Cited Article:    Holt JK. Fast mass transport through sub-2-nanometer carbon nanotubes
 Alert Expires:    09 NOV 2010
 Number of Citing Articles:    4 new records this week (4 in this e-mail)
 Organization ID:  3b97d1bbc1878baed0ab183d8b03130b
========================================================================
 Note:  Instructions on how to purchase the full text of an article, import the records into an 
 ISI ResearchSoft product, and Help Desk Contact information are at the end of the e-mail.
========================================================================
FN ISI Export Format
VR 1.0
PT J
*Record 1 of 4. 
L5 <http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;UT=000275084600065>
*Order Full Text [ ]
AU Yang, LJ
   Gao, YQ
AF Yang, Lijiang
   Gao, Yi Qin
TI Effects of Cosolvents on the Hydration of Carbon Nanotubes
SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
LA English
DT Article
ID AQUEOUS UREA SOLUTIONS; MOLECULAR-DYNAMICS; HYDROPHOBIC INTERACTIONS;
   WATER; PROTEINS; DENATURATION; TRANSPORT; STABILITY; MECHANISM; SYSTEMS
AB Molecular dynamics simulations of a nonpolar single-walled carbon
   nanotube (SWNT) solvated in aqueous solutions of urea, methanol, and
   trimethylamine N-oxide (TMAO) show clearly the effects of cosolvents on
   the hydration of the interior of the SWNT. The size of the SWNT was
   chosen to be small enough that water but not the cosolvent molecules
   can penetrate into its interior. Urea as a protein denaturant improves
   hydration of the interior of the SWNT, while the protein protectant
   TMAO dehydrates the SWNT. The interior of the SWNT is also dehydrated
   when methanol is added to the solution. The analysis of interaction
   energies of the water confined inside the SWNT pore shows that the
   stability of the confined water in the methanol and TMAO solutions
   mainly depends on electrostatic interactions. In contrast, both van der
   Waals and electrostatic interactions were shown to be important in
   stabilizing the confined water when the SWNT is immersed in the urea
   solution.
C1 [Yang, Lijiang; Gao, Yi Qin] Texas A&M Univ, Dept Chem, College Stn, TX 77842 USA.
RP Gao, YQ, Texas A&M Univ, Dept Chem, POB 30012, College Stn, TX 77842
   USA.
EM yiqin@mail.chem.tamu.edu
CR BENNION BJ, 2003, P NATL ACAD SCI USA, V100, P5142, DOI
   10.1073/pnas.0930122100
   BERENDSEN HJC, 1984, J CHEM PHYS, V81, P3684
   BEREZHKOVSKII A, 2002, PHYS REV LETT, V89, UNSP 064503
   BIANCHI E, 1970, J BIOL CHEM, V245, P3341
   BOLEN DW, 2008, ANNU REV BIOCHEM, V77, P339, DOI
   10.1146/annurev.biochem.77.061306.131357
   BUCK M, 1993, BIOCHEMISTRY-US, V32, P669
   DARDEN T, 1993, J CHEM PHYS, V98, P10089
   DUFFY EM, 1993, J AM CHEM SOC, V115, P9271
   FINER EG, 1972, J AM CHEM SOC, V94, P4424
   HAYASHI Y, 2007, J NON-CRYST SOLIDS, V353, P4492, DOI
   10.1016/j.jnoncrysol.2007.02.079
   HOLT JK, 2006, SCIENCE, V312, P1034, DOI 10.1126/science.1126298
   HUA L, 2008, P NATL ACAD SCI USA, V105, P16928, DOI
   10.1073/pnas.0808427105
   HUMMER G, 2001, NATURE, V414, P188
   HUMMER G, 2007, MOL PHYS, V105, P201, DOI 10.1080/00268970601140784
   JORGENSEN WL, 1983, J CHEM PHYS, V79, P926
   KALRA A, 2003, P NATL ACAD SCI USA, V100, P10175
   KAST KM, 2003, J PHYS CHEM A, V107, P5342, DOI 10.1021/jp027336a
   KOKUBO H, 2007, BIOPHYS J, V93, P3392, DOI 10.1529/biophysj.107.114181
   KUHARSKI RA, 1984, J AM CHEM SOC, V106, P5786
   MAJUMDER M, 2005, NATURE, V438, P44, DOI 10.1038/43844a
   RASAIAH JC, 2008, ANNU REV PHYS CHEM, V59, P713, DOI
   10.1146/annurev.physchem.59.032607.093815
   ROBINSON DR, 1965, J AM CHEM SOC, V87, P2462
   RYCKAERT JP, 1977, J COMPUT PHYS, V23, P327
   SOPER AK, 2003, BIOPHYS CHEM, V105, P649, DOI
   10.1016/S0301-4622(03)00095-4
   TANFORD C, 1964, J AM CHEM SOC, V86, P2050
   TIMASHEFF SN, 1993, ANNU REV BIOPH BIOM, V22, P67
   WALLQVIST A, 1998, J AM CHEM SOC, V120, P427
   WEI HY, 2009, J PHYS CHEM B   1123
   ZANGI R, 2009, J AM CHEM SOC, V131, P1535, DOI 10.1021/ja807887g
   ZOU Q, 2002, J AM CHEM SOC, V124, P1192
NR 30
TC 0
PU AMER CHEMICAL SOC; 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 0002-7863
DI 10.1021/ja9091825
PD JAN 20
VL 132
IS 2
BP 842
EP 848
SC Chemistry, Multidisciplinary
GA 562VY
UT ISI:000275084600065
ER
PT J
*Record 2 of 4. 
L5 <http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;UT=000275085000049>
*Order Full Text [ ]
AU Gong, XJ
   Li, JC
   Xu, K
   Wang, JF
   Yang, H
AF Gong, Xiaojing
   Li, Jichen
   Xu, Ke
   Wang, Jianfeng
   Yang, Hui
TI A Controllable Molecular Sieve for Na+ and K+ Ions
SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
LA English
DT Article
ID CARBON NANOTUBE MEMBRANES; POTASSIUM CHANNELS; MASS-TRANSPORT; WATER
   CHANNEL; SELECTIVITY; CONDUCTION; FLOW; NANOPORES
AB The selective rate of specific ion transport across nanoporous material
   is critical to biological and nanofluidic systems Molecular sieves for
   ions can be achieved by steric and electrical effects However, the
   radii of Na+ and K+ are quite similar, they both carry a positive
   charge, making them difficult to separate Biological ionic channels
   contain precisely arranged arrays of amino acids that can efficiently
   recognize and guide the passage of K+ or Na+ across the cell membrane
   However, the design of inorganic channels with novel recognition
   mechanisms that control the ionic selectivity remains a challenge. We
   present here a design for a controllable ion-selective nanopore
   (molecular sieve) based on a single-walled carbon nanotube with
   specially arranged carbonyl oxygen atoms modified inside the nanopore,
   which was inspired by the structure of potassium channels in membrane
   spanning proteins (e g, KcsA) Our molecular dynamics simulations show
   that the remarkable selectivity is attributed to the hydration
   structure of Na+ or K+ confined in the nanochannels, which can be
   precisely tuned by different patterns of the carbonyl oxygen atoms The
   results also suggest that a confined environment plays a dominant role
   in the selectivity process. These studies provide a better
   understanding of the mechanism of ionic selectivity in the KcsA channel
   and possible technical applications in nanotechnology and
   biotechnology, including serving as a laboratory-in-nanotube for
   special chemical interactions and as a high-efficiency nanodevice for
   purification or desalination of sea and brackish water
C1 [Gong, Xiaojing; Xu, Ke; Wang, Jianfeng; Yang, Hui] Chinese Acad Sci, Suzhou Inst Nanotech & Nanobion, Suzhou 215125, Peoples R China.
   [Yang, Hui] Univ Sci & Technol China, Dept Phys, Hefei 230026, Peoples R China.
   [Li, Jichen] Univ Manchester, Dept Phys & Astron, Manchester M13 9PL, Lancs, England.
RP Gong, XJ, Chinese Acad Sci, Suzhou Inst Nanotech & Nanobion, Suzhou
   215125, Peoples R China.
CR BECKSTEIN O, 2004, J AM CHEM SOC, V126, P14694, DOI 10.1021/ja045271e
   BESTEMAN K, 2003, NANO LETT, V3, P727, DOI 10.1021/nl034139u
   BOSTICK DL, 2007, P NATL ACAD SCI USA, V104, P9260, DOI
   10.1073/pnas.0700554104
   BOURLON B, 2007, NAT NANOTECHNOL, V2, P104, DOI 10.1038/nnano.2006.211
   COLE D, 2006, NAT MATER, V5, P305, DOI 10.1038/nmat1608
   CORRY B, 2008, J PHYS CHEM B, V112, P1427, DOI 10.1021/jp709845u
   DARDEN T, 1993, J CHEM PHYS, V98, P10089
   FAN R, 2005, PHYS REV LETT, V95, ARTN 086607
   GHOSH S, 2003, SCIENCE, V299, P1042, DOI 10.1126/science.1079080
   GONG XJ, 2008, PHYS REV LETT, V101, ARTN 257801
   HARDING MM, 2002, ACTA CRYSTALLOGR D 5, V58, P872
   HILLE B, 1999, NAT MED, V5, P1105
   HOLT JK, 2006, SCIENCE, V312, P1034, DOI 10.1126/science.1126298
   HUMMER G, 2001, NATURE, V414, P188
   JIANG YX, 2002, NATURE, V417, P523
   JORGENSEN WL, 1983, J CHEM PHYS, V79, P926
   JOSEPH S, 2003, NANO LETT, V3, P1399, DOI 10.1021/nl0346326
   KYOTANI T, 2001, CARBON, V39, P782
   LI JY, 2007, P NATL ACAD SCI USA, V104, P3687, DOI
   10.1073/pnas.0604541104
   LINDAHL E, 2001, J MOL MODEL, V7, P306
   MACKINNON R, 2004, ANGEW CHEM INT EDIT, V43, P4265, DOI
   10.1002/anie.200400662
   MAJUMDER M, 2005, NATURE, V438, P44, DOI 10.1038/43844a
   NOSKOV SY, 2004, NATURE, V431, P830, DOI 10.1038/nature02943
   PARK JH, 2006, NANOTECHNOLOGY, V17, P895, DOI 10.1088/0957-4484/17/3/046
   REGAN BC, 2004, NATURE, V428, P924, DOI 10.1038/nature02496
   SHANNON MA, 2008, NATURE, V452, P301, DOI 10.1038/nature06599
   SHAO Q, 2009, NANO LETT, V9, P989, DOI 10.1021/nl803044k
   SHI N, 2006, NATURE, V440, P570, DOI 10.1038/nature04508
   SINT K, 2008, J AM CHEM SOC, V130, P16448, DOI 10.1021/ja804409f
   SIWY Z, 2002, PHYS REV LETT, V89, ARTN 198103
   SUN L, 2000, J AM CHEM SOC, V122, P12340, DOI 10.1021/ja002429w
   THOMAS M, 2007, BIOPHYS J, V93, P2635, DOI 10.1529/biophysj.107.108167
   VARMA S, 2007, BIOPHYS J, V93, P1093, DOI 10.1529/biophysj.107.107482
   WAN RZ, 2005, J AM CHEM SOC, V127, P7166, DOI 10.1021/ja050044d
   WHITBY M, 2007, NAT NANOTECHNOL, V2, P87, DOI 10.1038/nnano.2006.175
   XIU P, 2009, J AM CHEM SOC, V131, P2840, DOI 10.1021/ja804586w
   YANG L, 2007, J CHEM PHYS, V126, ARTN 084706
   ZHU FQ, 2003, BIOPHYS J, V85, P236
NR 38
TC 0
PU AMER CHEMICAL SOC; 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 0002-7863
DI 10.1021/ja905753p
PD FEB 17
VL 132
IS 6
BP 1873
EP 1877
SC Chemistry, Multidisciplinary
GA 562WC
UT ISI:000275085000049
ER
PT J
*Record 3 of 4. 
L5 <http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;UT=000275045600003>
*Order Full Text [ ]
AU Rivera, JL
   Starr, FW
AF Rivera, Jose L.
   Starr, Francis W.
TI Rapid Transport of Water via a Carbon Nanotube Syringe
SO JOURNAL OF PHYSICAL CHEMISTRY C
LA English
DT Article
ID MOLECULAR-DYNAMICS; FLOW; CONDUCTION; MEMBRANES; CHANNEL; FILMS
AB The controlled flow of water molecules at the nanoscale is an initial
   step to many fluidic processes ill nanotechnology. Here we show how
   thin films of water call be drawn through a nanosyringe built from a
   carbon nanotube membrane and a "plunger". By increasing the speed of
   withdrawal of the plunger, we call obtain Molecular transport through
   the membrane at flux rates exceeding 1()25 molecules cm(-2) s(-1).
   Above I threshold speed around 0.25 nm/ns (25 cm/s), molecules cannot
   fill the chamber created by the plunger motion as fast as the chamber
   expands, and the resulting flux rate drops. By considering hydrophobic
   or hydrophilic Plungers, we unexpectedly find that the nature of the
   water-plunger interactions does not affect the flux rate or the
   threshold plunger speed. While the water structure near the plunger
   Surface differs significantly For different plunger interactions, the
   failure of the film away From the plunger surface is responsible for
   loss of transport. As I result, the surface interactions play a limited
   role in controlling the flux.
C1 [Rivera, Jose L.; Starr, Francis W.] Wesleyan Univ, Dept Phys, Middletown, CT 06457 USA.
   [Rivera, Jose L.] Univ Nacl Autonoma Mexico, Inst Invest Mat, Mexico City 04510, DF, Mexico.
RP Starr, FW, Wesleyan Univ, Dept Phys, Middletown, CT 06457 USA.
EM joserivera@iim.unam.mx
   fstarr@wesleyan.edu
CR ARGYRIS D, 2008, J PHYS CHEM C, V112, P13587, DOI 10.1021/jp803234a
   CORRY B, 2008, J PHYS CHEM B, V112, P1427, DOI 10.1021/jp709845u
   DZUBIELLA J, 2005, J CHEM PHYS, V122, P14
   EVANS DJ, 1977, MOL PHYS, V34, P327
   EVANS DJ, 1983, PHYS LETT A, V98, P433
   FANG HP, 2008, J PHYS D, V41, P16
   FRENKEL D, 1996, UNDERSTANDING MOL SI
   GIOVAMBATTISTA N, 2006, PHYS REV E, V73, P14
   GONG XJ, 2007, NAT NANOTECHNOL, V2, P709, DOI 10.1038/nnano.2007.320
   GUO YJ, 1991, NATURE, V351, P464
   HANASAKI I, 2006, NANOTECHNOLOGY, V17, P2794, DOI
   10.1088/0957-4484/17/11/012
   HOLT JK, 2006, SCIENCE, V312, P1034, DOI 10.1126/science.1126298
   HOOVER WG, 1982, PHYS REV LETT, V48, P1818
   HUMMER G, 2001, NATURE, V414, P188
   JOSEPH S, 2008, NANO LETT, V8, P452, DOI 10.1021/nl072385q
   KALRA A, 2003, P NATL ACAD SCI USA, V100, P10175
   KUMAR P, 2005, PHYS REV E, V72, P12
   KUMAR P, 2007, PHYS REV E, V75, P8
   LI JY, 2007, P NATL ACAD SCI USA, V104, P3687, DOI
   10.1073/pnas.0604541104
   MAHONEY MW, 2000, J CHEM PHYS, V112, P8910
   MAJUMDER M, 2005, NATURE, V438, P44, DOI 10.1038/43844a
   RASAIAH JC, 2008, ANNU REV PHYS CHEM, V59, P713, DOI
   10.1146/annurev.physchem.59.032607.093815
   RAVIV U, 2001, NATURE, V413, P51
   RIVERA JL, 2002, NANO LETT, V2, P427
   RIVERA JL, 2007, J PHYS CHEM C, V111, P18899, DOI 10.1021/jp075989r
   SHOLL DS, 2006, SCIENCE, V312, P1003, DOI 10.1126/science.1127261
   STRIOLO A, 2007, NANOTECHNOLOGY, V18, P10
   THOMAS JA, 2008, NANO LETT, V8, P2788, DOI 10.1021/nl8013617
   VAITHEESWARAN S, 2004, J CHEM PHYS, V121, P7955, DOI 10.1063/1.1796271
   WAN RZ, 2005, J AM CHEM SOC, V127, P7166, DOI 10.1021/ja050044d
   WHITBY M, 2007, NAT NANOTECHNOL, V2, P87, DOI 10.1038/nnano.2006.175
   ZHU FQ, 2003, BIOPHYS J, V85, P236
   ZIMMERLI U, 2005, NANO LETT, V5, P1017, DOI 10.1021/nl0503126
NR 33
TC 0
PU AMER CHEMICAL SOC; 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 1932-7447
DI 10.1021/jp906527c
PD MAR 11
VL 114
IS 9
BP 3737
EP 3742
SC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science,
   Multidisciplinary
GA 562JG
UT ISI:000275045600003
ER
PT J
*Record 4 of 4. 
L5 <http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;UT=000275217500017>
*Order Full Text [ ]
AU Kocherginsky, N
AF Kocherginsky, N.
TI Mass transport and membrane separations: Universal description in terms
   of physicochemical potential and Einstein's mobility
SO CHEMICAL ENGINEERING SCIENCE
LA English
DT Article
DE Membranes; Energy; Entropy; Separations; Transport processes; Linear
   thermodynamics; Reverse osmosis; Barodiffusion; Solution-diffusion model
ID SOLUTION-DIFFUSION MODEL; PERMEABILITY; VOLUME; WATER
AB General yet simple description of chemical transport processes in
   non-isolated system is suggested. It is based on extended Teorell
   equation and just two fundamental parameters: physicochemical potential
   and Einstein's mobility. Using mobility it is possible to compare the
   rates of all major linear transport phenomena, including
   pressure-driven migration and also nonideal and multicomponent
   diffusion. Relationship with the Stefan-Maxwell approach and Onsager's
   linear thermodynamics is demonstrated and physical interpretation of
   both diagonal and off-diagonal phenomenological coefficients is
   suggested. Imposing boundary conditions for transport equations allows
   description of transport in homogeneous membranes caused by several
   concurrent driving factors, such as concentration, pressure, and
   voltage. Differences of barodiffusion, membrane filtration, and reverse
   osmosis are considered. For a porous membrane an expression for the
   pressure-driven volumetric flux through the pores as a function of
   mobility and pore size is derived. It is explained why hydraulic flow
   prevails in submicron pores and why diffusion is the dominant mechanism
   in reverse osmosis if the pressure difference is not too high. The
   theory naturally leads to the solution-diffusion model equations but
   does not need usual assumptions of constant pressure across the
   membrane and the pressure jump only at one surface. Internal pressure
   and mechanical stress gradients within a membrane exist and can be
   useful in a description of rheology of aging polymer membranes. A new
   equation for concurrent diffusion and hydraulic transport is derived
   and two possible molecular mechanisms leading to the Kedem-Katchalsky
   equations for reverse osmosis membranes are suggested. Finally,
   electrokinetic processes are described and their similarity to
   concentration- and pressure-driven transport is discussed. (C) 2009
   Elsevier Ltd. All rights reserved.
C1 Biomime, Urbana, IL 61801 USA.
RP Kocherginsky, N, Biomime, 909 E Sunnycrest Dr, Urbana, IL 61801 USA.
EM biomime@gmail.com
CR AGEEV EP, 1996, BIOFIZIKA+, V41, P613
   ALBERTY RA, 1997, PHYS CHEM
   ANNUNZIATA O, 2008, J PHYS CHEM B, V112, P11968, DOI 10.1021/jp803995n
   BAKER RW, 2004, MEMBRANE TECHNOLOGY
   BECKSTEIN O, 2004, J AM CHEM SOC, V126, P14694, DOI 10.1021/ja045271e
   BEREZINA NP, 2009, ELECTROCHIM ACTA, V54, P2342, DOI
   10.1016/j.electacta.2008.10.048
   BIRD BB, 1960, TRANSPORT PHENOMENA
   BOCKRIS JOM, 1998, MODERN ELECTROCHEMIS, V1, CH4
   BURGHOFF HG, 1980, J APPL POLYM SCI, V25, P323
   CANTOR RS, 1997, J PHYS CHEM B, V101, P1723
   CUSSLER EL, 1997, DIFFUSION MASS TRANS
   DEEN WM, 1998, ANAL TRANSPORT PHENO
   DEFAY R, 1966, SURFACE TENSION ADSO
   DEGROOT SR, 1962, NONEQUILIBRIUM THERM
   DERJAGUIN BV, 1987, SURFACE FORCES
   DO DD, 1998, ADSORPTION ANAL EQUI
   DOBOS D, 1978, ELECTROCHEMICAL DATA
   EINSTEIN A, 1956, INVESTIGATIONS THEOR
   FINKELSTEIN A, 1987, WATER MOVEMENT LIPID
   GERE JM, 1990, MECH MAT
   GIBBS JW, 1948, COLLECTED WORKS
   HAASE R, 1969, THERMODYNAMICS IRREV
   HOLT JK, 2006, SCIENCE, V312, P1034, DOI 10.1126/science.1126298
   HUMMER G, 2001, NATURE, V414, P188
   ISLAM MA, 2004, PHYS SCRIPTA, V70, P114
   JOU D, 2001, THERMODYNAMICS FLUID
   KEDEM O, 1958, BIOCHIM BIOPHYS ACTA, V27, P229
   KOCHERGINSKY N, 2003, J PHYS CHEM B, V107, P7830, DOI 10.1021/jp0275721
   KOCHERGINSKY N, 2009, J MEMBRANE SCI, V328, P58, DOI
   10.1016/j.memsci.2008.10.024
   KOCHERGINSKY NM, 1985, BIOL MEMBR, V1, P1734
   KOCHERGINSKY, 2009, CHEM ENG SCI UNPUB
   KONDEPUDI D, 1998, MODERN THERMODYNAMIC
   LAKSHMINARAYANA., 1969, TRANSPORT PHENOMENA
   MASON EA, 1990, J MEMBRANE SCI, V51, P1
   MULDER M, 1996, BASIC PRINCIPLES MEM
   ONSAGER L, 1931, PHYS REV, V37, P405
   PAUL DR, 2004, J MEMBRANE SCI, V241, P371, DOI
   10.1016/j.memsci.2004.05.026
   PHAROAH JG, 2000, J MEMBRANE SCI, V176, P277
   PURI P, 2008, J APPL POLYM SCI, V108, P47, DOI 10.1002/app.26829
   RARD JA, 2009, J CHEM ENG DATA, V54, P636, DOI 10.1021/je800725k
   ROSENBAUM S, 1969, J POLYM SCI, V7, P101
   ROULSTON DJ, 1990, BIPOLAR SEMICONDUCTO
   SILVA V, 2009, CHEM ENG J, V149, P78, DOI 10.1016/j.cej.2008.10.002
   SOURIRAJAN S, 1970, REVERSE OSMOSIS
   SOURIRAJAN S, 1985, REVERSE OSMOSIS ULTR
   SPIEGLER KS, 1966, DESALINATION, V1, P311
   STOKES RJ, 1997, FUNDAMENTALS INTERFA
   STRATHMANN H, 2005, ULLMANNS ENCY IND CH, DOI
   10.1002/14356007.A16_187.PUB2
   TEORELL T, 1935, P NATL ACAD SCI USA, V21, P152
   THAU G, 1966, DESALINATION, V1, P129
   WESSELINGH JA, 1990, MASS TRANSFER
   WIJMANS JG, 1995, J MEMBRANE SCI, V107, P1
   WIJMANS JG, 2004, J MEMBRANE SCI, V237, P39, DOI
   10.1016/j.memsei.2004.02.028
   YAMPOLSKII Y, 2006, MAT SCI MEMBRANES GA
   YAROSHCHUK AE, 1995, J MEMBRANE SCI, V101, P83
NR 55
TC 0
PU PERGAMON-ELSEVIER SCIENCE LTD; THE BOULEVARD, LANGFORD LANE,
   KIDLINGTON, OXFORD OX5 1GB, ENGLAND
SN 0009-2509
DI 10.1016/j.ces.2009.10.024
PD FEB 15
VL 65
IS 4
BP 1474
EP 1489
SC Engineering, Chemical
GA 564MA
UT ISI:000275217500017
ER
EF
========================================================================
 *Order Full Text* 
 All Customers
--------------
    Please contact your library administrator, or person(s) responsible for 
    document delivery, to find out more about your organization's policy for 
    obtaining the full text of the above articles. If your organization does 
    not have a current document delivery provider, your administrator can 
    contact ISI Document Solution at service@isidoc.com, or call 800-603-4367 
    or 734-459-8565.
 IDS Customers
--------------
    IDS customers can purchase the full text of an article (having page number, 
    volume, and issue information) by returning this ENTIRE message as a Reply 
    to Sender or Forward to orders@isidoc.com. Mark your choices with an X in 
    the "Order Full Text: []" brackets for each item. For example, [X].
Please enter your account number here:
========================================================================
 *Import Records into an ISI ResearchSoft product*
 1) Save the email as a text file. If your e-mail software removed extra line breaks, restore them before saving.
 2) From within an ISI ResearchSoft product, import the text file using the ISI-CE filter.
========================================================================
 *Help Desk Contact Information*
 If you have any questions, please visit the Thomson Scientific Technical Support Contact Information Web page:
http://www.thomsonscientific.com/support/techsupport
========================================================================
 
No comments:
Post a Comment