Friday, April 24, 2009

ISI Web of Knowledge Alert - Hummer, G

ISI Web of Knowledge Citation Alert

Cited Article: Hummer, G. Water conduction through the hydrophobic channel of a carbon nanotube
Alert Expires: 22 OCT 2009
Number of Citing Articles: 6 new records this week (6 in this e-mail)
Organization ID: 3b97d1bbc1878baed0ab183d8b03130b
========================================================================
Note: Instructions on how to purchase the full text of an article and Help Desk Contact information are at the end of the e-mail.
========================================================================

*Record 1 of 6.
*View Full Record: http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000265030000020
*Order Full Text [ ]

Title:
Carbon Nanotube Based Artificial Water Channel Protein: Membrane Perturbation and Water Transportation

Authors:
Liu, B; Li, XY; Li, BL; Xu, BQ; Zhao, YL

Author Full Names:
Liu, Bo; Li, Xiaoyi; Li, Baolei; Xu, Bingqian; Zhao, Yuliang

Source:
NANO LETTERS 9 (4): 1386-1394 APR 2009

Language:
English

Document Type:
Article

KeyWords Plus:
MOLECULAR-DYNAMICS SIMULATIONS; PROTON EXCLUSION; LIPID-BILAYERS; PERMEATION; AQUAPORIN-1; CONDUCTION; DIFFUSION; MECHANISM; CELLS; MODEL

Abstract:
We functionalized double-walled carbon nanotubes (DWCNTs) as artificial water channel proteins. For the first time, molecular dynamics simulations show that the bilayer structure of DWCNTs is advantageous for carbon nanotube based transmembrane channels. The shielding of the amphiphilic outer layer could guarantee biocompatibility of the synthetic channel and protect the inner tube (functional part) from disturbance of the membrane environment. This novel design could promote more sophisticated nanobiodevices which could function in a bioenvironment with high biocompatibility.

Reprint Address:
Li, XY, Chinese Acad Sci, Grad Univ, Coll Chem & Chem Engn, Beijing 100049, Peoples R China.

Research Institution addresses:
[Liu, Bo; Li, Xiaoyi; Zhao, Yuliang] Chinese Acad Sci, Grad Univ, Coll Chem & Chem Engn, Beijing 100049, Peoples R China; [Liu, Bo; Li, Xiaoyi; Zhao, Yuliang] Chinese Acad Sci, Key Lab Biomed Effects Nanomat & Nanosafety, Inst High Energy Phys, Beijing 100049, Peoples R China; [Liu, Bo; Li, Xiaoyi; Zhao, Yuliang] Natl Ctr Nanosci & Technol China, Beijing 100049, Peoples R China; [Li, Baolei] Duke Univ, Dept Phys, Durham, NC 27708 USA; [Xu, Bingqian] Univ Georgia, Fac Engn & Nanoscale Sci, Athens, GA 30602 USA; [Xu, Bingqian] Univ Georgia, Ctr Engn, Athens, GA 30602 USA

E-mail Address:
lixy@gucas.ac.cn; zhaoyl@nanoctr.cn

Cited References:
AGRE P, 1987, J BIOL CHEM, V262, P17497.
AGRE P, 1993, AM J PHYSIOL, V265, F461.
AGRE P, 2002, J PHYSIOL-LONDON, V542, P3.
AJAYAN PM, 1999, CHEM REV, V99, P1787.
BAHR JL, 2002, J MATER CHEM, V12, P1952.
BEREZHKOVSKII A, 2002, PHYS REV LETT, V89, P4.
BIANCO A, 2005, CURR OPIN CHEM BIOL, V9, P674, DOI 10.1016/j.cbpa.2005.10.006.
CASTROROMAN F, 2006, J PHYS CHEM B, V110, P24157, DOI 10.1021/jp064746g.
CHO MR, 1999, BIOPHYS J, V76, P1136.
CUI DX, 2005, TOXICOL LETT, V155, P73, DOI 10.1016/j.toxlet.2004.08.015.
DEGROOT BL, 2001, SCIENCE, V294, P2353.
DEGROOT BL, 2003, J MOL BIOL, V333, P279, DOI 10.1016/j.jmb.2003.08.003.
DEGROOT BL, 2005, CURR OPIN STRUC BIOL, V15, P176, DOI 10.1016/j.sbi.2005.02.003.
DELLAGO C, 2003, PHYS REV LETT, V90, P4.
EINSTEIN A, 1905, ANN PHYS, V17.
ENDO M, 2008, CARBON NANOTUBES, V111, P13.
ESSMANN U, 1995, J CHEM PHYS, V103, P8577.
FANG HP, 2008, J PHYS D, V41, P16.
FELLER SE, 2000, J PHYS CHEM B, V104, P7510.
FU D, 2007, MOL MEMBR BIOL, V24, P366, DOI 10.1080/09687680701446965.
GAO HJ, 2003, NANO LETT, V3, P471, DOI 10.1021/nl025967a.
GASTEIGER J, 1978, TETRAHEDRON LETT, V34, P3184.
GONEN T, 2006, Q REV BIOPHYS, V39, P361, DOI 10.1017/S0033583506004458.
GONG XJ, 2007, NAT NANOTECHNOL, V2, P709, DOI 10.1038/nnano.2007.320.
GONG XJ, 2008, PHYS REV LETT, V101, ARTN 257801.
HELMREICH EJM, 2003, BIOPHYS CHEM, V100, P519.
HUMMER G, 2001, NATURE, V414, P188.
HUMPHREY W, 1996, J MOL GRAPHICS, V14, P33.
IMASAKA K, 2006, NANOTECHNOLOGY, V17, P3421, DOI 10.1088/0957/17/14/013.
JORGENSEN WL, 1983, J CHEM PHYS, V79, P926.
KALRA A, 2003, P NATL ACAD SCI USA, V100, P10175.
KE PC, 2007, J PHYS CONDENS MATT, V19, P25.
KLAUDA JB, 2006, J CHEM PHYS, V125, P8.
KUNITAKE T, 1992, ANGEW CHEM INT EDIT, V31, P709.
LI JY, 2007, P NATL ACAD SCI USA, V104, P3687, DOI 10.1073/pnas.0604541104.
LINDAHL E, 2001, J CHEM PHYS, V115, P4938.
LIU JZ, 2008, CHEM RES TOXICOL, V21, P459, DOI 10.1021/tx700392b.
LOPEZ CF, 2004, P NATL ACAD SCI USA, V101, P4431, DOI 10.1073/pnas.0400352101.
LOPEZ CF, 2005, BIOPHYS J, V88, P3083, DOI 10.1529/biophysj.104.053769.
MAO ZG, 2000, J PHYS CHEM B, V104, P4618.
MARTIN CR, 2003, NAT REV DRUG DISCOV, V2, P29, DOI 10.1038/nrd988.
MILLER SA, 2001, J AM CHEM SOC, V123, P12335.
MOORE PB, 2001, BIOPHYS J, V81, P2484.
MURATA K, 2000, NATURE, V407, P599.
NAGLE JF, 1983, J MEMBRANE BIOL, V74, P1.
NIELSEN SO, 2005, BIOPHYS J, V88, P3822, DOI 10.1529/biophysj.104.057703.
PATRA M, 2004, J PHYS CHEM B, V108, P4485, DOI 10.1021/jp031281a.
PHILLIPS JC, 2005, J COMPUT CHEM, V26, P1781.
POHORILLE A, 2002, TRENDS BIOTECHNOL, V20, P123.
POMES R, 1998, BIOPHYS J, V75, P33.
SAXTON MJ, 1994, BIOPHYS J, V66, P394.
SCHEIDT HA, 2005, BIOPHYS J, V89, P2504, DOI 10.1529/biophysj.105.062018.
SCHLENKRICH M, 1996, BIOL MEMBRANES MOL P, P31.
SINGER SJ, 1972, SCIENCE, V175, P720.
SUMIKAMA T, 2006, J PHYS CHEM B, V110, P20671, DOI 10.1021/jp062547r.
TAJKHORSHID E, 2002, SCIENCE, V296, P525.
VATTULAINEN I, 2005, DIFFUSION CONDENSED, P471.
VAZ WLC, 1985, BIOCHEMISTRY-US, V24, P781.
WAN RZ, 2005, J AM CHEM SOC, V127, P7166, DOI 10.1021/ja050044d.
WEEKS ER, 2002, CHEM PHYS, V284, P361.
YANG WR, 2007, NANOTECHNOLOGY, V18, P12.
ZHANG F, 1999, J CHEM PHYS, V111, P9082.
ZHENG J, 2005, J CHEM PHYS, V122, P7.
ZHU FQ, 2003, BIOPHYS J, V85, P236.
ZIMMERLI U, 2008, BIOPHYS J, V94, P2546, DOI 10.1529/biophysj.106.102467.

Cited Reference Count:
65

Times Cited:
0

Publisher:
AMER CHEMICAL SOC; 1155 16TH ST, NW, WASHINGTON, DC 20036 USA

Subject Category:
Chemistry, Multidisciplinary; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary

ISSN:
1530-6984

DOI:
10.1021/nl8030339

IDS Number:
430ZB

========================================================================

*Record 2 of 6.
*View Full Record: http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000264792300036
*Order Full Text [ ]

Title:
Manipulating Biomolecules with Aqueous Liquids Confined within Single-Walled Nanotubes

Authors:
Xiu, P; Zhou, B; Qi, WP; Lu, HJ; Tu, YS; Fang, HP

Author Full Names:
Xiu, Peng; Zhou, Bo; Qi, Wenpeng; Lu, Hangjun; Tu, Yusong; Fang, Haiping

Source:
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY 131 (8): 2840-2845 MAR 4 2009

Language:
English

Document Type:
Article

KeyWords Plus:
DIP-PEN NANOLITHOGRAPHY; CARBON NANOTUBES; WATER CHANNEL; MASS-TRANSPORT; PROTEIN; MEMBRANES; PEPTIDE; ICE; SIMULATIONS; SOLVATION

Abstract:
Confinement of molecules inside nanoscale pores has become an important method for exploiting new dynamics not happening in bulk systems and for fabricating novel structures. Molecules that are encapsulated in nanopores are difficult to control with respect to their position and activity. On the basis of molecular dynamics simulations, we have achieved controllable manipulation, both in space and time, of biomolecules with aqueous liquids inside a single-walled nanotube by using an external charge or a group of external charges. The remarkable manipulation abilities are attributed to the single-walled structure of the nanotube that the electrostatic interactions of charges inside and outside the single-walled nanotube are strong enough, and the charge-induced dipole-orientation ordering of water confined in the nanochannel so that water has a strong interaction with the external charge. These designs are expected to serve as lab-in-nanotube for the interactions and chemical !
reactions of molecules especially biomolecules, and have wide applications in nanotechnology and biotechnology.

Reprint Address:
Fang, HP, Chinese Acad Sci, Shanghai Inst Appl Phys, POB 800-204, Shanghai 201800, Peoples R China.

Research Institution addresses:
[Xiu, Peng; Zhou, Bo; Qi, Wenpeng; Lu, Hangjun; Tu, Yusong; Fang, Haiping] Chinese Acad Sci, Shanghai Inst Appl Phys, Shanghai 201800, Peoples R China; [Xiu, Peng; Qi, Wenpeng] Shandong Univ, Sch Phys, Jinan 250100, Peoples R China; [Zhou, Bo; Tu, Yusong] Chinese Acad Sci, Grad Sch, Beijing 100080, Peoples R China; [Lu, Hangjun] Zhejiang Normal Univ, Dept Phys, Jinhua 321004, Peoples R China; [Fang, Haiping] CAS, Theoret Phys Ctr Sci Facil, Beijing 100049, Peoples R China

E-mail Address:
fanghaiping@sinap.ac.cn

Cited References:
BALBACH JJ, 2000, BIOCHEMISTRY-US, V39, P13748.
BALL P, 2008, CHEM REV, V108, P74, DOI 10.1021/cr068037a.
BESTEMAN K, 2003, NANO LETT, V3, P727, DOI 10.1021/nl034139u.
BONOMI M, 2007, BIOPHYS J, V93, P2813, DOI 10.1529/biophysj.107.106369.
BOURLON B, 2007, NAT NANOTECHNOL, V2, P104, DOI 10.1038/nnano.2006.211.
DARDEN T, 1993, J CHEM PHYS, V98, P10089.
DEGROOT BL, 2003, J MOL BIOL, V333, P279, DOI 10.1016/j.jmb.2003.08.003.
DOKTER AM, 2005, J PHYS REV LETT, V94, UNSP 178301.
EGGERS DK, 2001, PROTEIN SCI, V10, P250.
FAN R, 2005, PHYS REV LETT, V95, ARTN 086607.
GHOSH S, 2003, SCIENCE, V299, P1042, DOI 10.1126/science.1079080.
GINGER DS, 2004, ANGEW CHEM INT EDIT, V43, P30, DOI 10.1002/anie.200300608.
GONG XJ, 2007, NAT NANOTECHNOL, V2, P709, DOI 10.1038/nnano.2007.320.
HO CM, 2001, PROC IEEE MICR ELECT, P375.
HOLT JK, 2006, SCIENCE, V312, P1034, DOI 10.1126/science.1126298.
HORINEK D, 2008, P NATL ACAD SCI USA, V105, P2842, DOI 10.1073/pnas.0707879105.
HU J, 1996, J VAC SCI TECHNOL B, V14, P1341.
HUMMER G, 2001, NATURE, V414, P188.
INSEPOV Z, 2006, NANO LETT, V6, P1893, DOI 10.1021/nl060932m.
JORGENSEN WL, 1983, J CHEM PHYS, V79, P926.
JORGENSEN WL, 1996, J AM CHEM SOC, V118, P11225.
JU SP, 2006, J PHYS CHEM B, V110, P9286, DOI 10.1021/jp056567p.
KOGA K, 2001, NATURE, V412, P802.
KRAL P, 1999, PHYS REV LETT, V82, P5373.
LI JC, 1993, NATURE, V365, P327.
LI JY, 2007, P NATL ACAD SCI USA, V104, P3687, DOI 10.1073/pnas.0604541104.
LINDAHL E, 2001, J MOL MODEL, V7, P306.
LONGHURST MJ, 2007, NANO LETT, V7, P3324, DOI 10.1021/nl071537e.
LOONG CK, 2004, NANOTECHNOLOGY, V15, S664.
LUCENT D, 2007, P NATL ACAD SCI USA, V104, P10430, DOI 10.1073/pnas.0608256104.
MASHL RJ, 2003, NANO LETT, V3, P589, DOI 10.1021/nl0340226.
NELSON R, 2005, NATURE, V435, P773, DOI 10.1038/nature03680.
NOON WH, 2002, CHEM PHYS LETT, V355, P445.
OKADA T, 2006, CHEM PHYS LETT, V417, P288, DOI 10.1016/j.cplett.2005.10.030.
PAN XL, 2007, NAT MATER, V6, P507, DOI 10.1038/nmat1916.
PINER RD, 1999, SCIENCE, V283, P661.
RAO PVG, 2007, LANGMUIR, V23, P12795, DOI 10.1021/la7022902.
REGAN BC, 2004, NATURE, V428, P924, DOI 10.1038/nature02496.
SAVARIAR EN, 2008, NAT NANOTECHNOL, V3, P112, DOI 10.1038/nnano.2008.6.
SHIN K, 2007, NAT MATER, V6, P961, DOI 10.1038/nmat2031.
SISTIABUDI R, 2007, J PHYS CHEM C, V111, P11676, DOI 10.1021/jp072757j.
SIWY Z, 2002, PHYS REV LETT, V89, ARTN 198103.
SORIN EJ, 2006, J AM CHEM SOC, V128, P6316, DOI 10.1021/ja060917j.
STRIOLO A, 2006, NANO LETT, V6, P633, DOI 10.1021/nl052254u.
SUN L, 2000, J AM CHEM SOC, V122, P12340, DOI 10.1021/ja002429w.
SYKES MT, 2007, P NATL ACAD SCI USA, V104, P12336, DOI 10.1073/pnas.0705573104.
TAJKHORSHID E, 2002, SCIENCE, V296, P525.
TANG J, 2008, LANGMUIR, V24, P4975, DOI 10.1021/1a800329k.
VAITHEESWARAN S, 2006, J AM CHEM SOC, V128, P13490, DOI 10.1021/ja063445h.
VERDAGUER A, 2006, CHEM REV, V106, P1478, DOI 10.1021/cr040376l.
WAN RZ, 2005, J AM CHEM SOC, V127, P7166, DOI 10.1021/ja050044d.
WANG BY, 2006, J AM CHEM SOC, V128, P15984, DOI 10.1021/ja066431k.
WANG BY, 2007, PHYS REV LETT, V98, ARTN 266102.
WANG ZK, 2007, NANO LETT, V7, P697, DOI 10.1021/nl062853g.
WIERZBINSKI E, 2006, LANGMUIR, V22, P2426, DOI 10.1021/la053224+.
WON CY, 2007, J AM CHEM SOC, V129, P2748, DOI 10.1021/ja0687318.
YANG HQ, 2007, ANGEW CHEM INT EDIT, V46, P6861, DOI 10.1002/anie.200701747.
YEH IC, 2004, P NATL ACAD SCI USA, V101, P12177, DOI 10.1073/pnas.0402699101.
ZHANG SQ, 2007, NANO LETT, V7, P3438, DOI 10.1021/n1071948v.
ZHAO YC, 2008, ADV MATER, V20, P1772, DOI 10.1002/adma.200702956.
ZHOU RH, 2004, SCIENCE, V305, P1605.
ZIMMERLI U, 2008, BIOPHYS J, V94, P2546, DOI 10.1529/biophysj.106.102467.

Cited Reference Count:
62

Times Cited:
0

Publisher:
AMER CHEMICAL SOC; 1155 16TH ST, NW, WASHINGTON, DC 20036 USA

Subject Category:
Chemistry, Multidisciplinary

ISSN:
0002-7863

DOI:
10.1021/ja804586w

IDS Number:
427PX

========================================================================

*Record 3 of 6.
*View Full Record: http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000264805600034
*Order Full Text [ ]

Title:
Exploration of the Dynamical Evolution and the Associated Energetics of Water Nanoclusters Formed in a Hydrophobic Solvent

Authors:
Mitra, RK; Verma, PK; Pal, SK

Author Full Names:
Mitra, Rajib Kumar; Verma, Pramod Kumar; Pal, Samir Kumar

Source:
JOURNAL OF PHYSICAL CHEMISTRY B 113 (14): 4744-4750 APR 9 2009

Language:
English

Document Type:
Article

KeyWords Plus:
HYDROGEN-BOND DYNAMICS; ECHO CORRELATION SPECTROSCOPY; LOCAL ENERGY FLUCTUATIONS; PLUS DIOXANE MIXTURES; SOLVATION DYNAMICS; REVERSE MICELLES; VIBRATIONAL-ENERGY; LIQUID WATER; DIELECTRIC-SPECTROSCOPY; COMPUTER-SIMULATION

Abstract:
Exploration of the intermolecular binding energy in nanometer-sized small water clusters in hydrophobic solvents and its evolution with the increase in the cluster size until bulk-type geometry is reached constitute a fascinating area of research in contemporary chemical/biological physics. In this contribution we have used femtosecond/picosecond-resolved solvation dynamics and fluorescence anisotropy techniques to explore the dynamical evolution of water clusters in dioxane continuum as a function of water concentration. We have also used temperature dependent picosecond-resolved solvation dynamics in order to explore the magnitude of the intermolecular bonding energy in the water clusters in bulk dioxane.

Reprint Address:
Pal, SK, SN Bose Natl Ctr Basic Sci, Dept Chem Biol & Macromol Sci, Unit Nanosci & Technol, Block JD,Sector 3, Calcutta 700098, India.

Research Institution addresses:
[Mitra, Rajib Kumar; Verma, Pramod Kumar; Pal, Samir Kumar] SN Bose Natl Ctr Basic Sci, Dept Chem Biol & Macromol Sci, Unit Nanosci & Technol, Calcutta 700098, India

E-mail Address:
skpal@bose.res.in

Cited References:
ASBURY JB, 2004, J CHEM PHYS, V121, P12431, DOI 10.1063/1.1818107.
ASBURY JB, 2004, J PHYS CHEM A, V108, P1107, DOI 10.1021/jp036266k.
ASHIHARA S, 2007, J PHYS CHEM A, V111, P743, DOI 10.1021/jp06876538.
BUZKO VY, 2005, J STRUCT CHEM+, V46, P596.
CHANDRA A, 1991, J CHEM PHYS 2, V94, P8367.
CICHOS F, 1997, J PHYS CHEM A, V101, P8179.
CORBEIL EM, 2004, J PHYS CHEM B, V108, P10777, DOI 10.1021/jp037276o.
COWAN ML, 2005, NATURE, V434, P199, DOI 10.1038/nature03383.
CRINGUS D, 2004, J PHYS CHEM B, V108, P10376, DOI 10.1021/jp0495141.
CRINGUS D, 2007, J CHEM PHYS, V127, ARTN 084507.
FECKO CJ, 2003, SCIENCE, V301, P1698.
FEYEREISEN MW, 1996, J PHYS CHEM-US, V100, P2993.
FRANKS F, 1972, WATER COMPREHENSIVE.
FUKASAWA T, 2005, PHYS REV LETT, V95, ARTN 197802.
GARDECKI JA, 1999, CHEM PHYS LETT, V301, P571.
GRUENLOH CJ, 1997, SCIENCE, V276, P1678.
HORNG ML, 1995, J PHYS CHEM-US, V99, P17311.
HUMMER G, 2001, NATURE, V414, P188.
JARZEBA W, 1991, CHEM PHYS, V152, P57.
JEFFREY GA, 1997, INTRO HYDROGEN BONDI.
KEUTSCH FN, 2001, P NATL ACAD SCI USA, V98, P10533.
KRAEMER D, 2008, P NATL ACAD SCI USA, V105, P437, DOI 10.1073/pnas.0705792105.
KROPMAN MF, 2001, SCIENCE, V291, P2118.
LADANYI BM, 2002, J PHYS CHEM A, V106, P6922.
LAKOWICZ JR, 1999, PRINCIPLES FLUORESCE.
LINDNER J, 2007, CHEM PHYS, V341, P326, DOI 10.1016/j.chemphys.2007.07.051.
LIU K, 1996, SCIENCE, V271, P929.
LUTHER BM, 2002, J CHEM PHYS, V116, P3370.
MAJUMDER P, 2005, J COLLOID INTERF SCI, V290, P462, DOI 10.1016/j.jcis.2005.04.053.
MASHIMO S, 1992, J CHEM PHYS, V96, P6358.
MITRA RK, 2007, J PHYS CHEM B, V111, P7577, DOI 10.1021/jp0722760.
MITRA RK, 2008, J PHYS CHEM B, V112, P12946, DOI 10.1021/jp803585q.
MITRA RK, 2008, LANGMUIR, V24, P49, DOI 10.1021/la7025895.
MOLOTSKY T, 2003, J PHYS CHEM A, V107, P8449, DOI 10.1021/jp034760i.
MUKHERJEE S, 2004, CHEM PHYS LETT, V384, P128, DOI 10.1016/j.cplett.2003.11.098.
MURAD S, 1993, J CHEM PHYS, V98, P9771.
NANDI N, 1997, J PHYS CHEM B, V101, P10954.
NANDI N, 2000, CHEM REV, V100, P2013.
NARAYANAN SS, 2008, CHEM PHYS LETT, V452, P99, DOI 10.1016/j.cplett.2007.12.040.
NARAYANAN SS, 2008, J PHYS CHEM B, V112, P2859, DOI 10.1021/jp710127s.
NAUTA K, 2000, SCIENCE, V287, P293.
NIBBERING ETJ, 2004, CHEM REV, V104, P1887.
OHMINE I, 1988, J CHEM PHYS, V89, P5852.
PIMENTEL GC, 1960, HYDROGEN BOND.
PLUMMER PLM, 1997, J MOL STRUC-THEOCHEM, V417, P35.
PRICE WS, 2000, J CHEM PHYS, V113, P3686.
RAMACHANDRAN CN, 2005, CHEM PHYS LETT, V410, P348, DOI 10.1016/j.cplett.2005.04.113.
SAHU K, 2005, J PHOTOCH PHOTOBIO A, V172, P180, DOI 10.1016/j.photochem.2004.12.007.
SCHOEN M, 1988, J CHEM PHYS, V88, P1394.
SCHRODLE S, 2007, J PHYS CHEM A, V111, P2043, DOI 10.1021/jp070580n.
SCHRODLE S, 2007, J PHYS CHEM B, V111, P5946, DOI 10.1021/jp0713413.
SIROTKIN VA, 2000, J STRUCT CHEM+, V41, P997.
STARR FW, 1999, PHYS REV LETT, V82, P2294.
STARR FW, 2000, PHYS REV E A, V62, P579.
STILLINGER FH, 1980, SCIENCE, V209, P451.
SUPPAN P, 1987, J CHEM SOC FARAD T 1, V83, P495.
TAKAMUKU T, 1999, J MOL LIQ, V83, P163.
TAKAMUKU T, 2003, J MOL LIQ, V103, P143.
TANAKA H, 1987, J CHEM PHYS, V87, P6128.
TOXVAERD S, 1981, J CHEM PHYS, V74, P1998.
VAITHEESWARAN S, 2004, P NATL ACAD SCI USA, V101, P17002, DOI 10.1073/pnas.0407968101.
WOUTERSEN S, 1999, NATURE, V402, P507.
YANG C, 2004, J PHYS CHEM B, V108, P11866, DOI 10.1021/jp048356a.

Cited Reference Count:
63

Times Cited:
0

Publisher:
AMER CHEMICAL SOC; 1155 16TH ST, NW, WASHINGTON, DC 20036 USA

Subject Category:
Chemistry, Physical

ISSN:
1520-6106

DOI:
10.1021/jp8085705

IDS Number:
427UW

========================================================================

*Record 4 of 6.
*View Full Record: http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000265030500006
*Order Full Text [ ]

Title:
Absence of the Density Minimum of Supercooled Water in Hydrophobic Confinement

Authors:
Zhang, Y; Liu, KH; Lagi, M; Liu, D; Littrell, KC; Mou, CY; Chen, SH

Author Full Names:
Zhang, Yang; Liu, Kao-Hsiang; Lagi, Marco; Liu, Dazhi; Littrell, Kenneth C.; Mou, Chung-Yuan; Chen, Sow-Hsin

Source:
JOURNAL OF PHYSICAL CHEMISTRY B 113 (15): 5007-5010 APR 16 2009

Language:
English

Document Type:
Article

KeyWords Plus:
VOIGT FUNCTION; GLASSY WATER; X-RAY; DIFFRACTION; TRANSITION; INTERFACE; LIQUID; LINE

Abstract:
The surface effect on the peculiar dynamic and thermodynamic properties of supercooled water, such as the density, has been puzzling the scientific community for years. Recently, using the small angle neutron scattering method, we were able to measure the density of H2O confined in the hydrophobic mesoporous material CMK1-14 from room temperature down to the deeply supercooled temperature 130 K at ambient pressure. We found that the well-known density maximum of water is shifted 17 K lower and, more interestingly, that the previously observed density minimum in hydrophilic confinement disappears. Furthermore, the deduced thermal expansion coefficient shows a much broader peak spanning from 240 to 180 K in comparison with the sharp peak at 230 K in hydrophilic confinement. These present results may help in the understanding of the effect of hydrophobic/hydrophilic interfaces on the properties of supercooled confined water.

Reprint Address:
Chen, SH, MIT, Dept Nucl Sci & Engn, 77 Massachusetts Ave, Cambridge, MA 02139 USA.

Research Institution addresses:
[Zhang, Yang; Lagi, Marco; Chen, Sow-Hsin] MIT, Dept Nucl Sci & Engn, Cambridge, MA 02139 USA; [Liu, Kao-Hsiang; Mou, Chung-Yuan] Natl Taiwan Univ, Dept Chem, Taipei 106, Taiwan; [Liu, Dazhi; Littrell, Kenneth C.] Oak Ridge Natl Lab, Neutron Scattering Sci Div, Oak Ridge, TN 37831 USA

E-mail Address:
sowhsin@mit.edu

Cited References:
ANGELL CA, 1983, ANNU REV PHYS CHEM, V34, P593.
BALL P, 2003, NATURE, V423, P25, DOI 10.1038/423025a.
CHANDLER D, 2005, NATURE, V437, P640, DOI 10.1038/nature04162.
DEBENEDETTI PG, 2001, NATURE, V410, P259.
DEBENEDETTI PG, 2003, J PHYS-CONDENS MAT, V15, P1669.
DEBENEDETTI PG, 2003, PHYS TODAY, V56, P40.
DEKEIJSER TH, 1982, J APPL CRYSTALLOGR, V15, P308.
HUMMER G, 2001, NATURE, V414, P188.
JENSEN TR, 2003, PHYS REV LETT, V414.
LANGFORD JI, 1978, J APPL CRYSTALLOGR, V11, P10.
LEE J, 2006, ADV MATER, V18, P2073, DOI 10.1002/adma.200501576.
LIDE DR, 2007, CRC HDB CHEM PHYS, V6.
LIU DZ, 2007, P NATL ACAD SCI USA, V104, P9570, DOI 10.1073/pnas.0701352104.
LIU DZ, 2008, J PHYS CHEM B, V112, P4309, DOI 10.1021/jp710331k.
MALLAMACE F, 2007, P NATL ACAD SCI USA, V104, P18387, DOI 10.1073/pnas.0706504104.
MISHIMA O, 1998, NATURE, V396, P329.
POYNOR A, 2006, PHYS REV LETT, V396.
RYOO R, 2001, ADV MATER, V13, P677.
SCHWENDEL D, 2003, LANGMUIR, V19, P2284, DOI 10.1021/la026716k.
STEITZ R, 2003, LANGMUIR, V19, P2409, DOI 10.1021/la026731p.
SUORTTI P, 1979, J APPL CRYSTALLOGR, V12, P365.
TANFORD C, 1978, SCIENCE, V200, P1012.
WANG HJ, 2008, SCIENCE, V322, P80, DOI 10.1126/science.1162412.
XU LM, 2005, P NATL ACAD SCI USA, V102, P16558, DOI 10.1073/pnas.0507870102.

Cited Reference Count:
24

Times Cited:
0

Publisher:
AMER CHEMICAL SOC; 1155 16TH ST, NW, WASHINGTON, DC 20036 USA

Subject Category:
Chemistry, Physical

ISSN:
1520-6106

DOI:
10.1021/jp900641y

IDS Number:
430ZG

========================================================================

*Record 5 of 6.
*View Full Record: http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000264805700006
*Order Full Text [ ]

Title:
First-Principles Study of Water Chains Encapsulated in Single-Walled Carbon Nanotube

Authors:
Wang, L; Zhao, JJ; Li, FY; Fang, HP; Lu, JP

Author Full Names:
Wang, Lu; Zhao, Jijun; Li, Fengyu; Fang, Haiping; Lu, Jian Ping

Source:
JOURNAL OF PHYSICAL CHEMISTRY C 113 (14): 5368-5375 APR 9 2009

Language:
English

Document Type:
Article

KeyWords Plus:
DENSITY-FUNCTIONAL THEORY; INFRARED PREDISSOCIATION SPECTRA; SIZE-SELECTED WATER; LIQUID WATER; AB-INITIO; SUPERCRITICAL WATER; MOLECULAR-BEAM; VIBRATIONAL-SPECTRA; INTERACTION ENERGY; CLUSTERS (H2O)(N)

Abstract:
Water molecules confined inside a single-walled (6, 6) carbon nanotube were investigated using density functional theory. In this narrow-sized carbon nanotube (of about 0.8 nm in diameter), the encapsulated water molecules form chain-like configurations via hydrogen bonding. As compared to the water chains in vacuum, the intramolecular charge transfer in the encapsulated water chain is enhanced and the dipole moment is reduced due to the screening effect of the carbon nanotube. The tube-molecule interaction characterized by the coupling energy is about 0.28 eV per water molecule by local density approximation and 0.1 eV by general gradient approximation; the latter one is close to the results by empirical potentials. Weak coupling between the molecular orbitals of the encapsulated water molecules and the delocalized pi electrons from the carbon nanotube was observed, implying that the tube-water interaction is not a simple effect of geometry confinement. Vibrational analysis!
revealed some unique hydrogen-bond modes for the water chains as well as red shift of the O-H stretching modes for the encapsulated water molecules with regard to the vacuum frequencies due to the tube-water interaction.

Reprint Address:
Zhao, JJ, Dalian Univ Technol, Sch Phys & Optoelect Technol, Dalian 116024, Peoples R China.

Research Institution addresses:
[Wang, Lu; Zhao, Jijun; Li, Fengyu] Dalian Univ Technol, Sch Phys & Optoelect Technol, Dalian 116024, Peoples R China; [Wang, Lu; Zhao, Jijun; Li, Fengyu] Dalian Univ Technol, Coll Adv Sci & Technol, Dalian 116024, Peoples R China; [Fang, Haiping] Chinese Acad Sci, Shanghai Inst Appl Phys, Shanghai 201800, Peoples R China; [Lu, Jian Ping] Univ N Carolina, Dept Phys & Astron, Chapel Hill, NC 27599 USA

E-mail Address:
zhaojj@dlut.edu.cn

Cited References:
AGRAWAL BK, 2007, PHYS REV B, V75, ARTN 195421.
ALEXIADIS A, 2008, CHEM REV, V108, P5014, DOI 10.1021/cr078140f.
ANICK DJ, 2006, J PHYS CHEM A, V110, P5135, DOI 10.1021/jp055632s.
BEST RB, 2005, P NATL ACAD SCI USA, V102, P6732, DOI 10.1073/pnas.0408098102.
BUCH V, 2005, J PHYS CHEM B, V109, P17771, DOI 10.1021/jp052819a.
BUCK U, 2000, CHEM REV, V100, P3863.
BUONTEMPO U, 1994, MOL PHYS, V81, P217.
BYL O, 2006, J AM CHEM SOC, V128, P12090, DOI 10.1021/ja057856u.
CICERO G, 2008, J AM CHEM SOC, V130, P1871.
COKER DF, 1985, J CHEM PHYS, V82, P3554.
CUMMINGS PT, 1991, J CHEM PHYS, V94, P5606.
DEGROOT BL, 2001, SCIENCE, V294, P2353.
DELLAGO C, 2003, PHYS REV LETT, V90, ARTN 105902.
DELLEY B, 2000, J CHEM PHYS, V113, P7756.
DEVLIN JP, 1995, J PHYS CHEM-US, V99, P16534.
DEVLIN JP, 2001, J PHYS CHEM A, V105, P974.
DU Q, 1993, PHYS REV LETT, V70, P2313.
DUNN ME, 2006, J PHYS CHEM A, V110, P303.
DYKE TR, 1977, J CHEM PHYS, V66, P498.
ENKVIST C, 2000, INT J QUANTUM CHEM, V79, P325.
ESTRIN DA, 1996, J PHYS CHEM-US, V100, P8701.
FANG HP, 2008, J PHYS D APPL PHYS, V41, ARTN 103002.
FENG C, 2007, J PHYS CHEM C, V111, P14131, DOI 10.1021/jp0742822CCC.
FOIS ES, 1994, CHEM PHYS LETT, V223, P411.
GOGOTSI Y, 2001, APPL PHYS LETT, V79, P1021.
GONG XJ, 2007, NAT NANOTECHNOL, V2, P709, DOI 10.1038/nnano.2007.320.
HANASAKI I, 2008, J PHYS-CONDENS MAT, V20, ARTN 015213.
HELMY AK, 2007, APPL SURF SCI, V253, P4966, DOI 10.1016/j.apsusc.2006.11.001.
HILLE B, 1984, IONIC CHANNELS EXCIT.
HOLT JK, 2006, SCIENCE, V312, P1034, DOI 10.1126/science.1126298.
HUANG ZS, 1989, J CHEM PHYS, V91, P6613.
HUISKEN F, 1996, J CHEM PHYS, V104, P17.
HUMMER G, 2001, NATURE, V414, P188.
IKUSHIMA Y, 1998, J CHEM PHYS, V108, P5855.
JORGENSEN WL, 1983, J CHEM PHYS, V79, P926.
JOSEPH S, 2008, NANO LETT, V8, P452, DOI 10.1021/nl072385q.
KOGA K, 2001, NATURE, V412, P802.
KOLESNIKOV AI, 2004, PHYS REV LETT, V93, ARTN 035503.
KONDRATYUK P, 2007, ACCOUNTS CHEM RES, V40, P995, DOI 10.1021/ar700013c.
LEE C, 1995, J CHEM PHYS, V102, P1266.
LEE CY, 1984, J CHEM PHYS, V80, P4448.
LENZ A, 2006, J PHYS CHEM A, V110, P13388, DOI 10.1021/jp066372x.
LI AHT, 2006, J CHEM PHYS, V125, ARTN 094312.
LI H, 2008, J CHEM PHYS, V128, ARTN 034707.
LI JY, 2007, P NATL ACAD SCI USA, V104, P3687, DOI 10.1073/pnas.0604541104.
LI Y, 2005, J COMPUT ELECT, V4, P161.
LONGHURST MJ, 2007, NANO LETT, V7, P3324, DOI 10.1021/nl071537e.
LOVAS FJ, 1978, J PHYS CHEM REF DATA, V7, P1445.
LOW GR, 1999, J CHEM PHYS, V110, P9104.
LUDWIG R, 2001, ANGEW CHEM INT EDIT, V40, P1808.
MAIBAUM L, 2003, J PHYS CHEM B, V107, P1189, DOI 10.1021/jp0267196.
MAJUMDER M, 2005, NATURE, V438, P44, DOI 10.1038/43844a.
MANIWA Y, 2007, NAT MATER, V6, P135, DOI 10.1038/nmat1823.
MANN DJ, 2003, PHYS REV LETT, V90, ARTN 195503.
MARTI J, 2001, PHYS REV B, V63, ARTN 165430.
MARTI J, 2006, J CHEM PHYS, V124, ARTN 094703.
MASHL RJ, 2003, NANO LETT, V3, P589, DOI 10.1021/nl0340226.
MILLER Y, 2004, J PHYS CHEM A, V108, P4405, DOI 10.1021/jp030678b.
MUKHERJEE B, 2007, J CHEM PHYS, V126, ARTN 124704.
MUKHERJEE B, 2007, J NANOSCI NANOTECHNO, V7, P1796, DOI 10.1166/jnn.2007.718.
MURATA K, 2000, NATURE, V407, P599.
NAGUIB N, 2004, NANO LETT, V4, P2237, DOI 10.1021/nl0484907.
OHNO K, 2005, PHYS CHEM CHEM PHYS, V7, P3005, DOI 10.1039/b506641g.
PAGE RH, 1984, CHEM PHYS LETT, V106, P373.
PAUL JB, 1999, J PHYS CHEM A, V103, P2972.
PERDEW JP, 1992, PHYS REV B, V45, P13244.
PERDEW JP, 1992, PHYS REV B, V46, P6671.
PERTSIN A, 2004, J PHYS CHEM B, V108, P1357, DOI 10.1021/jp0356968.
RASAIAH JC, 2008, ANNU REV PHYS CHEM, V59, P713.
SADLEJ J, 1999, J PHYS CHEM A, V103, P4933.
SAPAROV SM, 2004, P NATL ACAD SCI USA, V101, P4805, DOI 10.1073/pnas.0308309101.
SCHMIDT DA, 2007, J PHYS CHEM A, V111, P10119, DOI 10.1021/jp074737n.
SCHOFIELD DP, 2003, PHYS CHEM CHEM PHYS, V5, P3100, DOI 10.1039/b304952c.
SHARMA SC, 2005, J RAMAN SPECTROSC, V36, P755, DOI 10.1002/jrs.1345.
STEINBACH C, 2004, J PHYS CHEM A, V108, P6165, DOI 10.1021/jp049276+.
STOWELL MHB, 1997, SCIENCE, V276, P812.
SUDIARTA IW, 2006, J PHYS CHEM A, V110, P10501, DOI 10.1021/jp060554+.
TAJKHORSHID E, 2002, SCIENCE, V296, P525.
TAKAIWA D, 2008, P NATL ACAD SCI USA, V105, P39, DOI 10.1073/pnas.0707917105.
TSUZUKI S, 2001, J CHEM PHYS, V114, P3949.
VAITHEESWARAN S, 2004, J CHEM PHYS, V121, P7955, DOI 10.1063/1.1796271.
VERNON MF, 1982, J CHEM PHYS, V77, P47.
WAGHE A, 2002, J CHEM PHYS, V117, P10789, DOI 10.1063/1.1519861.
WAN RZ, 2005, J AM CHEM SOC, V127, P7166, DOI 10.1021/ja050044d.
WANG L, 2008, J PHYS CHEM C, V112, P11779, DOI 10.1021/jp8048185.
WHITBY M, 2007, NAT NANOTECHNOL, V2, P87, DOI 10.1038/nnano.2006.175.
XANTHEAS SS, 1993, J CHEM PHYS, V99, P8774.
ZHAO YC, 2008, ADV MATER, V20, P1772, DOI 10.1002/adma.200702956.
ZHU FQ, 2003, BIOPHYS J, V85, P236.
ZIMMERLI U, 2005, NANO LETT, V5, P1017, DOI 10.1021/nl0503126.

Cited Reference Count:
90

Times Cited:
0

Publisher:
AMER CHEMICAL SOC; 1155 16TH ST, NW, WASHINGTON, DC 20036 USA

Subject Category:
Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary

ISSN:
1932-7447

DOI:
10.1021/jp808873r

IDS Number:
427UX

========================================================================

*Record 6 of 6.
*View Full Record: http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000265005500055
*Order Full Text [ ]

Title:
Dynamical behaviors of double-walled carbon nanotubes conveying fluid accounting for the role of small length scale

Authors:
Wang, L

Author Full Names:
Wang, L.

Source:
COMPUTATIONAL MATERIALS SCIENCE 45 (2): 584-588 APR 2009

Language:
English

Document Type:
Article

Author Keywords:
Carbon nanotube conveying fluid; Small length scale; Natural frequency; Critical flow velocity; Instability

KeyWords Plus:
CONTINUUM-MECHANICS; INSTABILITY; VIBRATION; FLOW

Abstract:
Based on theory of nonlocal elasticity, a nonlocal double-elastic beam model is developed for the vibration analysis of double-walled carbon nanotubes (DWCNTs) conveying fluid. The effect of small length scale is incorporated in the formulation. The natural frequency and critical flow velocity for the case of simply supported DWCNTs conveying fluid are obtained. The effect of small length scale on the properties of vibration and instability is discussed. It is demonstrated that the natural frequencies of DWCNTs conveying, fluid are dependent upon the small length scale. However, the effect of small length scale on the critical flow velocities can be neglected. (c) 2008 Elsevier B.V. All rights reserved.

Reprint Address:
Wang, L, Huazhong Univ Sci & Technol, Dept Mech, Wuhan 430074, Peoples R China.

Research Institution addresses:
Huazhong Univ Sci & Technol, Dept Mech, Wuhan 430074, Peoples R China

E-mail Address:
wanglinfliping@sohu.com

Cited References:
CHE GL, 1998, NATURE, V393, P346.
ERINGEN AC, 1983, J APPL PHYS, V54, P4703.
GAO YH, 2002, NATURE, V415, P599.
GOVINDJEE S, 1999, SOLID STATE COMMUN, V110, P227.
HE XQ, 2008, ARCH APPL MECH, V78, P637, DOI 10.1007/s00419-007-0184-3.
HUMMER G, 2001, NATURE, V414, P188.
KHOSRAVIAN N, 2008, NANOTECHNOLOGY, V19, ARTN 275703.
LEE HL, 2008, J APPL PHYS, V103, ARTN 024302.
LIU J, 1998, SCIENCE, V280, P1253.
LU JP, 1997, PHYS REV LETT, V79, P1297.
NATSUKI T, 2007, J APPL PHYS, V101, ARTN 034319.
PEDDIESON J, 2003, INT J ENG SCI, V41, P305.
REDDY CD, 2007, APPL PHYS LETT, V90, ARTN 133122.
RU CQ, 2000, PHYS REV B, V62, P16962.
SAITO R, 2001, CHEM PHYS LETT, V348, P187.
SUDAK LJ, 2003, J APPL PHYS, V94, P7281, DOI 10.1063/1.1625437.
TUZUN RE, 1996, NANOTECHNOLOGY, V7, P241.
WANG L, 2008, COMP MATER SCI, V43, P399.
WANG L, 2008, COMP MATER SCI, V44, P821, DOI 10.1016/j.commatsci.2008.06.001.
WANG L, 2008, PHYSICA E, V40, P3179, DOI 10.1016/j.physe.2008.05.009.
WANG XY, 2007, J PHYS D APPL PHYS, V40, P2563, DOI 10.1088/0022-3727/40/8/022.
YAN Y, 2009, APPL MATH MODEL, V33, P1430, DOI 10.1016/j.apm.2008.02.010.
YOON J, 2003, COMPOS SCI TECHNOL, V63, P1533, DOI 10.1016/S0266-3538(03)00058-7.
YOON J, 2005, COMPOS SCI TECHNOL, V65, P1326, DOI 10.1016/j.compscitech.2004.12.002.
YOON J, 2006, INT J SOLIDS STRUCT, V43, P3337, DOI 10.1016/j.ijsolstr.2005.04.039.
ZHANG YQ, 2004, PHYS REV B, V70, ARTN 205430.
ZHANG YQ, 2005, PHYS REV B, V71, ARTN 195404.

Cited Reference Count:
27

Times Cited:
0

Publisher:
ELSEVIER SCIENCE BV; PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS

Subject Category:
Materials Science, Multidisciplinary

ISSN:
0927-0256

DOI:
10.1016/j.commatsci.2008.12.006

IDS Number:
430RF

========================================================================
*Order Full Text*
All Customers
--------------
Please contact your library administrator, or person(s) responsible for
document delivery, to find out more about your organization's policy for
obtaining the full text of the above articles. If your organization does
not have a current document delivery provider, your administrator can
contact ISI Document Solution at service@isidoc.com, or call 800-603-4367
or 734-459-8565.

IDS Customers
--------------
IDS customers can purchase the full text of an article (having page number,
volume, and issue information) by returning this ENTIRE message as a Reply
to Sender or Forward to orders@isidoc.com. Mark your choices with an X in
the "Order Full Text: []" brackets for each item. For example, [X].

Please enter your account number here:

========================================================================
*Help Desk Contact Information*
If you have any questions, please visit the Thomson Scientific Technical Support Contact Information Web page:
http://www.thomsonscientific.com/support/techsupport
========================================================================

No comments: