0

Publisher:
AMER CHEMICAL SOC; 1155 16TH ST, NW, WASHINGTON, DC 20036 USA

Subject Category:
Chemistry, Physical

ISSN:
1520-6106

DOI:
10.1021/jp101836b

IDS Number:
607DV

========================================================================
*Order Full Text*
All Customers
--------------
Please contact your library administrator, or person(s) responsible for
document delivery, to find out more about your organization's policy for
obtaining the full text of the above articles. If your organization does
not have a current document delivery provider, your administrator can
contact ISI Document Solution at service@isidoc.com, or call 800-603-4367
or 734-459-8565.

IDS Customers
--------------
IDS customers can purchase the full text of an article (having page number,
volume, and issue information) by returning this ENTIRE message as a Reply
to Sender or Forward to orders@isidoc.com. Mark your choices with an X in
the "Order Full Text: []" brackets for each item. For example, [X].

Please enter your account number here:

========================================================================
*Help Desk Contact Information*
If you have any questions, please visit the Thomson Scientific Technical Support Contact Information Web page:
http://www.thomsonscientific.com/support/techsupport
========================================================================

No comments: