Friday, March 19, 2010

ISI Web of Knowledge Alert - Holt JK

ISI Web of Knowledge Citation Alert

Cited Article: Holt JK. Fast mass transport through sub-2-nanometer carbon nanotubes
Alert Expires: 09 NOV 2010
Number of Citing Articles: 4 new records this week (4 in this e-mail)
Organization ID: 3b97d1bbc1878baed0ab183d8b03130b
========================================================================
Note: Instructions on how to purchase the full text of an article, import the records into an
ISI ResearchSoft product, and Help Desk Contact information are at the end of the e-mail.
========================================================================

FN ISI Export Format
VR 1.0

PT J
*Record 1 of 4.
L5 <http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;UT=000275084600065>
*Order Full Text [ ]
AU Yang, LJ
Gao, YQ
AF Yang, Lijiang
Gao, Yi Qin
TI Effects of Cosolvents on the Hydration of Carbon Nanotubes
SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
LA English
DT Article
ID AQUEOUS UREA SOLUTIONS; MOLECULAR-DYNAMICS; HYDROPHOBIC INTERACTIONS;
WATER; PROTEINS; DENATURATION; TRANSPORT; STABILITY; MECHANISM; SYSTEMS
AB Molecular dynamics simulations of a nonpolar single-walled carbon
nanotube (SWNT) solvated in aqueous solutions of urea, methanol, and
trimethylamine N-oxide (TMAO) show clearly the effects of cosolvents on
the hydration of the interior of the SWNT. The size of the SWNT was
chosen to be small enough that water but not the cosolvent molecules
can penetrate into its interior. Urea as a protein denaturant improves
hydration of the interior of the SWNT, while the protein protectant
TMAO dehydrates the SWNT. The interior of the SWNT is also dehydrated
when methanol is added to the solution. The analysis of interaction
energies of the water confined inside the SWNT pore shows that the
stability of the confined water in the methanol and TMAO solutions
mainly depends on electrostatic interactions. In contrast, both van der
Waals and electrostatic interactions were shown to be important in
stabilizing the confined water when the SWNT is immersed in the urea
solution.
C1 [Yang, Lijiang; Gao, Yi Qin] Texas A&M Univ, Dept Chem, College Stn, TX 77842 USA.
RP Gao, YQ, Texas A&M Univ, Dept Chem, POB 30012, College Stn, TX 77842
USA.
EM yiqin@mail.chem.tamu.edu
CR BENNION BJ, 2003, P NATL ACAD SCI USA, V100, P5142, DOI
10.1073/pnas.0930122100
BERENDSEN HJC, 1984, J CHEM PHYS, V81, P3684
BEREZHKOVSKII A, 2002, PHYS REV LETT, V89, UNSP 064503
BIANCHI E, 1970, J BIOL CHEM, V245, P3341
BOLEN DW, 2008, ANNU REV BIOCHEM, V77, P339, DOI
10.1146/annurev.biochem.77.061306.131357
BUCK M, 1993, BIOCHEMISTRY-US, V32, P669
DARDEN T, 1993, J CHEM PHYS, V98, P10089
DUFFY EM, 1993, J AM CHEM SOC, V115, P9271
FINER EG, 1972, J AM CHEM SOC, V94, P4424
HAYASHI Y, 2007, J NON-CRYST SOLIDS, V353, P4492, DOI
10.1016/j.jnoncrysol.2007.02.079
HOLT JK, 2006, SCIENCE, V312, P1034, DOI 10.1126/science.1126298
HUA L, 2008, P NATL ACAD SCI USA, V105, P16928, DOI
10.1073/pnas.0808427105
HUMMER G, 2001, NATURE, V414, P188
HUMMER G, 2007, MOL PHYS, V105, P201, DOI 10.1080/00268970601140784
JORGENSEN WL, 1983, J CHEM PHYS, V79, P926
KALRA A, 2003, P NATL ACAD SCI USA, V100, P10175
KAST KM, 2003, J PHYS CHEM A, V107, P5342, DOI 10.1021/jp027336a
KOKUBO H, 2007, BIOPHYS J, V93, P3392, DOI 10.1529/biophysj.107.114181
KUHARSKI RA, 1984, J AM CHEM SOC, V106, P5786
MAJUMDER M, 2005, NATURE, V438, P44, DOI 10.1038/43844a
RASAIAH JC, 2008, ANNU REV PHYS CHEM, V59, P713, DOI
10.1146/annurev.physchem.59.032607.093815
ROBINSON DR, 1965, J AM CHEM SOC, V87, P2462
RYCKAERT JP, 1977, J COMPUT PHYS, V23, P327
SOPER AK, 2003, BIOPHYS CHEM, V105, P649, DOI
10.1016/S0301-4622(03)00095-4
TANFORD C, 1964, J AM CHEM SOC, V86, P2050
TIMASHEFF SN, 1993, ANNU REV BIOPH BIOM, V22, P67
WALLQVIST A, 1998, J AM CHEM SOC, V120, P427
WEI HY, 2009, J PHYS CHEM B 1123
ZANGI R, 2009, J AM CHEM SOC, V131, P1535, DOI 10.1021/ja807887g
ZOU Q, 2002, J AM CHEM SOC, V124, P1192
NR 30
TC 0
PU AMER CHEMICAL SOC; 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 0002-7863
DI 10.1021/ja9091825
PD JAN 20
VL 132
IS 2
BP 842
EP 848
SC Chemistry, Multidisciplinary
GA 562VY
UT ISI:000275084600065
ER

PT J
*Record 2 of 4.
L5 <http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;UT=000275085000049>
*Order Full Text [ ]
AU Gong, XJ
Li, JC
Xu, K
Wang, JF
Yang, H
AF Gong, Xiaojing
Li, Jichen
Xu, Ke
Wang, Jianfeng
Yang, Hui
TI A Controllable Molecular Sieve for Na+ and K+ Ions
SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
LA English
DT Article
ID CARBON NANOTUBE MEMBRANES; POTASSIUM CHANNELS; MASS-TRANSPORT; WATER
CHANNEL; SELECTIVITY; CONDUCTION; FLOW; NANOPORES
AB The selective rate of specific ion transport across nanoporous material
is critical to biological and nanofluidic systems Molecular sieves for
ions can be achieved by steric and electrical effects However, the
radii of Na+ and K+ are quite similar, they both carry a positive
charge, making them difficult to separate Biological ionic channels
contain precisely arranged arrays of amino acids that can efficiently
recognize and guide the passage of K+ or Na+ across the cell membrane
However, the design of inorganic channels with novel recognition
mechanisms that control the ionic selectivity remains a challenge. We
present here a design for a controllable ion-selective nanopore
(molecular sieve) based on a single-walled carbon nanotube with
specially arranged carbonyl oxygen atoms modified inside the nanopore,
which was inspired by the structure of potassium channels in membrane
spanning proteins (e g, KcsA) Our molecular dynamics simulations show
that the remarkable selectivity is attributed to the hydration
structure of Na+ or K+ confined in the nanochannels, which can be
precisely tuned by different patterns of the carbonyl oxygen atoms The
results also suggest that a confined environment plays a dominant role
in the selectivity process. These studies provide a better
understanding of the mechanism of ionic selectivity in the KcsA channel
and possible technical applications in nanotechnology and
biotechnology, including serving as a laboratory-in-nanotube for
special chemical interactions and as a high-efficiency nanodevice for
purification or desalination of sea and brackish water
C1 [Gong, Xiaojing; Xu, Ke; Wang, Jianfeng; Yang, Hui] Chinese Acad Sci, Suzhou Inst Nanotech & Nanobion, Suzhou 215125, Peoples R China.
[Yang, Hui] Univ Sci & Technol China, Dept Phys, Hefei 230026, Peoples R China.
[Li, Jichen] Univ Manchester, Dept Phys & Astron, Manchester M13 9PL, Lancs, England.
RP Gong, XJ, Chinese Acad Sci, Suzhou Inst Nanotech & Nanobion, Suzhou
215125, Peoples R China.
CR BECKSTEIN O, 2004, J AM CHEM SOC, V126, P14694, DOI 10.1021/ja045271e
BESTEMAN K, 2003, NANO LETT, V3, P727, DOI 10.1021/nl034139u
BOSTICK DL, 2007, P NATL ACAD SCI USA, V104, P9260, DOI
10.1073/pnas.0700554104
BOURLON B, 2007, NAT NANOTECHNOL, V2, P104, DOI 10.1038/nnano.2006.211
COLE D, 2006, NAT MATER, V5, P305, DOI 10.1038/nmat1608
CORRY B, 2008, J PHYS CHEM B, V112, P1427, DOI 10.1021/jp709845u
DARDEN T, 1993, J CHEM PHYS, V98, P10089
FAN R, 2005, PHYS REV LETT, V95, ARTN 086607
GHOSH S, 2003, SCIENCE, V299, P1042, DOI 10.1126/science.1079080
GONG XJ, 2008, PHYS REV LETT, V101, ARTN 257801
HARDING MM, 2002, ACTA CRYSTALLOGR D 5, V58, P872
HILLE B, 1999, NAT MED, V5, P1105
HOLT JK, 2006, SCIENCE, V312, P1034, DOI 10.1126/science.1126298
HUMMER G, 2001, NATURE, V414, P188
JIANG YX, 2002, NATURE, V417, P523
JORGENSEN WL, 1983, J CHEM PHYS, V79, P926
JOSEPH S, 2003, NANO LETT, V3, P1399, DOI 10.1021/nl0346326
KYOTANI T, 2001, CARBON, V39, P782
LI JY, 2007, P NATL ACAD SCI USA, V104, P3687, DOI
10.1073/pnas.0604541104
LINDAHL E, 2001, J MOL MODEL, V7, P306
MACKINNON R, 2004, ANGEW CHEM INT EDIT, V43, P4265, DOI
10.1002/anie.200400662
MAJUMDER M, 2005, NATURE, V438, P44, DOI 10.1038/43844a
NOSKOV SY, 2004, NATURE, V431, P830, DOI 10.1038/nature02943
PARK JH, 2006, NANOTECHNOLOGY, V17, P895, DOI 10.1088/0957-4484/17/3/046
REGAN BC, 2004, NATURE, V428, P924, DOI 10.1038/nature02496
SHANNON MA, 2008, NATURE, V452, P301, DOI 10.1038/nature06599
SHAO Q, 2009, NANO LETT, V9, P989, DOI 10.1021/nl803044k
SHI N, 2006, NATURE, V440, P570, DOI 10.1038/nature04508
SINT K, 2008, J AM CHEM SOC, V130, P16448, DOI 10.1021/ja804409f
SIWY Z, 2002, PHYS REV LETT, V89, ARTN 198103
SUN L, 2000, J AM CHEM SOC, V122, P12340, DOI 10.1021/ja002429w
THOMAS M, 2007, BIOPHYS J, V93, P2635, DOI 10.1529/biophysj.107.108167
VARMA S, 2007, BIOPHYS J, V93, P1093, DOI 10.1529/biophysj.107.107482
WAN RZ, 2005, J AM CHEM SOC, V127, P7166, DOI 10.1021/ja050044d
WHITBY M, 2007, NAT NANOTECHNOL, V2, P87, DOI 10.1038/nnano.2006.175
XIU P, 2009, J AM CHEM SOC, V131, P2840, DOI 10.1021/ja804586w
YANG L, 2007, J CHEM PHYS, V126, ARTN 084706
ZHU FQ, 2003, BIOPHYS J, V85, P236
NR 38
TC 0
PU AMER CHEMICAL SOC; 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 0002-7863
DI 10.1021/ja905753p
PD FEB 17
VL 132
IS 6
BP 1873
EP 1877
SC Chemistry, Multidisciplinary
GA 562WC
UT ISI:000275085000049
ER

PT J
*Record 3 of 4.
L5 <http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;UT=000275045600003>
*Order Full Text [ ]
AU Rivera, JL
Starr, FW
AF Rivera, Jose L.
Starr, Francis W.
TI Rapid Transport of Water via a Carbon Nanotube Syringe
SO JOURNAL OF PHYSICAL CHEMISTRY C
LA English
DT Article
ID MOLECULAR-DYNAMICS; FLOW; CONDUCTION; MEMBRANES; CHANNEL; FILMS
AB The controlled flow of water molecules at the nanoscale is an initial
step to many fluidic processes ill nanotechnology. Here we show how
thin films of water call be drawn through a nanosyringe built from a
carbon nanotube membrane and a "plunger". By increasing the speed of
withdrawal of the plunger, we call obtain Molecular transport through
the membrane at flux rates exceeding 1()25 molecules cm(-2) s(-1).
Above I threshold speed around 0.25 nm/ns (25 cm/s), molecules cannot
fill the chamber created by the plunger motion as fast as the chamber
expands, and the resulting flux rate drops. By considering hydrophobic
or hydrophilic Plungers, we unexpectedly find that the nature of the
water-plunger interactions does not affect the flux rate or the
threshold plunger speed. While the water structure near the plunger
Surface differs significantly For different plunger interactions, the
failure of the film away From the plunger surface is responsible for
loss of transport. As I result, the surface interactions play a limited
role in controlling the flux.
C1 [Rivera, Jose L.; Starr, Francis W.] Wesleyan Univ, Dept Phys, Middletown, CT 06457 USA.
[Rivera, Jose L.] Univ Nacl Autonoma Mexico, Inst Invest Mat, Mexico City 04510, DF, Mexico.
RP Starr, FW, Wesleyan Univ, Dept Phys, Middletown, CT 06457 USA.
EM joserivera@iim.unam.mx
fstarr@wesleyan.edu
CR ARGYRIS D, 2008, J PHYS CHEM C, V112, P13587, DOI 10.1021/jp803234a
CORRY B, 2008, J PHYS CHEM B, V112, P1427, DOI 10.1021/jp709845u
DZUBIELLA J, 2005, J CHEM PHYS, V122, P14
EVANS DJ, 1977, MOL PHYS, V34, P327
EVANS DJ, 1983, PHYS LETT A, V98, P433
FANG HP, 2008, J PHYS D, V41, P16
FRENKEL D, 1996, UNDERSTANDING MOL SI
GIOVAMBATTISTA N, 2006, PHYS REV E, V73, P14
GONG XJ, 2007, NAT NANOTECHNOL, V2, P709, DOI 10.1038/nnano.2007.320
GUO YJ, 1991, NATURE, V351, P464
HANASAKI I, 2006, NANOTECHNOLOGY, V17, P2794, DOI
10.1088/0957-4484/17/11/012
HOLT JK, 2006, SCIENCE, V312, P1034, DOI 10.1126/science.1126298
HOOVER WG, 1982, PHYS REV LETT, V48, P1818
HUMMER G, 2001, NATURE, V414, P188
JOSEPH S, 2008, NANO LETT, V8, P452, DOI 10.1021/nl072385q
KALRA A, 2003, P NATL ACAD SCI USA, V100, P10175
KUMAR P, 2005, PHYS REV E, V72, P12
KUMAR P, 2007, PHYS REV E, V75, P8
LI JY, 2007, P NATL ACAD SCI USA, V104, P3687, DOI
10.1073/pnas.0604541104
MAHONEY MW, 2000, J CHEM PHYS, V112, P8910
MAJUMDER M, 2005, NATURE, V438, P44, DOI 10.1038/43844a
RASAIAH JC, 2008, ANNU REV PHYS CHEM, V59, P713, DOI
10.1146/annurev.physchem.59.032607.093815
RAVIV U, 2001, NATURE, V413, P51
RIVERA JL, 2002, NANO LETT, V2, P427
RIVERA JL, 2007, J PHYS CHEM C, V111, P18899, DOI 10.1021/jp075989r
SHOLL DS, 2006, SCIENCE, V312, P1003, DOI 10.1126/science.1127261
STRIOLO A, 2007, NANOTECHNOLOGY, V18, P10
THOMAS JA, 2008, NANO LETT, V8, P2788, DOI 10.1021/nl8013617
VAITHEESWARAN S, 2004, J CHEM PHYS, V121, P7955, DOI 10.1063/1.1796271
WAN RZ, 2005, J AM CHEM SOC, V127, P7166, DOI 10.1021/ja050044d
WHITBY M, 2007, NAT NANOTECHNOL, V2, P87, DOI 10.1038/nnano.2006.175
ZHU FQ, 2003, BIOPHYS J, V85, P236
ZIMMERLI U, 2005, NANO LETT, V5, P1017, DOI 10.1021/nl0503126
NR 33
TC 0
PU AMER CHEMICAL SOC; 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 1932-7447
DI 10.1021/jp906527c
PD MAR 11
VL 114
IS 9
BP 3737
EP 3742
SC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science,
Multidisciplinary
GA 562JG
UT ISI:000275045600003
ER

PT J
*Record 4 of 4.
L5 <http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;UT=000275217500017>
*Order Full Text [ ]
AU Kocherginsky, N
AF Kocherginsky, N.
TI Mass transport and membrane separations: Universal description in terms
of physicochemical potential and Einstein's mobility
SO CHEMICAL ENGINEERING SCIENCE
LA English
DT Article
DE Membranes; Energy; Entropy; Separations; Transport processes; Linear
thermodynamics; Reverse osmosis; Barodiffusion; Solution-diffusion model
ID SOLUTION-DIFFUSION MODEL; PERMEABILITY; VOLUME; WATER
AB General yet simple description of chemical transport processes in
non-isolated system is suggested. It is based on extended Teorell
equation and just two fundamental parameters: physicochemical potential
and Einstein's mobility. Using mobility it is possible to compare the
rates of all major linear transport phenomena, including
pressure-driven migration and also nonideal and multicomponent
diffusion. Relationship with the Stefan-Maxwell approach and Onsager's
linear thermodynamics is demonstrated and physical interpretation of
both diagonal and off-diagonal phenomenological coefficients is
suggested. Imposing boundary conditions for transport equations allows
description of transport in homogeneous membranes caused by several
concurrent driving factors, such as concentration, pressure, and
voltage. Differences of barodiffusion, membrane filtration, and reverse
osmosis are considered. For a porous membrane an expression for the
pressure-driven volumetric flux through the pores as a function of
mobility and pore size is derived. It is explained why hydraulic flow
prevails in submicron pores and why diffusion is the dominant mechanism
in reverse osmosis if the pressure difference is not too high. The
theory naturally leads to the solution-diffusion model equations but
does not need usual assumptions of constant pressure across the
membrane and the pressure jump only at one surface. Internal pressure
and mechanical stress gradients within a membrane exist and can be
useful in a description of rheology of aging polymer membranes. A new
equation for concurrent diffusion and hydraulic transport is derived
and two possible molecular mechanisms leading to the Kedem-Katchalsky
equations for reverse osmosis membranes are suggested. Finally,
electrokinetic processes are described and their similarity to
concentration- and pressure-driven transport is discussed. (C) 2009
Elsevier Ltd. All rights reserved.
C1 Biomime, Urbana, IL 61801 USA.
RP Kocherginsky, N, Biomime, 909 E Sunnycrest Dr, Urbana, IL 61801 USA.
EM biomime@gmail.com
CR AGEEV EP, 1996, BIOFIZIKA+, V41, P613
ALBERTY RA, 1997, PHYS CHEM
ANNUNZIATA O, 2008, J PHYS CHEM B, V112, P11968, DOI 10.1021/jp803995n
BAKER RW, 2004, MEMBRANE TECHNOLOGY
BECKSTEIN O, 2004, J AM CHEM SOC, V126, P14694, DOI 10.1021/ja045271e
BEREZINA NP, 2009, ELECTROCHIM ACTA, V54, P2342, DOI
10.1016/j.electacta.2008.10.048
BIRD BB, 1960, TRANSPORT PHENOMENA
BOCKRIS JOM, 1998, MODERN ELECTROCHEMIS, V1, CH4
BURGHOFF HG, 1980, J APPL POLYM SCI, V25, P323
CANTOR RS, 1997, J PHYS CHEM B, V101, P1723
CUSSLER EL, 1997, DIFFUSION MASS TRANS
DEEN WM, 1998, ANAL TRANSPORT PHENO
DEFAY R, 1966, SURFACE TENSION ADSO
DEGROOT SR, 1962, NONEQUILIBRIUM THERM
DERJAGUIN BV, 1987, SURFACE FORCES
DO DD, 1998, ADSORPTION ANAL EQUI
DOBOS D, 1978, ELECTROCHEMICAL DATA
EINSTEIN A, 1956, INVESTIGATIONS THEOR
FINKELSTEIN A, 1987, WATER MOVEMENT LIPID
GERE JM, 1990, MECH MAT
GIBBS JW, 1948, COLLECTED WORKS
HAASE R, 1969, THERMODYNAMICS IRREV
HOLT JK, 2006, SCIENCE, V312, P1034, DOI 10.1126/science.1126298
HUMMER G, 2001, NATURE, V414, P188
ISLAM MA, 2004, PHYS SCRIPTA, V70, P114
JOU D, 2001, THERMODYNAMICS FLUID
KEDEM O, 1958, BIOCHIM BIOPHYS ACTA, V27, P229
KOCHERGINSKY N, 2003, J PHYS CHEM B, V107, P7830, DOI 10.1021/jp0275721
KOCHERGINSKY N, 2009, J MEMBRANE SCI, V328, P58, DOI
10.1016/j.memsci.2008.10.024
KOCHERGINSKY NM, 1985, BIOL MEMBR, V1, P1734
KOCHERGINSKY, 2009, CHEM ENG SCI UNPUB
KONDEPUDI D, 1998, MODERN THERMODYNAMIC
LAKSHMINARAYANA., 1969, TRANSPORT PHENOMENA
MASON EA, 1990, J MEMBRANE SCI, V51, P1
MULDER M, 1996, BASIC PRINCIPLES MEM
ONSAGER L, 1931, PHYS REV, V37, P405
PAUL DR, 2004, J MEMBRANE SCI, V241, P371, DOI
10.1016/j.memsci.2004.05.026
PHAROAH JG, 2000, J MEMBRANE SCI, V176, P277
PURI P, 2008, J APPL POLYM SCI, V108, P47, DOI 10.1002/app.26829
RARD JA, 2009, J CHEM ENG DATA, V54, P636, DOI 10.1021/je800725k
ROSENBAUM S, 1969, J POLYM SCI, V7, P101
ROULSTON DJ, 1990, BIPOLAR SEMICONDUCTO
SILVA V, 2009, CHEM ENG J, V149, P78, DOI 10.1016/j.cej.2008.10.002
SOURIRAJAN S, 1970, REVERSE OSMOSIS
SOURIRAJAN S, 1985, REVERSE OSMOSIS ULTR
SPIEGLER KS, 1966, DESALINATION, V1, P311
STOKES RJ, 1997, FUNDAMENTALS INTERFA
STRATHMANN H, 2005, ULLMANNS ENCY IND CH, DOI
10.1002/14356007.A16_187.PUB2
TEORELL T, 1935, P NATL ACAD SCI USA, V21, P152
THAU G, 1966, DESALINATION, V1, P129
WESSELINGH JA, 1990, MASS TRANSFER
WIJMANS JG, 1995, J MEMBRANE SCI, V107, P1
WIJMANS JG, 2004, J MEMBRANE SCI, V237, P39, DOI
10.1016/j.memsei.2004.02.028
YAMPOLSKII Y, 2006, MAT SCI MEMBRANES GA
YAROSHCHUK AE, 1995, J MEMBRANE SCI, V101, P83
NR 55
TC 0
PU PERGAMON-ELSEVIER SCIENCE LTD; THE BOULEVARD, LANGFORD LANE,
KIDLINGTON, OXFORD OX5 1GB, ENGLAND
SN 0009-2509
DI 10.1016/j.ces.2009.10.024
PD FEB 15
VL 65
IS 4
BP 1474
EP 1489
SC Engineering, Chemical
GA 564MA
UT ISI:000275217500017
ER

EF

========================================================================
*Order Full Text*
All Customers
--------------
Please contact your library administrator, or person(s) responsible for
document delivery, to find out more about your organization's policy for
obtaining the full text of the above articles. If your organization does
not have a current document delivery provider, your administrator can
contact ISI Document Solution at service@isidoc.com, or call 800-603-4367
or 734-459-8565.

IDS Customers
--------------
IDS customers can purchase the full text of an article (having page number,
volume, and issue information) by returning this ENTIRE message as a Reply
to Sender or Forward to orders@isidoc.com. Mark your choices with an X in
the "Order Full Text: []" brackets for each item. For example, [X].

Please enter your account number here:

========================================================================
*Import Records into an ISI ResearchSoft product*
1) Save the email as a text file. If your e-mail software removed extra line breaks, restore them before saving.
2) From within an ISI ResearchSoft product, import the text file using the ISI-CE filter.
========================================================================
*Help Desk Contact Information*
If you have any questions, please visit the Thomson Scientific Technical Support Contact Information Web page:
http://www.thomsonscientific.com/support/techsupport
========================================================================

No comments: