Friday, March 19, 2010

ISI Web of Knowledge Alert - Majumder M

ISI Web of Knowledge Citation Alert

Cited Article: Majumder M. Nanoscale hydrodynamics - Enhanced flow in carbon nanotubes
Alert Expires: 09 NOV 2010
Number of Citing Articles: 3 new records this week (3 in this e-mail)
Organization ID: 3b97d1bbc1878baed0ab183d8b03130b
========================================================================
Note: Instructions on how to purchase the full text of an article and Help Desk Contact information are at the end of the e-mail.
========================================================================

*Record 1 of 3.
*View Full Record: http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000275084600065
*Order Full Text [ ]

Title:
Effects of Cosolvents on the Hydration of Carbon Nanotubes

Authors:
Yang, LJ; Gao, YQ

Author Full Names:
Yang, Lijiang; Gao, Yi Qin

Source:
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY 132 (2): 842-848 JAN 20 2010

Language:
English

Document Type:
Article

KeyWords Plus:
AQUEOUS UREA SOLUTIONS; MOLECULAR-DYNAMICS; HYDROPHOBIC INTERACTIONS; WATER; PROTEINS; DENATURATION; TRANSPORT; STABILITY; MECHANISM; SYSTEMS

Abstract:
Molecular dynamics simulations of a nonpolar single-walled carbon nanotube (SWNT) solvated in aqueous solutions of urea, methanol, and trimethylamine N-oxide (TMAO) show clearly the effects of cosolvents on the hydration of the interior of the SWNT. The size of the SWNT was chosen to be small enough that water but not the cosolvent molecules can penetrate into its interior. Urea as a protein denaturant improves hydration of the interior of the SWNT, while the protein protectant TMAO dehydrates the SWNT. The interior of the SWNT is also dehydrated when methanol is added to the solution. The analysis of interaction energies of the water confined inside the SWNT pore shows that the stability of the confined water in the methanol and TMAO solutions mainly depends on electrostatic interactions. In contrast, both van der Waals and electrostatic interactions were shown to be important in stabilizing the confined water when the SWNT is immersed in the urea solution.

Reprint Address:
Gao, YQ, Texas A&M Univ, Dept Chem, POB 30012, College Stn, TX 77842 USA.

Research Institution addresses:
[Yang, Lijiang; Gao, Yi Qin] Texas A&M Univ, Dept Chem, College Stn, TX 77842 USA

E-mail Address:
yiqin@mail.chem.tamu.edu

Cited References:
BENNION BJ, 2003, P NATL ACAD SCI USA, V100, P5142, DOI 10.1073/pnas.0930122100.
BERENDSEN HJC, 1984, J CHEM PHYS, V81, P3684.
BEREZHKOVSKII A, 2002, PHYS REV LETT, V89, UNSP 064503.
BIANCHI E, 1970, J BIOL CHEM, V245, P3341.
BOLEN DW, 2008, ANNU REV BIOCHEM, V77, P339, DOI 10.1146/annurev.biochem.77.061306.131357.
BUCK M, 1993, BIOCHEMISTRY-US, V32, P669.
DARDEN T, 1993, J CHEM PHYS, V98, P10089.
DUFFY EM, 1993, J AM CHEM SOC, V115, P9271.
FINER EG, 1972, J AM CHEM SOC, V94, P4424.
HAYASHI Y, 2007, J NON-CRYST SOLIDS, V353, P4492, DOI 10.1016/j.jnoncrysol.2007.02.079.
HOLT JK, 2006, SCIENCE, V312, P1034, DOI 10.1126/science.1126298.
HUA L, 2008, P NATL ACAD SCI USA, V105, P16928, DOI 10.1073/pnas.0808427105.
HUMMER G, 2001, NATURE, V414, P188.
HUMMER G, 2007, MOL PHYS, V105, P201, DOI 10.1080/00268970601140784.
JORGENSEN WL, 1983, J CHEM PHYS, V79, P926.
KALRA A, 2003, P NATL ACAD SCI USA, V100, P10175.
KAST KM, 2003, J PHYS CHEM A, V107, P5342, DOI 10.1021/jp027336a.
KOKUBO H, 2007, BIOPHYS J, V93, P3392, DOI 10.1529/biophysj.107.114181.
KUHARSKI RA, 1984, J AM CHEM SOC, V106, P5786.
MAJUMDER M, 2005, NATURE, V438, P44, DOI 10.1038/43844a.
RASAIAH JC, 2008, ANNU REV PHYS CHEM, V59, P713, DOI 10.1146/annurev.physchem.59.032607.093815.
ROBINSON DR, 1965, J AM CHEM SOC, V87, P2462.
RYCKAERT JP, 1977, J COMPUT PHYS, V23, P327.
SOPER AK, 2003, BIOPHYS CHEM, V105, P649, DOI 10.1016/S0301-4622(03)00095-4.
TANFORD C, 1964, J AM CHEM SOC, V86, P2050.
TIMASHEFF SN, 1993, ANNU REV BIOPH BIOM, V22, P67.
WALLQVIST A, 1998, J AM CHEM SOC, V120, P427.
WEI HY, 2009, J PHYS CHEM B 1123.
ZANGI R, 2009, J AM CHEM SOC, V131, P1535, DOI 10.1021/ja807887g.
ZOU Q, 2002, J AM CHEM SOC, V124, P1192.

Cited Reference Count:
30

Times Cited:
0

Publisher:
AMER CHEMICAL SOC; 1155 16TH ST, NW, WASHINGTON, DC 20036 USA

Subject Category:
Chemistry, Multidisciplinary

ISSN:
0002-7863

DOI:
10.1021/ja9091825

IDS Number:
562VY

========================================================================

*Record 2 of 3.
*View Full Record: http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000275085000049
*Order Full Text [ ]

Title:
A Controllable Molecular Sieve for Na+ and K+ Ions

Authors:
Gong, XJ; Li, JC; Xu, K; Wang, JF; Yang, H

Author Full Names:
Gong, Xiaojing; Li, Jichen; Xu, Ke; Wang, Jianfeng; Yang, Hui

Source:
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY 132 (6): 1873-1877 FEB 17 2010

Language:
English

Document Type:
Article

KeyWords Plus:
CARBON NANOTUBE MEMBRANES; POTASSIUM CHANNELS; MASS-TRANSPORT; WATER CHANNEL; SELECTIVITY; CONDUCTION; FLOW; NANOPORES

Abstract:
The selective rate of specific ion transport across nanoporous material is critical to biological and nanofluidic systems Molecular sieves for ions can be achieved by steric and electrical effects However, the radii of Na+ and K+ are quite similar, they both carry a positive charge, making them difficult to separate Biological ionic channels contain precisely arranged arrays of amino acids that can efficiently recognize and guide the passage of K+ or Na+ across the cell membrane However, the design of inorganic channels with novel recognition mechanisms that control the ionic selectivity remains a challenge. We present here a design for a controllable ion-selective nanopore (molecular sieve) based on a single-walled carbon nanotube with specially arranged carbonyl oxygen atoms modified inside the nanopore, which was inspired by the structure of potassium channels in membrane spanning proteins (e g, KcsA) Our molecular dynamics simulations show that the remarkable selectivity!
is attributed to the hydration structure of Na+ or K+ confined in the nanochannels, which can be precisely tuned by different patterns of the carbonyl oxygen atoms The results also suggest that a confined environment plays a dominant role in the selectivity process. These studies provide a better understanding of the mechanism of ionic selectivity in the KcsA channel and possible technical applications in nanotechnology and biotechnology, including serving as a laboratory-in-nanotube for special chemical interactions and as a high-efficiency nanodevice for purification or desalination of sea and brackish water

Reprint Address:
Gong, XJ, Chinese Acad Sci, Suzhou Inst Nanotech & Nanobion, Suzhou 215125, Peoples R China.

Research Institution addresses:
[Gong, Xiaojing; Xu, Ke; Wang, Jianfeng; Yang, Hui] Chinese Acad Sci, Suzhou Inst Nanotech & Nanobion, Suzhou 215125, Peoples R China; [Yang, Hui] Univ Sci & Technol China, Dept Phys, Hefei 230026, Peoples R China; [Li, Jichen] Univ Manchester, Dept Phys & Astron, Manchester M13 9PL, Lancs, England

Cited References:
BECKSTEIN O, 2004, J AM CHEM SOC, V126, P14694, DOI 10.1021/ja045271e.
BESTEMAN K, 2003, NANO LETT, V3, P727, DOI 10.1021/nl034139u.
BOSTICK DL, 2007, P NATL ACAD SCI USA, V104, P9260, DOI 10.1073/pnas.0700554104.
BOURLON B, 2007, NAT NANOTECHNOL, V2, P104, DOI 10.1038/nnano.2006.211.
COLE D, 2006, NAT MATER, V5, P305, DOI 10.1038/nmat1608.
CORRY B, 2008, J PHYS CHEM B, V112, P1427, DOI 10.1021/jp709845u.
DARDEN T, 1993, J CHEM PHYS, V98, P10089.
FAN R, 2005, PHYS REV LETT, V95, ARTN 086607.
GHOSH S, 2003, SCIENCE, V299, P1042, DOI 10.1126/science.1079080.
GONG XJ, 2008, PHYS REV LETT, V101, ARTN 257801.
HARDING MM, 2002, ACTA CRYSTALLOGR D 5, V58, P872.
HILLE B, 1999, NAT MED, V5, P1105.
HOLT JK, 2006, SCIENCE, V312, P1034, DOI 10.1126/science.1126298.
HUMMER G, 2001, NATURE, V414, P188.
JIANG YX, 2002, NATURE, V417, P523.
JORGENSEN WL, 1983, J CHEM PHYS, V79, P926.
JOSEPH S, 2003, NANO LETT, V3, P1399, DOI 10.1021/nl0346326.
KYOTANI T, 2001, CARBON, V39, P782.
LI JY, 2007, P NATL ACAD SCI USA, V104, P3687, DOI 10.1073/pnas.0604541104.
LINDAHL E, 2001, J MOL MODEL, V7, P306.
MACKINNON R, 2004, ANGEW CHEM INT EDIT, V43, P4265, DOI 10.1002/anie.200400662.
MAJUMDER M, 2005, NATURE, V438, P44, DOI 10.1038/43844a.
NOSKOV SY, 2004, NATURE, V431, P830, DOI 10.1038/nature02943.
PARK JH, 2006, NANOTECHNOLOGY, V17, P895, DOI 10.1088/0957-4484/17/3/046.
REGAN BC, 2004, NATURE, V428, P924, DOI 10.1038/nature02496.
SHANNON MA, 2008, NATURE, V452, P301, DOI 10.1038/nature06599.
SHAO Q, 2009, NANO LETT, V9, P989, DOI 10.1021/nl803044k.
SHI N, 2006, NATURE, V440, P570, DOI 10.1038/nature04508.
SINT K, 2008, J AM CHEM SOC, V130, P16448, DOI 10.1021/ja804409f.
SIWY Z, 2002, PHYS REV LETT, V89, ARTN 198103.
SUN L, 2000, J AM CHEM SOC, V122, P12340, DOI 10.1021/ja002429w.
THOMAS M, 2007, BIOPHYS J, V93, P2635, DOI 10.1529/biophysj.107.108167.
VARMA S, 2007, BIOPHYS J, V93, P1093, DOI 10.1529/biophysj.107.107482.
WAN RZ, 2005, J AM CHEM SOC, V127, P7166, DOI 10.1021/ja050044d.
WHITBY M, 2007, NAT NANOTECHNOL, V2, P87, DOI 10.1038/nnano.2006.175.
XIU P, 2009, J AM CHEM SOC, V131, P2840, DOI 10.1021/ja804586w.
YANG L, 2007, J CHEM PHYS, V126, ARTN 084706.
ZHU FQ, 2003, BIOPHYS J, V85, P236.

Cited Reference Count:
38

Times Cited:
0

Publisher:
AMER CHEMICAL SOC; 1155 16TH ST, NW, WASHINGTON, DC 20036 USA

Subject Category:
Chemistry, Multidisciplinary

ISSN:
0002-7863

DOI:
10.1021/ja905753p

IDS Number:
562WC

========================================================================

*Record 3 of 3.
*View Full Record: http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000275045600003
*Order Full Text [ ]

Title:
Rapid Transport of Water via a Carbon Nanotube Syringe

Authors:
Rivera, JL; Starr, FW

Author Full Names:
Rivera, Jose L.; Starr, Francis W.

Source:
JOURNAL OF PHYSICAL CHEMISTRY C 114 (9): 3737-3742 MAR 11 2010

Language:
English

Document Type:
Article

KeyWords Plus:
MOLECULAR-DYNAMICS; FLOW; CONDUCTION; MEMBRANES; CHANNEL; FILMS

Abstract:
The controlled flow of water molecules at the nanoscale is an initial step to many fluidic processes ill nanotechnology. Here we show how thin films of water call be drawn through a nanosyringe built from a carbon nanotube membrane and a "plunger". By increasing the speed of withdrawal of the plunger, we call obtain Molecular transport through the membrane at flux rates exceeding 1()25 molecules cm(-2) s(-1). Above I threshold speed around 0.25 nm/ns (25 cm/s), molecules cannot fill the chamber created by the plunger motion as fast as the chamber expands, and the resulting flux rate drops. By considering hydrophobic or hydrophilic Plungers, we unexpectedly find that the nature of the water-plunger interactions does not affect the flux rate or the threshold plunger speed. While the water structure near the plunger Surface differs significantly For different plunger interactions, the failure of the film away From the plunger surface is responsible for loss of transport. As I r!
esult, the surface interactions play a limited role in controlling the flux.

Reprint Address:
Starr, FW, Wesleyan Univ, Dept Phys, Middletown, CT 06457 USA.

Research Institution addresses:
[Rivera, Jose L.; Starr, Francis W.] Wesleyan Univ, Dept Phys, Middletown, CT 06457 USA; [Rivera, Jose L.] Univ Nacl Autonoma Mexico, Inst Invest Mat, Mexico City 04510, DF, Mexico

E-mail Address:
joserivera@iim.unam.mx; fstarr@wesleyan.edu

Cited References:
ARGYRIS D, 2008, J PHYS CHEM C, V112, P13587, DOI 10.1021/jp803234a.
CORRY B, 2008, J PHYS CHEM B, V112, P1427, DOI 10.1021/jp709845u.
DZUBIELLA J, 2005, J CHEM PHYS, V122, P14.
EVANS DJ, 1977, MOL PHYS, V34, P327.
EVANS DJ, 1983, PHYS LETT A, V98, P433.
FANG HP, 2008, J PHYS D, V41, P16.
FRENKEL D, 1996, UNDERSTANDING MOL SI.
GIOVAMBATTISTA N, 2006, PHYS REV E, V73, P14.
GONG XJ, 2007, NAT NANOTECHNOL, V2, P709, DOI 10.1038/nnano.2007.320.
GUO YJ, 1991, NATURE, V351, P464.
HANASAKI I, 2006, NANOTECHNOLOGY, V17, P2794, DOI 10.1088/0957-4484/17/11/012.
HOLT JK, 2006, SCIENCE, V312, P1034, DOI 10.1126/science.1126298.
HOOVER WG, 1982, PHYS REV LETT, V48, P1818.
HUMMER G, 2001, NATURE, V414, P188.
JOSEPH S, 2008, NANO LETT, V8, P452, DOI 10.1021/nl072385q.
KALRA A, 2003, P NATL ACAD SCI USA, V100, P10175.
KUMAR P, 2005, PHYS REV E, V72, P12.
KUMAR P, 2007, PHYS REV E, V75, P8.
LI JY, 2007, P NATL ACAD SCI USA, V104, P3687, DOI 10.1073/pnas.0604541104.
MAHONEY MW, 2000, J CHEM PHYS, V112, P8910.
MAJUMDER M, 2005, NATURE, V438, P44, DOI 10.1038/43844a.
RASAIAH JC, 2008, ANNU REV PHYS CHEM, V59, P713, DOI 10.1146/annurev.physchem.59.032607.093815.
RAVIV U, 2001, NATURE, V413, P51.
RIVERA JL, 2002, NANO LETT, V2, P427.
RIVERA JL, 2007, J PHYS CHEM C, V111, P18899, DOI 10.1021/jp075989r.
SHOLL DS, 2006, SCIENCE, V312, P1003, DOI 10.1126/science.1127261.
STRIOLO A, 2007, NANOTECHNOLOGY, V18, P10.
THOMAS JA, 2008, NANO LETT, V8, P2788, DOI 10.1021/nl8013617.
VAITHEESWARAN S, 2004, J CHEM PHYS, V121, P7955, DOI 10.1063/1.1796271.
WAN RZ, 2005, J AM CHEM SOC, V127, P7166, DOI 10.1021/ja050044d.
WHITBY M, 2007, NAT NANOTECHNOL, V2, P87, DOI 10.1038/nnano.2006.175.
ZHU FQ, 2003, BIOPHYS J, V85, P236.
ZIMMERLI U, 2005, NANO LETT, V5, P1017, DOI 10.1021/nl0503126.

Cited Reference Count:
33

Times Cited:
0

Publisher:
AMER CHEMICAL SOC; 1155 16TH ST, NW, WASHINGTON, DC 20036 USA

Subject Category:
Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary

ISSN:
1932-7447

DOI:
10.1021/jp906527c

IDS Number:
562JG

========================================================================
*Order Full Text*
All Customers
--------------
Please contact your library administrator, or person(s) responsible for
document delivery, to find out more about your organization's policy for
obtaining the full text of the above articles. If your organization does
not have a current document delivery provider, your administrator can
contact ISI Document Solution at service@isidoc.com, or call 800-603-4367
or 734-459-8565.

IDS Customers
--------------
IDS customers can purchase the full text of an article (having page number,
volume, and issue information) by returning this ENTIRE message as a Reply
to Sender or Forward to orders@isidoc.com. Mark your choices with an X in
the "Order Full Text: []" brackets for each item. For example, [X].

Please enter your account number here:

========================================================================
*Help Desk Contact Information*
If you have any questions, please visit the Thomson Scientific Technical Support Contact Information Web page:
http://www.thomsonscientific.com/support/techsupport
========================================================================

No comments: