Friday, March 19, 2010

ISI Web of Knowledge Alert - Hummer, G

ISI Web of Knowledge Citation Alert

Cited Article: Hummer, G. Water conduction through the hydrophobic channel of a carbon nanotube
Alert Expires: 09 NOV 2010
Number of Citing Articles: 7 new records this week (7 in this e-mail)
Organization ID: 3b97d1bbc1878baed0ab183d8b03130b
========================================================================
Note: Instructions on how to purchase the full text of an article and Help Desk Contact information are at the end of the e-mail.
========================================================================

*Record 1 of 7.
*View Full Record: http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000275275000007
*Order Full Text [ ]

Title:
The Dynamic Response Function chi(T)(Q,t) of Confined Supercooled Water and its Relation to the Dynamic Crossover Phenomenon

Authors:
Chen, SH; Zhang, Y; Lagi, M; Chu, XQ; Liu, L; Faraone, A; Fratini, E; Baglioni, P

Author Full Names:
Chen, Sow-Hsin; Zhang, Yang; Lagi, Marco; Chu, Xiangqiang; Liu, Li; Faraone, Antonio; Fratini, Emiliano; Baglioni, Piero

Source:
ZEITSCHRIFT FUR PHYSIKALISCHE CHEMIE-INTERNATIONAL JOURNAL OF RESEARCH IN PHYSICAL CHEMISTRY & CHEMICAL PHYSICS 224 (1-2): 109-131 2010

Language:
English

Document Type:
Article

Author Keywords:
Dynamic Response Function; Confined Supercooled Water; Dynamic Crossover Phenomenon

KeyWords Plus:
PROTEIN HYDRATION WATER; STRONG LIQUID TRANSITION; GLASSY WATER; DIELECTRIC-RELAXATION; CARBON NANOTUBES; POROUS GLASSES; SIMULATIONS; TEMPERATURE; MODEL; SPECTROSCOPY

Abstract:
We have made a series of Quasi-Elastic Neutron Scattering (QENS) studies of supercooled water confined in 3-D and 1-D geometries, specifically, interstitial water in aged cement paste (3-D)and water confined in MCM-41-S and Double Wall Nano Tube DWNT (1-D). In addition, we also include the cases of hydration water oil protein surface and other biopolymer surfaces (Pseudo 2-D). By analyzing the QENS spectra using Relaxing Cage Model (RCM), we are able to extract accurately the self-intermediate scattering function of hydrogen atoms F-H(Q,t), at low-Q as a function of temperature T, showing an a-relaxation process at long time. We can then construct the Dynamic Response Function chi(T)(Q,t) = -dF(H)(Q,t)/dT. chi(T)(Q,t) as a function of t at constant Q shows a single peak at the characteristic alpha-relaxation time <tau >, the amplitude of which grows as we approach the dynamic crossover temperature T-L observed before in each of these geometries. However, the peak height of c!
hi(T)(Q,t) decreases after passing the crossover temperature T-L. We make all argument to relate the occurrence of the extremum of the peak height in chi(T) to the existence of the dynamic crossover temperature in each of these cases.

Reprint Address:
Chen, SH, MIT, Dept Nucl Sci & Engn, Cambridge, MA 02139 USA.

Research Institution addresses:
[Chen, Sow-Hsin; Zhang, Yang; Lagi, Marco; Chu, Xiangqiang; Liu, Li; Faraone, Antonio] MIT, Dept Nucl Sci & Engn, Cambridge, MA 02139 USA; [Lagi, Marco; Fratini, Emiliano; Baglioni, Piero] Univ Florence, Dept Chem, I-50019 Florence, Italy; [Lagi, Marco; Fratini, Emiliano; Baglioni, Piero] Univ Florence, CSGI, I-50019 Florence, Italy; [Liu, Li] Rensselaer Polytech Inst, Dept Mech Aerosp & Nucl Engn, Troy, NY 12180 USA; [Faraone, Antonio] NIST, Ctr Neutron Res, Gaithersburg, MD 20899 USA

E-mail Address:
sowhsin@MIT.EDU

Cited References:
ADAM G, 1965, J CHEM PHYS, V43, P139.
ANGELL CA, 1983, ANNU REV PHYS CHEM, V34, P593.
BERGMAN R, 2000, J CHEM PHYS, V113, P357.
BERGMAN R, 2000, NATURE, V403, P283.
BERTHIER L, 2005, SCIENCE, V310, P1797, DOI 10.1126/science.1120714.
BERTHIER L, 2007, J CHEM PHYS, V126, ARTN 184503.
BOTTI A, 2002, J CHEM PHYS, V117, P6196, DOI 10.1063/1.1503337.
CHEN SH, 1991, NATO ASI SER C-MATH, V329, P289.
CHEN SH, 1999, PHYS REV E, V59, P6708.
CHEN SH, 2006, J CHEM PHYS, V125, P71103, ARTN 171103.
CHEN SH, 2006, P NATL ACAD SCI USA, V103, P9012, DOI 10.1073/pnas.0602474103.
CHEN SH, 2009, WPI AIMR 2009 UNPUB.
CHU X, 2007, PHYS REV E, V76, UNSP 021501.
CHU XQ, 2008, PHYS REV E 1, V77, ARTN 011908.
DEBENEDETTI PG, 2003, J PHYS-CONDENS MAT, V15, R1669.
DEBENEDETTI PG, 2003, PHYS TODAY, V56, P40.
DORAZIO F, 1990, PHYS REV B A, V42, P9810.
DOUBLE DD, 1976, NATURE, V237, P82.
ESSMANN U, 1995, J CHEM PHYS, V103, P8577.
FARAONE A, 2004, J CHEM PHYS, V121, P10843, DOI 10.1063/1.1832595.
FARAONE A, 2009, J CHEM PHYS UNPUB.
GILRA NK, 1968, PHYS LETT, V28, P51.
GUTINA A, 2003, MICROPOR MESOPOR MAT, V58, P237, DOI 10.1016/S1387-1811(02)00651-0.
HESS B, 1997, J COMPUT CHEM, V18, P1463.
HOLLY R, 1998, J CHEM PHYS, V108, P4183.
HORN HW, 2004, J CHEM PHYS, V120, P9665, DOI 10.1063/1.1683075.
HUMMER G, 2001, NATURE, V414, P188.
ITO K, 1999, NATURE, V398, P492.
JENNINGS HM, 2008, CEMENT CONCRETE RES, V38, P275, DOI 10.1016/j.cemconres.2007.10.006.
JORGENSEN WL, 1988, J AM CHEM SOC, V110, P1657.
KOGA K, 2001, NATURE, V412, P802.
KOLESNIKOV AI, 2004, PHYS REV LETT, V93, ARTN 035503.
KORB JP, 1996, PHYS REV LETT, V77, P2312.
KUMAR P, 2006, PHYS REV LETT, V97, ARTN 177802.
KUMAR P, 2008, PHYS REV LETT, V100, ARTN 105701.
LAGI M, 2008, J PHYS CHEM B, V112, P1571, DOI 10.1021/jp710714j.
LINDAHL E, 2001, J MOL MODEL, V7, P306.
LIU D, 2008, PHYS REV LETT, V101, ARTN 135501.
LIU DZ, 2007, P NATL ACAD SCI USA, V104, P9570, DOI 10.1073/pnas.0701352104.
LIU L, 2005, PHYS REV LETT, V95, ARTN 117802.
LIU L, 2006, J PHYS-CONDENS MAT, V18, S2261, DOI 10.1088/0953-8984/18/36/S03.
MALLAMACE F, 2007, J CHEM PHYS, V127, ARTN 045104.
MALLAMACE F, 2007, P NATL ACAD SCI USA, V104, P18387, DOI 10.1073/pnas.0706504104.
MAMONTOV E, 2006, J CHEM PHYS, V124, ARTN 194703.
MISHIMA O, 1998, NATURE, V396, P329.
NOMURA S, 1977, BIOPOLYMERS, V16, P231.
OGUNI M, 2007, CHEM-ASIAN J, V2, P514, DOI 10.1002/asia.200600362.
PAWLUS S, 2008, PHYS REV LETT, V100, ARTN 108103.
PONYATOVSKY EG, 1998, J CHEM PHYS, V109, P2413.
POOLE PH, 1992, NATURE, V360, P324.
RONNE C, 1999, PHYS REV LETT, V82, P2888.
RONNE C, 2002, J MOL LIQ, V101, P199.
RYABOV Y, 2001, J PHYS CHEM B, V105, P1845.
SAMOUILLAN V, 2004, BIOMACROMOLECULES, V5, P958, DOI 10.1021/bm034436t.
SCIORTINO F, 1996, PHYS REV E, V54, P6331.
SEYEDYAZDI J, 2008, J PHYS-CONDENS MAT, V20, ARTN 205107.
SEYEDYAZDI J, 2008, J PHYS-CONDENS MAT, V20, ARTN 205108.
STAPF S, 1995, PHYS REV LETT, V75, P2855.
SWENSON J, 2007, J PHYS-CONDENS MAT, V19, ARTN 205109.
TANAKA H, 2000, EUROPHYS LETT, V50, P340.
TAREK M, 2000, BIOPHYS J, V79, P3244.
TAREK M, 2002, PHYS REV LETT, V88, UNSP 138101.
TAREK M, 2002, PHYS REV LETT, V89, ARTN 275501.
TONINELLI C, 2005, PHYS REV E 1, V71, ARTN 041505.
VOGEL M, 2008, PHYS REV LETT, V101, ARTN 225701.
WALTHER JH, 2001, J PHYS CHEM B, V105, P9980.
XU LM, 2005, P NATL ACAD SCI USA, V102, P16558, DOI 10.1073/pnas.0507870102.
ZHANG Y, 2008, J PHYS-CONDENS MAT, V20, ARTN 502101.
ZHANG Y, 2009, PHYS REV E UNPUB.

Cited Reference Count:
69

Times Cited:
0

Publisher:
OLDENBOURG VERLAG; LEKTORAT MINT, POSTFACH 80 13 60, D-81613 MUNICH, GERMANY

Subject Category:
Chemistry, Physical

ISSN:
0942-9352

DOI:
10.1524/zpch.2010.6095

IDS Number:
565FP

========================================================================

*Record 2 of 7.
*View Full Record: http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000275084600065
*Order Full Text [ ]

Title:
Effects of Cosolvents on the Hydration of Carbon Nanotubes

Authors:
Yang, LJ; Gao, YQ

Author Full Names:
Yang, Lijiang; Gao, Yi Qin

Source:
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY 132 (2): 842-848 JAN 20 2010

Language:
English

Document Type:
Article

KeyWords Plus:
AQUEOUS UREA SOLUTIONS; MOLECULAR-DYNAMICS; HYDROPHOBIC INTERACTIONS; WATER; PROTEINS; DENATURATION; TRANSPORT; STABILITY; MECHANISM; SYSTEMS

Abstract:
Molecular dynamics simulations of a nonpolar single-walled carbon nanotube (SWNT) solvated in aqueous solutions of urea, methanol, and trimethylamine N-oxide (TMAO) show clearly the effects of cosolvents on the hydration of the interior of the SWNT. The size of the SWNT was chosen to be small enough that water but not the cosolvent molecules can penetrate into its interior. Urea as a protein denaturant improves hydration of the interior of the SWNT, while the protein protectant TMAO dehydrates the SWNT. The interior of the SWNT is also dehydrated when methanol is added to the solution. The analysis of interaction energies of the water confined inside the SWNT pore shows that the stability of the confined water in the methanol and TMAO solutions mainly depends on electrostatic interactions. In contrast, both van der Waals and electrostatic interactions were shown to be important in stabilizing the confined water when the SWNT is immersed in the urea solution.

Reprint Address:
Gao, YQ, Texas A&M Univ, Dept Chem, POB 30012, College Stn, TX 77842 USA.

Research Institution addresses:
[Yang, Lijiang; Gao, Yi Qin] Texas A&M Univ, Dept Chem, College Stn, TX 77842 USA

E-mail Address:
yiqin@mail.chem.tamu.edu

Cited References:
BENNION BJ, 2003, P NATL ACAD SCI USA, V100, P5142, DOI 10.1073/pnas.0930122100.
BERENDSEN HJC, 1984, J CHEM PHYS, V81, P3684.
BEREZHKOVSKII A, 2002, PHYS REV LETT, V89, UNSP 064503.
BIANCHI E, 1970, J BIOL CHEM, V245, P3341.
BOLEN DW, 2008, ANNU REV BIOCHEM, V77, P339, DOI 10.1146/annurev.biochem.77.061306.131357.
BUCK M, 1993, BIOCHEMISTRY-US, V32, P669.
DARDEN T, 1993, J CHEM PHYS, V98, P10089.
DUFFY EM, 1993, J AM CHEM SOC, V115, P9271.
FINER EG, 1972, J AM CHEM SOC, V94, P4424.
HAYASHI Y, 2007, J NON-CRYST SOLIDS, V353, P4492, DOI 10.1016/j.jnoncrysol.2007.02.079.
HOLT JK, 2006, SCIENCE, V312, P1034, DOI 10.1126/science.1126298.
HUA L, 2008, P NATL ACAD SCI USA, V105, P16928, DOI 10.1073/pnas.0808427105.
HUMMER G, 2001, NATURE, V414, P188.
HUMMER G, 2007, MOL PHYS, V105, P201, DOI 10.1080/00268970601140784.
JORGENSEN WL, 1983, J CHEM PHYS, V79, P926.
KALRA A, 2003, P NATL ACAD SCI USA, V100, P10175.
KAST KM, 2003, J PHYS CHEM A, V107, P5342, DOI 10.1021/jp027336a.
KOKUBO H, 2007, BIOPHYS J, V93, P3392, DOI 10.1529/biophysj.107.114181.
KUHARSKI RA, 1984, J AM CHEM SOC, V106, P5786.
MAJUMDER M, 2005, NATURE, V438, P44, DOI 10.1038/43844a.
RASAIAH JC, 2008, ANNU REV PHYS CHEM, V59, P713, DOI 10.1146/annurev.physchem.59.032607.093815.
ROBINSON DR, 1965, J AM CHEM SOC, V87, P2462.
RYCKAERT JP, 1977, J COMPUT PHYS, V23, P327.
SOPER AK, 2003, BIOPHYS CHEM, V105, P649, DOI 10.1016/S0301-4622(03)00095-4.
TANFORD C, 1964, J AM CHEM SOC, V86, P2050.
TIMASHEFF SN, 1993, ANNU REV BIOPH BIOM, V22, P67.
WALLQVIST A, 1998, J AM CHEM SOC, V120, P427.
WEI HY, 2009, J PHYS CHEM B 1123.
ZANGI R, 2009, J AM CHEM SOC, V131, P1535, DOI 10.1021/ja807887g.
ZOU Q, 2002, J AM CHEM SOC, V124, P1192.

Cited Reference Count:
30

Times Cited:
0

Publisher:
AMER CHEMICAL SOC; 1155 16TH ST, NW, WASHINGTON, DC 20036 USA

Subject Category:
Chemistry, Multidisciplinary

ISSN:
0002-7863

DOI:
10.1021/ja9091825

IDS Number:
562VY

========================================================================

*Record 3 of 7.
*View Full Record: http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000275084700037
*Order Full Text [ ]

Title:
Hydrophobic Peptide Channels and Encapsulated Water Wires

Authors:
Raghavender, US; Kantharaju; Aravinda, S; Shamala, N; Balaram, P

Author Full Names:
Raghavender, Upadhyayula S.; Kantharaju; Aravinda, Subrayashastry; Shamala, Narayanaswamy; Balaram, Padmanabhan

Source:
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY 132 (3): 1075-1086 JAN 27 2010

Language:
English

Document Type:
Article

KeyWords Plus:
ASSEMBLING ORGANIC NANOTUBES; TRANSMEMBRANE ION CHANNELS; M2 PROTON CHANNEL; MOLECULAR-DYNAMICS; CRYSTAL-STRUCTURES; RHODOBACTER-SPHAEROIDES; BIOMOLECULAR SYSTEMS; CARBONIC-ANHYDRASE; NAK CHANNEL; CHAIN

Abstract:
Peptide nanotubes with filled and empty pores and close-packed structures are formed in closely related pentapeptides. Enantiomorphic sequences, Boc-(D)Pro-Aib-Xxx-Aib-Val-OMe (Xxx = Leu, 1; Val, 2; Ala, 3; Phe, 4) and Boc-Pro-Aib-(D)Xxx-Aib-(D)Val-OMe ((XXX)-X-D = (D)Leu, 5; (D)Val, 6; (D)Ala, 7; (D)Phe, 8), yield molecular structures with a very similar backbone conformation but varied packing patterns in crystals. Peptides 1, 2, 5, and 6 show tubular structures with the molecules self-assembling along the crystallographic six-fold axis (c-axis) and revealing a honeycomb arrangement laterally (ab plane). Two forms of entrapped water wires have been characterized in 2: 2a with d(O center dot center dot center dot O) = 2.6 angstrom and 2b with d(O center dot center dot center dot O) = 3.5 angstrom. The latter is observed in 6 (6a) also. A polymorphic form of 6 (6b), grown from a solution of methanol-water, was observed to crystallize in a monoclinic system as a close-packed !
structure. Single-file water wire arrangements encapsulated inside hydrophobic channels formed by peptide nanotubes could be established by modeling the published structures in the cases of a cyclic peptide and a dipeptide. In all the entrapped water wires, each water molecule is involved in a hydrogen bond with a previous and succeeding water molecule. The O-H group of the water not involved in any hydrogen bond does not seem to be involved in an energetically significant interaction with the nanotube interior, a general feature of the one-dimensional water wires encapsulated in hydrophobic environements. Water wires in hydrophobic channels are contrasted with the single-file arrangements in amphipathic channels formed by aquaporins.

Reprint Address:
Shamala, N, Indian Inst Sci, Dept Phys, Bangalore 560012, Karnataka, India.

Research Institution addresses:
[Raghavender, Upadhyayula S.; Aravinda, Subrayashastry; Shamala, Narayanaswamy] Indian Inst Sci, Dept Phys, Bangalore 560012, Karnataka, India; [Kantharaju; Balaram, Padmanabhan] Indian Inst Sci, Mol Biophys Unit, Bangalore 560012, Karnataka, India

E-mail Address:
shamala@physics.iisc.ernet.in; pb@mbu.iisc.ernet.in

Cited References:
AGMON N, 1995, CHEM PHYS LETT, V244, P456.
ALAM A, 2009, NAT STRUCT MOL BIOL, V16, P30, DOI 10.1038/nsmb.1531.
ALAM A, 2009, NAT STRUCT MOL BIOL, V16, P35, DOI 10.1038/nsmb.1537.
ALEXIADIS A, 2008, CHEM REV, V108, P5014, DOI 10.1021/cr078140f.
ALLEN FH, 2002, ACTA CRYSTALLOGR B 3, V58, P380.
ARAVINDA S, 2003, J AM CHEM SOC, V125, P5308, DOI 10.1021/ja0341283.
BALL P, 2008, CHEM REV, V108, P74, DOI 10.1021/cr068037a.
BARBOUR LJ, 2000, CHEM COMMUN, P859.
BEREZHKOVSKII A, 2002, PHYS REV LETT, UNSP 89064503.
BERNSTEIN FC, 1977, J MOL BIOL, V112, P535.
BLANTON WB, 1999, J AM CHEM SOC, V121, P3551.
BONG DT, 2001, ANGEW CHEM INT EDIT, V40, P2163.
BONG DT, 2001, ANGEW CHEM INT EDIT, V40, P988.
BONIFAZI D, 2009, CHEM-EUR J, V15, P7004, DOI 10.1002/chem.200900900.
BREWER ML, 2001, BIOPHYS J, V80, P1691.
BURYKIN A, 2003, BIOPHYS J, V85, P3696.
BYL O, 2006, J AM CHEM SOC, V128, P12090, DOI 10.1021/ja057856u.
CHAKRABARTI N, 2004, STRUCTURE, V12, P65, DOI 10.1016/j.str.2003.11.017.
CHATTERJEE B, 2008, CHEM-EUR J, V14, P6192, DOI 10.1002/chem.200702029.
CLARK TD, 1998, J AM CHEM SOC, V120, P651.
CUI Q, 2003, J PHYS CHEM B, V107, P1071, DOI 10.1021/jp021931v.
CUSTELCEAN R, 2000, ANGEW CHEM INT EDIT, V39, P3094.
DAY TJF, 2000, J AM CHEM SOC, V122, P12027.
DELANO WL, 2002, PYMOL MOL GRAPHICS S.
DELLAGO C, 2006, PHYS REV LETT, V97, ARTN 245901.
DOEDENS RJ, 2002, CHEM COMMUN, P62.
ENGEL A, 2002, J PHYSL, V542, P3.
ENGELS M, 1995, J AM CHEM SOC, V117, P9151.
ERMLER U, 1994, STRUCTURE, V2, P925.
FERNANDEZLOPEZ S, 2001, NATURE, V412, P452.
FUJIYOSHI Y, 2002, CURR OPIN STRUC BIOL, V12, P509.
GHADIRI MR, 1993, NATURE, V366, P324.
GHADIRI MR, 1994, NATURE, V369, P301.
GHADIRI MR, 1995, ANGEW CHEM INT EDIT, V34, P93.
GHOSH SK, 2003, INORG CHEM, V42, P8250, DOI 10.1021/ic034976z.
GORBITZ CH, 1996, ACTA CRYSTALLOGR C 7, V52, P1764.
GORBITZ CH, 2001, CHEM-EUR J, V7, P5153.
GORBITZ CH, 2003, NEW J CHEM, V27, P1789, DOI 10.1039/b305984g.
GORBITZ CH, 2007, CHEM-EUR J, V13, P1022, DOI 10.1002/chem.200601427.
GORBITZ CH, 2008, J PEPT SCI, V14, P210, DOI 10.1002/psc.985.
HO JD, 2009, P NATL ACAD SCI USA, V106, P7437, DOI 10.1073/pnas.0902725106.
HORNE WS, 2003, J AM CHEM SOC, V125, P9372, DOI 10.1021/ja034358h.
HUMMER G, 2001, NATURE, V414, P188.
KARLE IL, 1975, ACTA CRYSTALLOGR B B, V31, P555.
KHALILIARAGHI F, 2009, CURR OPIN STRUC BIOL, V19, P128, DOI 10.1016/j.sbi.2009.02.011.
KHAZANOVICH N, 1994, J AM CHEM SOC, V116, P6011.
KHURANA E, 2009, P NATL ACAD SCI USA, V106, P1069, DOI 10.1073/pnas.0811720106.
KITAGAWA S, 2004, ANGEW CHEM INT EDIT, V43, P2334, DOI 10.1002/anie.200300610.
KOFINGER J, 2008, P NATL ACAD SCI USA, V105, P13218, DOI 10.1073/pnas.0801448105.
LAMOUREUX G, 2007, BIOPHYS J, V92, L82, DOI 10.1529/biophysj.106.102756.
LU DS, 1998, J AM CHEM SOC, V120, P4006.
LUECKE H, 1999, J MOL BIOL, V291, P899.
MA BQ, 2004, ANGEW CHEM INT EDIT, V43, P1374.
MASCAL M, 2006, ANGEW CHEM INT EDIT, V45, P32, DOI 10.1002/anie.200501839.
MIYAZAWA T, 1961, J POLYM SCI, V55, P215.
MOORTHY JN, 2002, ANGEW CHEM INT EDIT, V41, P3417.
NIELSEN S, 2002, PHYSIOL REV, V82, P205.
PAL S, 2003, ANGEW CHEM INT EDIT, V42, P1741, DOI 10.1002/anie.200250444.
PARTHASARATHI R, 2009, J PHYS CHEM A, V113, P3744, DOI 10.1021/jp806793e.
POMES R, 1996, BIOPHYS J, V71, P19.
POMES R, 2002, BIOPHYS J, V82, P2304.
RAGHAVENDER US, 2009, J AM CHEM SOC, V131, P15130, DOI 10.1021/ja9038906.
SAHA I, 2008, BIOPOLYMERS, V90, P537, DOI 10.1002/bip.20982.
SANCHEZOUESADA J, 2002, J AM CHEM SOC, V124, P10004, DOI 10.1021/ja025983+.
SCANLON S, 2008, NANO TODAY, V3, P22.
SEIBOLD SA, 2005, BIOCHEMISTRY-US, V44, P10475, DOI 10.1021/bi0502902.
STOUFFER AL, 2008, NATURE, V451, P596, DOI 10.1038/nature06528.
STOYANOV ES, 2004, J AM CHEM SOC, V131, P17540.
SWANSON JMJ, 2007, J PHYS CHEM B, V111, P4300, DOI 10.1021/jp070104x.
TAJKHORSHID E, 2002, SCIENCE, V296, P525.
TAKHASHI R, 2007, J PHYS CHEM B, V111, P9093.
VOTH GA, 2006, ACCOUNTS CHEM RES, V39, P143, DOI 10.1021/ar0402098.
YANG ZL, 2009, CHEM COMMUN, P2270, DOI 10.1039/b820539f.
YI MG, 2009, P NATL ACAD SCI USA, V106, P13311, DOI 10.1073/pnas.0906553106.

Cited Reference Count:
74

Times Cited:
0

Publisher:
AMER CHEMICAL SOC; 1155 16TH ST, NW, WASHINGTON, DC 20036 USA

Subject Category:
Chemistry, Multidisciplinary

ISSN:
0002-7863

DOI:
10.1021/ja9083978

IDS Number:
562VZ

========================================================================

*Record 4 of 7.
*View Full Record: http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000275084800017
*Order Full Text [ ]

Title:
Evidence of Water Adsorption in Hydrophobic Nanospaces of Highly Pure Double-Walled Carbon Nanotubes

Authors:
Tao, YS; Muramatsu, H; Endo, M; Kaneko, K

Author Full Names:
Tao, Yousheng; Muramatsu, Hiroyuki; Endo, Morinobu; Kaneko, Katsumi

Source:
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY 132 (4): 1214-+ FEB 3 2010

Language:
English

Document Type:
Article

KeyWords Plus:
TEMPERATURE; NANOPORES

Abstract:
Highly pure double-walled carbon nanotubes synthesized by a catalytic chemical vapor deposition method have a quasi one-dimensional nanopore system. We determined these nanotubes' nanopore structures by means of molecular probe adsorption using N-2 at 77 K, CO2 at 273 K, and water at 298, 308, and 318 K, as well as high-resolution transmission electron microscopy. The water vapor adsorption behavior of this system was quite unusual. At a lower relative pressure of P/P-0 = 0.3-0.65, water Filled the interstitial nanopores, and at relative pressures higher than this range, water also filled the interbundle nanopores. This Study is the first to our knowledge that has provided direct evidence of water adsorption in hydrophobic nanospaces of highly pure double-walled carbon nanotubes.

Reprint Address:
Tao, YS, Shinshu Univ, Inst Carbon Sci & Technol, Nagano 3808553, Japan.

Research Institution addresses:
[Tao, Yousheng; Muramatsu, Hiroyuki; Endo, Morinobu] Shinshu Univ, Inst Carbon Sci & Technol, Nagano 3808553, Japan; [Kaneko, Katsumi] Chiba Univ, Grad Sch Sci, Chiba 2638522, Japan

E-mail Address:
tao@endomoribu.shinshu-u.ac.jp

Cited References:
CI L, 2007, ADV MATER, V19, P1719, DOI 10.1002/adma.200602520.
ENDO M, 2005, NATURE, V433, P476, DOI 10.1038/433476a.
GREGG SJ, 1982, ADSORPTION SURFACE A, P25.
HOLT JK, 2009, ADV MATER, V21, P1.
HUMMER G, 2001, NATURE, V414, P188.
KOGA K, 2001, NATURE, V412, P802.
KONDRATYUK P, 2007, ACCOUNTS CHEM RES, V40, P995, DOI 10.1021/ar700013c.
MARSH H, 2006, ACTIVATED CARBON, P166.
MIYAMOTO J, 2006, J AM CHEM SOC, V128, P12636, DOI 10.1021/ja064744+.
OHBA T, 2004, J AM CHEM SOC, V126, P1560, DOI 10.1021/ja038842w.
RASAIAH JC, 2008, ANNU REV PHYS CHEM, V59, P713, DOI 10.1146/annurev.physchem.59.032607.093815.
SAITO R, 2001, CHEM PHYS LETT, V348, P187.
SANSOM MSP, 2001, NATURE, V414, P156.
STRIOLO A, 2005, J CHEM PHYS, V122, ARTN 234712.
STRIOLO A, 2005, LANGMUIR, V21, P9457, DOI 10.1021/la051120t.
TAKAIWA D, 2008, P NATL ACAD SCI USA, V105, P39, DOI 10.1073/pnas.0707917105.
TAO Y, 2009, APPL PHYS LETT, V94, ARTN 113105.
WANG HJ, 2008, SCIENCE, V322, P80, DOI 10.1126/science.1162412.

Cited Reference Count:
18

Times Cited:
0

Publisher:
AMER CHEMICAL SOC; 1155 16TH ST, NW, WASHINGTON, DC 20036 USA

Subject Category:
Chemistry, Multidisciplinary

ISSN:
0002-7863

DOI:
10.1021/ja9091215

IDS Number:
562WA

========================================================================

*Record 5 of 7.
*View Full Record: http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000275085000049
*Order Full Text [ ]

Title:
A Controllable Molecular Sieve for Na+ and K+ Ions

Authors:
Gong, XJ; Li, JC; Xu, K; Wang, JF; Yang, H

Author Full Names:
Gong, Xiaojing; Li, Jichen; Xu, Ke; Wang, Jianfeng; Yang, Hui

Source:
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY 132 (6): 1873-1877 FEB 17 2010

Language:
English

Document Type:
Article

KeyWords Plus:
CARBON NANOTUBE MEMBRANES; POTASSIUM CHANNELS; MASS-TRANSPORT; WATER CHANNEL; SELECTIVITY; CONDUCTION; FLOW; NANOPORES

Abstract:
The selective rate of specific ion transport across nanoporous material is critical to biological and nanofluidic systems Molecular sieves for ions can be achieved by steric and electrical effects However, the radii of Na+ and K+ are quite similar, they both carry a positive charge, making them difficult to separate Biological ionic channels contain precisely arranged arrays of amino acids that can efficiently recognize and guide the passage of K+ or Na+ across the cell membrane However, the design of inorganic channels with novel recognition mechanisms that control the ionic selectivity remains a challenge. We present here a design for a controllable ion-selective nanopore (molecular sieve) based on a single-walled carbon nanotube with specially arranged carbonyl oxygen atoms modified inside the nanopore, which was inspired by the structure of potassium channels in membrane spanning proteins (e g, KcsA) Our molecular dynamics simulations show that the remarkable selectivity!
is attributed to the hydration structure of Na+ or K+ confined in the nanochannels, which can be precisely tuned by different patterns of the carbonyl oxygen atoms The results also suggest that a confined environment plays a dominant role in the selectivity process. These studies provide a better understanding of the mechanism of ionic selectivity in the KcsA channel and possible technical applications in nanotechnology and biotechnology, including serving as a laboratory-in-nanotube for special chemical interactions and as a high-efficiency nanodevice for purification or desalination of sea and brackish water

Reprint Address:
Gong, XJ, Chinese Acad Sci, Suzhou Inst Nanotech & Nanobion, Suzhou 215125, Peoples R China.

Research Institution addresses:
[Gong, Xiaojing; Xu, Ke; Wang, Jianfeng; Yang, Hui] Chinese Acad Sci, Suzhou Inst Nanotech & Nanobion, Suzhou 215125, Peoples R China; [Yang, Hui] Univ Sci & Technol China, Dept Phys, Hefei 230026, Peoples R China; [Li, Jichen] Univ Manchester, Dept Phys & Astron, Manchester M13 9PL, Lancs, England

Cited References:
BECKSTEIN O, 2004, J AM CHEM SOC, V126, P14694, DOI 10.1021/ja045271e.
BESTEMAN K, 2003, NANO LETT, V3, P727, DOI 10.1021/nl034139u.
BOSTICK DL, 2007, P NATL ACAD SCI USA, V104, P9260, DOI 10.1073/pnas.0700554104.
BOURLON B, 2007, NAT NANOTECHNOL, V2, P104, DOI 10.1038/nnano.2006.211.
COLE D, 2006, NAT MATER, V5, P305, DOI 10.1038/nmat1608.
CORRY B, 2008, J PHYS CHEM B, V112, P1427, DOI 10.1021/jp709845u.
DARDEN T, 1993, J CHEM PHYS, V98, P10089.
FAN R, 2005, PHYS REV LETT, V95, ARTN 086607.
GHOSH S, 2003, SCIENCE, V299, P1042, DOI 10.1126/science.1079080.
GONG XJ, 2008, PHYS REV LETT, V101, ARTN 257801.
HARDING MM, 2002, ACTA CRYSTALLOGR D 5, V58, P872.
HILLE B, 1999, NAT MED, V5, P1105.
HOLT JK, 2006, SCIENCE, V312, P1034, DOI 10.1126/science.1126298.
HUMMER G, 2001, NATURE, V414, P188.
JIANG YX, 2002, NATURE, V417, P523.
JORGENSEN WL, 1983, J CHEM PHYS, V79, P926.
JOSEPH S, 2003, NANO LETT, V3, P1399, DOI 10.1021/nl0346326.
KYOTANI T, 2001, CARBON, V39, P782.
LI JY, 2007, P NATL ACAD SCI USA, V104, P3687, DOI 10.1073/pnas.0604541104.
LINDAHL E, 2001, J MOL MODEL, V7, P306.
MACKINNON R, 2004, ANGEW CHEM INT EDIT, V43, P4265, DOI 10.1002/anie.200400662.
MAJUMDER M, 2005, NATURE, V438, P44, DOI 10.1038/43844a.
NOSKOV SY, 2004, NATURE, V431, P830, DOI 10.1038/nature02943.
PARK JH, 2006, NANOTECHNOLOGY, V17, P895, DOI 10.1088/0957-4484/17/3/046.
REGAN BC, 2004, NATURE, V428, P924, DOI 10.1038/nature02496.
SHANNON MA, 2008, NATURE, V452, P301, DOI 10.1038/nature06599.
SHAO Q, 2009, NANO LETT, V9, P989, DOI 10.1021/nl803044k.
SHI N, 2006, NATURE, V440, P570, DOI 10.1038/nature04508.
SINT K, 2008, J AM CHEM SOC, V130, P16448, DOI 10.1021/ja804409f.
SIWY Z, 2002, PHYS REV LETT, V89, ARTN 198103.
SUN L, 2000, J AM CHEM SOC, V122, P12340, DOI 10.1021/ja002429w.
THOMAS M, 2007, BIOPHYS J, V93, P2635, DOI 10.1529/biophysj.107.108167.
VARMA S, 2007, BIOPHYS J, V93, P1093, DOI 10.1529/biophysj.107.107482.
WAN RZ, 2005, J AM CHEM SOC, V127, P7166, DOI 10.1021/ja050044d.
WHITBY M, 2007, NAT NANOTECHNOL, V2, P87, DOI 10.1038/nnano.2006.175.
XIU P, 2009, J AM CHEM SOC, V131, P2840, DOI 10.1021/ja804586w.
YANG L, 2007, J CHEM PHYS, V126, ARTN 084706.
ZHU FQ, 2003, BIOPHYS J, V85, P236.

Cited Reference Count:
38

Times Cited:
0

Publisher:
AMER CHEMICAL SOC; 1155 16TH ST, NW, WASHINGTON, DC 20036 USA

Subject Category:
Chemistry, Multidisciplinary

ISSN:
0002-7863

DOI:
10.1021/ja905753p

IDS Number:
562WC

========================================================================

*Record 6 of 7.
*View Full Record: http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000275045600003
*Order Full Text [ ]

Title:
Rapid Transport of Water via a Carbon Nanotube Syringe

Authors:
Rivera, JL; Starr, FW

Author Full Names:
Rivera, Jose L.; Starr, Francis W.

Source:
JOURNAL OF PHYSICAL CHEMISTRY C 114 (9): 3737-3742 MAR 11 2010

Language:
English

Document Type:
Article

KeyWords Plus:
MOLECULAR-DYNAMICS; FLOW; CONDUCTION; MEMBRANES; CHANNEL; FILMS

Abstract:
The controlled flow of water molecules at the nanoscale is an initial step to many fluidic processes ill nanotechnology. Here we show how thin films of water call be drawn through a nanosyringe built from a carbon nanotube membrane and a "plunger". By increasing the speed of withdrawal of the plunger, we call obtain Molecular transport through the membrane at flux rates exceeding 1()25 molecules cm(-2) s(-1). Above I threshold speed around 0.25 nm/ns (25 cm/s), molecules cannot fill the chamber created by the plunger motion as fast as the chamber expands, and the resulting flux rate drops. By considering hydrophobic or hydrophilic Plungers, we unexpectedly find that the nature of the water-plunger interactions does not affect the flux rate or the threshold plunger speed. While the water structure near the plunger Surface differs significantly For different plunger interactions, the failure of the film away From the plunger surface is responsible for loss of transport. As I r!
esult, the surface interactions play a limited role in controlling the flux.

Reprint Address:
Starr, FW, Wesleyan Univ, Dept Phys, Middletown, CT 06457 USA.

Research Institution addresses:
[Rivera, Jose L.; Starr, Francis W.] Wesleyan Univ, Dept Phys, Middletown, CT 06457 USA; [Rivera, Jose L.] Univ Nacl Autonoma Mexico, Inst Invest Mat, Mexico City 04510, DF, Mexico

E-mail Address:
joserivera@iim.unam.mx; fstarr@wesleyan.edu

Cited References:
ARGYRIS D, 2008, J PHYS CHEM C, V112, P13587, DOI 10.1021/jp803234a.
CORRY B, 2008, J PHYS CHEM B, V112, P1427, DOI 10.1021/jp709845u.
DZUBIELLA J, 2005, J CHEM PHYS, V122, P14.
EVANS DJ, 1977, MOL PHYS, V34, P327.
EVANS DJ, 1983, PHYS LETT A, V98, P433.
FANG HP, 2008, J PHYS D, V41, P16.
FRENKEL D, 1996, UNDERSTANDING MOL SI.
GIOVAMBATTISTA N, 2006, PHYS REV E, V73, P14.
GONG XJ, 2007, NAT NANOTECHNOL, V2, P709, DOI 10.1038/nnano.2007.320.
GUO YJ, 1991, NATURE, V351, P464.
HANASAKI I, 2006, NANOTECHNOLOGY, V17, P2794, DOI 10.1088/0957-4484/17/11/012.
HOLT JK, 2006, SCIENCE, V312, P1034, DOI 10.1126/science.1126298.
HOOVER WG, 1982, PHYS REV LETT, V48, P1818.
HUMMER G, 2001, NATURE, V414, P188.
JOSEPH S, 2008, NANO LETT, V8, P452, DOI 10.1021/nl072385q.
KALRA A, 2003, P NATL ACAD SCI USA, V100, P10175.
KUMAR P, 2005, PHYS REV E, V72, P12.
KUMAR P, 2007, PHYS REV E, V75, P8.
LI JY, 2007, P NATL ACAD SCI USA, V104, P3687, DOI 10.1073/pnas.0604541104.
MAHONEY MW, 2000, J CHEM PHYS, V112, P8910.
MAJUMDER M, 2005, NATURE, V438, P44, DOI 10.1038/43844a.
RASAIAH JC, 2008, ANNU REV PHYS CHEM, V59, P713, DOI 10.1146/annurev.physchem.59.032607.093815.
RAVIV U, 2001, NATURE, V413, P51.
RIVERA JL, 2002, NANO LETT, V2, P427.
RIVERA JL, 2007, J PHYS CHEM C, V111, P18899, DOI 10.1021/jp075989r.
SHOLL DS, 2006, SCIENCE, V312, P1003, DOI 10.1126/science.1127261.
STRIOLO A, 2007, NANOTECHNOLOGY, V18, P10.
THOMAS JA, 2008, NANO LETT, V8, P2788, DOI 10.1021/nl8013617.
VAITHEESWARAN S, 2004, J CHEM PHYS, V121, P7955, DOI 10.1063/1.1796271.
WAN RZ, 2005, J AM CHEM SOC, V127, P7166, DOI 10.1021/ja050044d.
WHITBY M, 2007, NAT NANOTECHNOL, V2, P87, DOI 10.1038/nnano.2006.175.
ZHU FQ, 2003, BIOPHYS J, V85, P236.
ZIMMERLI U, 2005, NANO LETT, V5, P1017, DOI 10.1021/nl0503126.

Cited Reference Count:
33

Times Cited:
0

Publisher:
AMER CHEMICAL SOC; 1155 16TH ST, NW, WASHINGTON, DC 20036 USA

Subject Category:
Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary

ISSN:
1932-7447

DOI:
10.1021/jp906527c

IDS Number:
562JG

========================================================================

*Record 7 of 7.
*View Full Record: http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000275217500017
*Order Full Text [ ]

Title:
Mass transport and membrane separations: Universal description in terms of physicochemical potential and Einstein's mobility

Authors:
Kocherginsky, N

Author Full Names:
Kocherginsky, N.

Source:
CHEMICAL ENGINEERING SCIENCE 65 (4): 1474-1489 FEB 15 2010

Language:
English

Document Type:
Article

Author Keywords:
Membranes; Energy; Entropy; Separations; Transport processes; Linear thermodynamics; Reverse osmosis; Barodiffusion; Solution-diffusion model

KeyWords Plus:
SOLUTION-DIFFUSION MODEL; PERMEABILITY; VOLUME; WATER

Abstract:
General yet simple description of chemical transport processes in non-isolated system is suggested. It is based on extended Teorell equation and just two fundamental parameters: physicochemical potential and Einstein's mobility. Using mobility it is possible to compare the rates of all major linear transport phenomena, including pressure-driven migration and also nonideal and multicomponent diffusion. Relationship with the Stefan-Maxwell approach and Onsager's linear thermodynamics is demonstrated and physical interpretation of both diagonal and off-diagonal phenomenological coefficients is suggested. Imposing boundary conditions for transport equations allows description of transport in homogeneous membranes caused by several concurrent driving factors, such as concentration, pressure, and voltage. Differences of barodiffusion, membrane filtration, and reverse osmosis are considered. For a porous membrane an expression for the pressure-driven volumetric flux through the por!
es as a function of mobility and pore size is derived. It is explained why hydraulic flow prevails in submicron pores and why diffusion is the dominant mechanism in reverse osmosis if the pressure difference is not too high. The theory naturally leads to the solution-diffusion model equations but does not need usual assumptions of constant pressure across the membrane and the pressure jump only at one surface. Internal pressure and mechanical stress gradients within a membrane exist and can be useful in a description of rheology of aging polymer membranes. A new equation for concurrent diffusion and hydraulic transport is derived and two possible molecular mechanisms leading to the Kedem-Katchalsky equations for reverse osmosis membranes are suggested. Finally, electrokinetic processes are described and their similarity to concentration- and pressure-driven transport is discussed. (C) 2009 Elsevier Ltd. All rights reserved.

Reprint Address:
Kocherginsky, N, Biomime, 909 E Sunnycrest Dr, Urbana, IL 61801 USA.

Research Institution addresses:
Biomime, Urbana, IL 61801 USA

E-mail Address:
biomime@gmail.com

Cited References:
AGEEV EP, 1996, BIOFIZIKA+, V41, P613.
ALBERTY RA, 1997, PHYS CHEM.
ANNUNZIATA O, 2008, J PHYS CHEM B, V112, P11968, DOI 10.1021/jp803995n.
BAKER RW, 2004, MEMBRANE TECHNOLOGY.
BECKSTEIN O, 2004, J AM CHEM SOC, V126, P14694, DOI 10.1021/ja045271e.
BEREZINA NP, 2009, ELECTROCHIM ACTA, V54, P2342, DOI 10.1016/j.electacta.2008.10.048.
BIRD BB, 1960, TRANSPORT PHENOMENA.
BOCKRIS JOM, 1998, MODERN ELECTROCHEMIS, V1, CH4.
BURGHOFF HG, 1980, J APPL POLYM SCI, V25, P323.
CANTOR RS, 1997, J PHYS CHEM B, V101, P1723.
CUSSLER EL, 1997, DIFFUSION MASS TRANS.
DEEN WM, 1998, ANAL TRANSPORT PHENO.
DEFAY R, 1966, SURFACE TENSION ADSO.
DEGROOT SR, 1962, NONEQUILIBRIUM THERM.
DERJAGUIN BV, 1987, SURFACE FORCES.
DO DD, 1998, ADSORPTION ANAL EQUI.
DOBOS D, 1978, ELECTROCHEMICAL DATA.
EINSTEIN A, 1956, INVESTIGATIONS THEOR.
FINKELSTEIN A, 1987, WATER MOVEMENT LIPID.
GERE JM, 1990, MECH MAT.
GIBBS JW, 1948, COLLECTED WORKS.
HAASE R, 1969, THERMODYNAMICS IRREV.
HOLT JK, 2006, SCIENCE, V312, P1034, DOI 10.1126/science.1126298.
HUMMER G, 2001, NATURE, V414, P188.
ISLAM MA, 2004, PHYS SCRIPTA, V70, P114.
JOU D, 2001, THERMODYNAMICS FLUID.
KEDEM O, 1958, BIOCHIM BIOPHYS ACTA, V27, P229.
KOCHERGINSKY N, 2003, J PHYS CHEM B, V107, P7830, DOI 10.1021/jp0275721.
KOCHERGINSKY N, 2009, J MEMBRANE SCI, V328, P58, DOI 10.1016/j.memsci.2008.10.024.
KOCHERGINSKY NM, 1985, BIOL MEMBR, V1, P1734.
KOCHERGINSKY, 2009, CHEM ENG SCI UNPUB.
KONDEPUDI D, 1998, MODERN THERMODYNAMIC.
LAKSHMINARAYANA., 1969, TRANSPORT PHENOMENA.
MASON EA, 1990, J MEMBRANE SCI, V51, P1.
MULDER M, 1996, BASIC PRINCIPLES MEM.
ONSAGER L, 1931, PHYS REV, V37, P405.
PAUL DR, 2004, J MEMBRANE SCI, V241, P371, DOI 10.1016/j.memsci.2004.05.026.
PHAROAH JG, 2000, J MEMBRANE SCI, V176, P277.
PURI P, 2008, J APPL POLYM SCI, V108, P47, DOI 10.1002/app.26829.
RARD JA, 2009, J CHEM ENG DATA, V54, P636, DOI 10.1021/je800725k.
ROSENBAUM S, 1969, J POLYM SCI, V7, P101.
ROULSTON DJ, 1990, BIPOLAR SEMICONDUCTO.
SILVA V, 2009, CHEM ENG J, V149, P78, DOI 10.1016/j.cej.2008.10.002.
SOURIRAJAN S, 1970, REVERSE OSMOSIS.
SOURIRAJAN S, 1985, REVERSE OSMOSIS ULTR.
SPIEGLER KS, 1966, DESALINATION, V1, P311.
STOKES RJ, 1997, FUNDAMENTALS INTERFA.
STRATHMANN H, 2005, ULLMANNS ENCY IND CH, DOI 10.1002/14356007.A16_187.PUB2.
TEORELL T, 1935, P NATL ACAD SCI USA, V21, P152.
THAU G, 1966, DESALINATION, V1, P129.
WESSELINGH JA, 1990, MASS TRANSFER.
WIJMANS JG, 1995, J MEMBRANE SCI, V107, P1.
WIJMANS JG, 2004, J MEMBRANE SCI, V237, P39, DOI 10.1016/j.memsei.2004.02.028.
YAMPOLSKII Y, 2006, MAT SCI MEMBRANES GA.
YAROSHCHUK AE, 1995, J MEMBRANE SCI, V101, P83.

Cited Reference Count:
55

Times Cited:
0

Publisher:
PERGAMON-ELSEVIER SCIENCE LTD; THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND

Subject Category:
Engineering, Chemical

ISSN:
0009-2509

DOI:
10.1016/j.ces.2009.10.024

IDS Number:
564MA

========================================================================
*Order Full Text*
All Customers
--------------
Please contact your library administrator, or person(s) responsible for
document delivery, to find out more about your organization's policy for
obtaining the full text of the above articles. If your organization does
not have a current document delivery provider, your administrator can
contact ISI Document Solution at service@isidoc.com, or call 800-603-4367
or 734-459-8565.

IDS Customers
--------------
IDS customers can purchase the full text of an article (having page number,
volume, and issue information) by returning this ENTIRE message as a Reply
to Sender or Forward to orders@isidoc.com. Mark your choices with an X in
the "Order Full Text: []" brackets for each item. For example, [X].

Please enter your account number here:

========================================================================
*Help Desk Contact Information*
If you have any questions, please visit the Thomson Scientific Technical Support Contact Information Web page:
http://www.thomsonscientific.com/support/techsupport
========================================================================

No comments: