Friday, April 17, 2009

ISI Web of Knowledge Alert - Hummer, G

ISI Web of Knowledge Citation Alert

Cited Article: Hummer, G. Water conduction through the hydrophobic channel of a carbon nanotube
Alert Expires: 22 OCT 2009
Number of Citing Articles: 3 new records this week (3 in this e-mail)
Organization ID: 3b97d1bbc1878baed0ab183d8b03130b
========================================================================
Note: Instructions on how to purchase the full text of an article and Help Desk Contact information are at the end of the e-mail.
========================================================================

*Record 1 of 3.
*View Full Record: http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000264708700018
*Order Full Text [ ]

Title:
Soft disks in a narrow channel

Authors:
Mukamel, D; Posch, HA

Author Full Names:
Mukamel, D.; Posch, H. A.

Source:
JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT : Art. No. P03014 MAR 2009

Language:
English

Document Type:
Proceedings Paper

Author Keywords:
phase diagrams (theory); fluids in confined geometries; interfacial phenomena and wetting

KeyWords Plus:
NEGATIVE HEAT-CAPACITY; SYSTEMS; FLUIDS; PORES; BOX

Abstract:
The pressure components of 'soft' disks in a two-dimensional narrow channel are analyzed in the dilute gas regime using the Mayer cluster expansion and molecular dynamics. Channels with either periodic or reflecting boundaries are considered. It is found that when the two-body potential, u(r), is singular at some distance r(0), the dependence of the pressure components on the channel width exhibits a singularity at one or more channel widths which are simply related to r(0). In channels with periodic boundary conditions and for potentials which are discontinuous at r(0), the transverse and longitudinal pressure components exhibit a 1/2 and a 3/2 singularity, respectively. Continuous potentials with a power-law singularity result in weaker singularities of the pressure components. For channels with reflecting boundary conditions the singularities are found to be weaker than those corresponding to periodic boundaries.

Reprint Address:
Mukamel, D, Weizmann Inst Sci, Dept Phys Complex Syst, IL-76100 Rehovot, Israel.

Research Institution addresses:
[Mukamel, D.] Weizmann Inst Sci, Dept Phys Complex Syst, IL-76100 Rehovot, Israel; [Posch, H. A.] Univ Vienna, Computat Phys Grp, Fac Phys, A-1090 Vienna, Austria

E-mail Address:
david.mukamel@weizmann.ac.il; Harald.Posch@univie.ac.at

Cited References:
ALLEN MP, 1991, COMPUTER SIMULATION.
ALLEN R, 2002, PHYS REV LETT, V89, P5502.
BOWLES RK, 2004, J CHEM PHYS, V121, P10668, DOI 10.1063/1.1811075.
DAGOSTINO M, 2000, PHYS LETT B, V473, P219.
EVANS R, 1990, J PHYS-CONDENS MAT, V2, P8989.
FORSTER C, 2004, PHYS REV E 2, V69, P6124.
GELB LD, 1999, REP PROG PHYS, V62, P1573.
GIVEN JA, 1995, J CHEM PHYS, V102, P15.
GOBET F, 2002, PHYS REV LETT, V89, P3403.
HERTEL P, 1971, ANN PHYS, V63, P520.
HILLE B, 2001, ION CHANNELS EXCITAB.
HUMMER G, 2001, NATURE, V414, P188.
KAMENETSKIY IE, 2004, J CHEM PHYS, V121, P7355, DOI 10.1063/1.1795131.
KIM H, PREPRINT.
KLAFTER J, 1989, MOL DYNAMICS RESTRIC.
KOFKE DA, 1993, J CHEM PHYS, V98, P4853.
KONIG PM, 2004, PHYS REV LETT, V93, P601.
MON KK, 2000, J CHEM PHYS, V112, P3457.
MON KK, 2006, J CHEM PHYS, V125, P44704.
MON KK, 2007, J CHEM PHYS, V127, P94702.
POSCH HA, 1990, PHYS REV A, V42, P1880.
RAPAPORT DC, 2001, ART MOL DYNAMICS SIM, P296.
SCHMIDT M, 2001, PHYS REV LETT, V86, P1191.
SMIT B, 1995, J PHYS CHEM-US, V99, P5597.
THIRRING W, 1970, ZS PHYS, V235, P339.
THIRRING W, 2003, PHYS REV LETT, V91, ARTN 130601.

Cited Reference Count:
26

Times Cited:
0

Publisher:
IOP PUBLISHING LTD; DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND

Subject Category:
Mechanics; Physics, Mathematical

ISSN:
1742-5468

DOI:
10.1088/1742-5468/2009/03/P03014

IDS Number:
426LB

========================================================================

*Record 2 of 3.
*View Full Record: http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000264591900030
*Order Full Text [ ]

Title:
Hydrophobic Interactions and Dewetting between Plates with Hydrophobic and Hydrophilic Domains

Authors:
Hua, L; Zangi, R; Berne, BJ

Author Full Names:
Hua, Lan; Zangi, Ronen; Berne, B. J.

Source:
JOURNAL OF PHYSICAL CHEMISTRY C 113 (13): 5244-5253 APR 2 2009

Language:
English

Document Type:
Article

KeyWords Plus:
SOLVENT-INDUCED FORCES; MOLECULAR-DYNAMICS; TEMPERATURE-DEPENDENCE; ANTI-COOPERATIVITY; SPATIAL DEPENDENCE; CONFINED FLUID; LENGTH SCALES; AQUEOUS UREA; LONG-RANGE; MEAN FORCE

Abstract:
We study by molecular dynamics simulations the wetting/dewetting transition and the dependence of the free energy on the distance between plates that contain both hydrophobic and hydrophilic particles. We show that dewetting is very sensitive to the distribution of hydrophobic and hydrophilic domains. In particular, we find that plates characterized by a large domain of hydrophobic sites induce a dewetting transition and an attractive solvent-induced interaction. On the other hand, a homogeneous distribution of the hydrophobic and hydrophilic particles on the plates prevents the dewetting transition and produces a repulsive solvent-induced interaction. We also present results for a system resembling a "Janus interface" in which one plate consists of hydrophobic particles and the other consists of hydrophilic particles showing that the interplate gap remains wet until steric constraints at small separations eject the water molecules. Our results indicate that the Cassie equat!
ion, for the contact angle of a heterogeneous plate, can not be used to predict the critical distance of dewetting. These results indicate that hydrophobic interactions between nanoscale surfaces with strong large length-scale hydrophobicity can be highly cooperative and thus they argue against additivity of the hydrophobic interactions between different surface domains in these cases. These findings are pertinent to certain protein-protein interactions where additivity is commonly assumed.

Reprint Address:
Berne, BJ, Columbia Univ, Dept Chem, 3000 Broadway, New York, NY 10027 USA.

Research Institution addresses:
[Hua, Lan; Zangi, Ronen; Berne, B. J.] Columbia Univ, Dept Chem, New York, NY 10027 USA

Cited References:
ASHBAUGH HS, 2006, REV MOD PHYS, V78, P159, DOI 10.1103/RevModPhys.78.159.
BALL P, 2003, NATURE, V423, P25, DOI 10.1038/423025a.
BERENDSEN HJC, 1984, J CHEM PHYS, V81, P3684.
BERENDSEN HJC, 1987, J PHYS CHEM-US, V91, P6269.
BOLHUIS PG, 2000, J CHEM PHYS, V113, P8154.
BRANDON S, 2003, J COLLOID INTERF SCI, V263, P237, DOI 10.1016/S0021-9797(03)00285-6.
BRUGE F, 1996, CHEM PHYS LETT, V254, P283.
CASSIE ABD, 1948, DISCUSS FARADAY SOC, V3, P11.
CASSIE ABD, 1952, DISCUSS FARADAY SOC, V75, P5041.
CHAN HS, 2000, PROTEINS, V40, P543.
CHANDLER D, 2005, NATURE, V437, P640, DOI 10.1038/nature04162.
CHEN J, 2008, PHYS CHEM CHEM PHYS, V10, P471, DOI 10.1039/b714141f.
CHENG Y, 2008, NATURE, V392, P696.
CHOUDHURY N, 2005, J AM CHEM SOC, V127, P3556, DOI 10.1021/ja0441817.
CHRISTENSON HK, 2001, ADV COLLOID INTERFAC, V91, P391.
CZAPLEWSKI C, 2000, PROTEIN SCI, V9, P1235.
CZAPLEWSKI C, 2002, INT J QUANTUM CHEM, V88, P41.
CZAPLEWSKI C, 2002, J CHEM PHYS, V116, P2665.
CZAPLEWSKI C, 2003, BIOPHYS CHEM, V105, P339, DOI 10.1016/S0301-4622(03)00085-1.
DILL KA, 1997, J BIOL CHEM, V272, P701.
FERSHT AR, 1999, STRUCTURE MECH PROTE.
FLYVBJERG H, 1989, J CHEM PHYS, V91, P461.
GHOSH T, 2003, J PHYS CHEM B, V107, P612, DOI 10.1021/jp0220175.
GIOVAMBATTISTA N, 2007, J PHYS CHEM B, V111, P9581, DOI 10.1021/jp071957s.
GIOVAMBATTISTA N, 2007, J PHYS CHEM C, V111, P1323.
HUA L, 2007, J PHYS CHEM B, V111, P9069, DOI 10.1021/jp0707923.
HUANG DM, 2000, P NATL ACAD SCI USA, V97, P8324.
HUANG DM, 2002, J PHYS CHEM B, V106, P2047.
HUANG X, 2003, P NATL ACAD SCI USA, V100, P11953, DOI 10.1073/pnas.1934837100.
HUMMER G, 1999, J AM CHEM SOC, V121, P6299.
HUMMER G, 2000, CHEM PHYS, V258, P349.
HUMMER G, 2001, NATURE, V414, P188.
KESKIN O, 2005, J MOL BIOL, V345, P1281, DOI 10.1016/j.jmb.2004.10.077.
KOSHI T, 2004, PHYS REV LETT, V93, UNSP 185701-1.
KOSHI T, 2005, J CHEM PHYS, V123, UNSP 204707.
LEE CY, 1984, J CHEM PHYS, V80, P4448.
LEUNG K, 2003, PHYS REV LETT, V90, P65502.
LI X, 2006, J AM CHEM SOC, V128, P12439, DOI 10.1021/ja057944e.
LINDAHL E, 2001, J MOL MODEL, V7, P306.
LIU P, 2005, NATURE, V437, P159, DOI 10.1038/nature03926.
LUM K, 1997, PHYS REV E, V56, R6283.
LUM K, 1998, INT J THERMOPHYS, V19, P845.
LUM K, 1999, J PHYS CHEM B, V103, P4570.
LUNDGREN M, 2007, LANGMUIR, V23, P1187, DOI 10.1021/la060712o.
LUZAR A, 2000, J CHEM PHYS, V113, P5836.
MAIBAUM L, 2003, J PHYS CHEM B, V107, P1189, DOI 10.1021/jp0267196.
MAIBAUM L, 2007, J PHYS CHEM B, V111, P9025, DOI 10.1021/jp072266z.
MARTORANA V, 1997, BIOPHYS J, V73, P31.
MILLER TF, 2007, P NATL ACAD SCI USA, V104, P14559, DOI 10.1073/pnas.0705830104.
MIYAMOTO S, 1992, J COMPUT CHEM, V13, P952.
MOGHADDAM MS, 2005, J AM CHEM SOC, V127, P303, DOI 10.1021/ja040165y.
MOUNTAIN RD, 2003, J AM CHEM SOC, V125, P1950, DOI 10.1021/ja020496f.
MOZA B, 2006, P NATL ACAD SCI USA, V103, P9867.
PADDAY J, 1978, SPREADING ADHESION.
PANGALI CS, 1978, ACS SYM SER, V86, P29.
PLANT AL, 1995, ANAL BIOCHEM, V226, P342.
PLOTKIN SS, 1997, J CHEM PHYS, V106, P2932.
RANK JA, 1997, PROTEIN SCI, V6, P347.
RASCHKE T, 2001, P NATL ACAD SCI USA, V989, P5965.
REICHMANN D, 2005, P NATL ACAD SCI USA, V102, P57, DOI 10.1073/pnas.0407280102.
SANBIAGIO PL, 1998, EUR BIOPHYS J BIOPHY, V27, P183.
SCHERAGA HA, 1998, J BIOMOL STRUCT DYN, V16, P447.
SHIMIZU S, 2001, J CHEM PHYS, V115, P1414.
SHIMIZU S, 2002, PROTEINS, V49, P560, DOI 10.1002/prot.10263.
SINGH S, 2006, NATURE, V442, P526, DOI 10.1038/442526a.
SORENSON JM, 1998, FOLD DES, V3, P523.
STILLINGER FH, 1973, J SOLUTION CHEM, V2, P141.
TENWOLDE PR, 2002, P NATL ACAD SCI USA, V99, P6539.
TOBI D, 2000, PROTEINS, V41, P40.
TSAI J, 1997, PROTEIN SCI, V6, P2606.
VENDRUSCOLO M, 2000, PROTEINS, V38, P134.
WALLQVIST A, 1995, J PHYS CHEM-US, V99, P2893.
WATANABE K, 1986, J PHYS CHEM-US, V90, P795.
WILLARD A, 2009, FARADAY DISCUSS, V141, P209.
WILLARD AP, 2008, J PHYS CHEM B, V112, P6187, DOI 10.1021/jp077186+.
ZANGI R, 2006, J PHYS CHEM B, V110, P22736, DOI 10.1021/jp064475+.
ZANGI R, 2007, J AM CHEM SOC, V129, P4678, DOI 10.1021/ja068305m.
ZANGI R, 2008, J PHYS CHEM B, V112, P8634, DOI 10.1021/jp802135c.
ZHANG XY, 2002, SCIENCE, V295, P663.
ZHOU RH, 2004, SCIENCE, V305, P1605.
ZHU YX, 2002, PHYS REV LETT, V88, ARTN 106102.

Cited Reference Count:
81

Times Cited:
0

Publisher:
AMER CHEMICAL SOC; 1155 16TH ST, NW, WASHINGTON, DC 20036 USA

Subject Category:
Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary

ISSN:
1932-7447

DOI:
10.1021/jp8088758

IDS Number:
424TT

========================================================================

*Record 3 of 3.
*View Full Record: http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000264735800013
*Order Full Text [ ]

Title:
A program for performing exact quantum dynamics calculations using cylindrical polar coordinates: A nanotube application

Authors:
Skouteris, D; Gervasi, O; Lagana, A

Author Full Names:
Skouteris, Dimitris; Gervasi, Osvaldo; Lagana, Antonio

Source:
COMPUTER PHYSICS COMMUNICATIONS 180 (3): 459-465 MAR 2009

Language:
English

Document Type:
Article

Author Keywords:
Wavepacket; Cylindrical; Nanotube; Propagation

KeyWords Plus:
DEPENDENT SCHRODINGER-EQUATION; CARBON NANOTUBES; REACTIVE SCATTERING; MOLECULAR-DYNAMICS; SPECTRAL METHOD; CL+H-2 REACTION; STATES; TRANSPORT; MEMBRANES; HYDROGEN

Abstract:
A program that uses the time-dependent wavepacket method to study the motion of structureless particles in a force field of quasi-cylindrical symmetry is presented here, The program utilises cylindrical polar coordinates to express the wavepacket, which is subsequently propagated using a Chebyshev expansion of the Schrodinger propagator. Time-dependent exit flux as well as energy-dependent S matrix elements can be obtained for all states of the particle (describing its angular momentum component along the nanotube axis and the excitation of the radial degree of freedom in the cylinder). The program has been used to study the motion of an H atom across a carbon nanotube.
Program summary
Program title: CYLWAVE
Catalogue identifier. AECL_v1_0
Program summary URL: http://cpc.cs.qub.ac.uk/summaries/AECL_v1_0.html
Program obtainable from: CPC
Program Library, Queen's University, Belfast, N. Ireland
Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html
No. of lines in distributed program, including test data, etc.: 3673
No. of bytes in distributed program, including test data, etc.: 35 2217
Distribution format. tar.gz
Programming language: Fortran 77
Computer. RISC workstations
Operating system: UNIX
RAM: 120 MBytes
Classification: 16.7, 16.10
External routines: SUNSOFT performance library (not essential) TFFT2D.F (Temperton Fast Fourier Transform), BESSJ.F (from Numerical Recipes, for the calculation of Bessel functions) (included in the distribution file).
Nature of problem: Time evolution of the state of a structureless particle in a quasicylindrical potential. Solution method: Time dependent wavepacket propagation.
Running time: 50000 secs. The test run supplied with the distribution takes about 10 minutes to complete. (C) 2008 Elsevier B.V. All rights reserved.

Reprint Address:
Skouteris, D, Univ Perugia, Dipartimento Matemat & Informat, Via Vanvitelli, I-06100 Perugia, Italy.

Research Institution addresses:
[Skouteris, Dimitris; Gervasi, Osvaldo] Univ Perugia, Dipartimento Matemat & Informat, I-06100 Perugia, Italy; [Skouteris, Dimitris; Lagana, Antonio] Univ Perugia, Dipartimento Chim, I-06100 Perugia, Italy

E-mail Address:
dimitris@dyn.unipg.it; osvaldo@unipg.it; lag@dyn.unipg.it

Cited References:
ARTECONI L, 2005, LECT NOTES COMPUT SC, V3480, P1093.
BACIC Z, 1989, ANNU REV PHYS CHEM, V40, P469.
BALAKRISHNAN N, 1997, PHYS REP, V280, P79.
BEREZHKOVSKII A, 2002, PHYS REV LETT, V89, P64503.
BROOKS BR, 1983, J COMPUT CHEM, V4, P187.
CASE DA, 2005, J COMPUT CHEM, V26, P1668, DOI 10.1002/jcc.20290.
CHICO L, 2005, INT J NANOTECHNOL, V2, P103.
COREY GC, 1993, NUMERICAL GRID METHO, P1.
CUMINGS J, 2000, SCIENCE, V289, P602.
DANIELSON GC, 1942, J FRANKL INST, V233, P365.
DUHAMEL P, 1990, SIGNAL PROCESS, V19, P259.
FEIT MD, 1982, J COMPUT PHYS, V47, P412.
FEIT MD, 1983, J CHEM PHYS, V78, P301.
FEIT MD, 1984, J CHEM PHYS, V80, P2578.
GUERINI S, 2007, VIB SPECTROSC, V45, P103, DOI 10.1016/j.vibspec.2007.05.005.
HUMMER G, 2001, NATURE, V414, P188.
KALRA A, 2003, P NATL ACAD SCI USA, V100, P10175.
KOSLOFF D, 1983, J COMPUT PHYS, V52, P35.
KWON YK, 1999, PHYS REV LETT, V82, P1470.
LEQUERE F, 1991, J CHEM PHYS, V94, P1118.
LIGHT JC, 1985, J CHEM PHYS, V82, P1400.
LILL JV, 1982, CHEM PHYS LETT, V89, P483.
LIN FJ, 1991, COMPUT PHYS COMMUN, V63, P538.
LIU Z, 2007, NAT NANOTECHNOL, V2, P422, DOI 10.1038/nnqno.2007.187.
LU T, 2003, J PHYS CHEM B, V107, P12989, DOI 10.1021/jp030601n.
LU T, 2003, J THEOR COMPUT CHEM, V2, P621.
MANN DJ, 2003, PHYS REV LETT, V90, ARTN 195503.
MUCKERMAN JT, 1993, NUMERICAL GRID METHO, P89.
SHARAFEDDIN O, 1993, CHEM PHYS LETT, V204, P190.
SKOUTERIS D, 2000, COMPUT PHYS COMMUN, V133, P128.
SKOUTERIS D, 2004, INT J QUANTUM CHEM, V96, P562, DOI 10.1002/qua.10757.
SKOUTERIS D, 2004, INT J QUANTUM CHEM, V99, P577, DOI 10.1002/qua.10857.
SKOUTERIS D, 2006, LECT NOTES COMPUT SC, V3980, P757.
SKOUTERIS D, 2007, THEOR CHEM ACC, V118, P47.
TALEZER H, 1984, J CHEM PHYS, V81, P3967.
TSANG SC, 1994, NATURE, V372, P159.
YEH IC, 2004, P NATL ACAD SCI USA, V101, P12177, DOI 10.1073/pnas.0402699101.

Cited Reference Count:
37

Times Cited:
0

Publisher:
ELSEVIER SCIENCE BV; PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS

Subject Category:
Computer Science, Interdisciplinary Applications; Physics, Mathematical

ISSN:
0010-4655

DOI:
10.1016/j.cpc.2008.10.016

IDS Number:
426VH

========================================================================
*Order Full Text*
All Customers
--------------
Please contact your library administrator, or person(s) responsible for
document delivery, to find out more about your organization's policy for
obtaining the full text of the above articles. If your organization does
not have a current document delivery provider, your administrator can
contact ISI Document Solution at service@isidoc.com, or call 800-603-4367
or 734-459-8565.

IDS Customers
--------------
IDS customers can purchase the full text of an article (having page number,
volume, and issue information) by returning this ENTIRE message as a Reply
to Sender or Forward to orders@isidoc.com. Mark your choices with an X in
the "Order Full Text: []" brackets for each item. For example, [X].

Please enter your account number here:

========================================================================
*Help Desk Contact Information*
If you have any questions, please visit the Thomson Scientific Technical Support Contact Information Web page:
http://www.thomsonscientific.com/support/techsupport
========================================================================

No comments: