Friday, March 5, 2010

ISI Web of Knowledge Alert - Hummer, G

ISI Web of Knowledge Citation Alert

Cited Article: Hummer, G. Water conduction through the hydrophobic channel of a carbon nanotube
Alert Expires: 09 NOV 2010
Number of Citing Articles: 4 new records this week (4 in this e-mail)
Organization ID: 3b97d1bbc1878baed0ab183d8b03130b
========================================================================
Note: Instructions on how to purchase the full text of an article and Help Desk Contact information are at the end of the e-mail.
========================================================================

*Record 1 of 4.
*View Full Record: http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000274578700008
*Order Full Text [ ]

Title:
Retardation of Liquid Indium Flow in Indium Oxide Nanotubes

Authors:
Kumar, M; Singh, VN; Mehta, BR; Singh, JP

Author Full Names:
Kumar, Mukesh; Singh, Vidya N.; Mehta, Bodh R.; Singh, Jitendra P.

Source:
JOURNAL OF PHYSICAL CHEMISTRY C 114 (7): 2891-2895 FEB 25 2010

Language:
English

Document Type:
Article

KeyWords Plus:
CARBON NANOTUBES; FLUID-FLOW; TEMPERATURE; NANOTHERMOMETER; SOLUBILITY; TRANSPORT; METALS; WATER

Abstract:
High-resolution transmission electron microscopy and energy-dispersive X-ray analysis carried out oil indium oxide nanotubes grown by a chemical vapor deposition technique show the presence of indium metal segments along the indium oxide (IO) nanotube axis having one end closed. A real-time HRTEM video In continuous mode imaging has been carried Out to study the directional now of liquid indium. Electron-beam-induced heating results in the increase ill indium vapor pressure and desorption of gases at the closed end of the IO nanotubes. This buildup of differential pressure between open and closed columns leads to the now of indium away from the closed end of the IO nanotube. Interestingly, the indium flow rate was observed to decrease from 2.8 to 0.3 nm/s with a corresponding decrease in the nanotubes' diameter from 138 to 38 nm. This Study indicates that the wetting properties of the liquid-host nanotube interface critically decides the fluid dynamics at nanoscale, and depe!
nding upon the interfacial properties, enhancement or retardation of flow call be observed oil the reduction of the nanotube diameter.

Reprint Address:
Mehta, BR, Indian Inst Technol Delhi, Dept Phys, New Delhi 110016, India.

Research Institution addresses:
[Kumar, Mukesh; Singh, Vidya N.; Mehta, Bodh R.; Singh, Jitendra P.] Indian Inst Technol Delhi, Dept Phys, New Delhi 110016, India

E-mail Address:
brmehta@physics.iitd.ac.in; jpsingh@physics.iitd.ac.in

Cited References:
BURNS MA, 1998, SCIENCE, V282, P484.
CHEN PC, 2009, APPL PHYS LETT, V94, ARTN 043113.
CHEN X, 2008, NANO LETT, V8, P2988, DOI 10.1021/nl802046b.
CHOPRA KL, 1983, THIN SOLID FILMS, V102, P1.
DONG LX, 2007, NANO LETT, V7, P58, DOI 10.1021/nl061980+.
DU N, 2007, ADV MATER, V19, P1641, DOI 10.1002/adma.200602128.
EBBESEN TW, 1994, ANNU REV MATER SCI, V24, P235.
GAO YH, 2002, NATURE, V415, P599.
GOGOTSI Y, 2001, APPL PHYS LETT, V79, P1021.
GOLDBEG D, 2005, CHEM PHYS LETT, V409, P75.
GONG NW, 2008, APPL PHYS LETT, V92, ARTN 073101.
HOLT JK, 2006, SCIENCE, V312, P1034, DOI 10.1126/science.1126298.
HONG MH, 2000, APPL PHYS LETT, V77, P2604.
HU JQ, 2008, ACS NANO, V2, P107, DOI 10.1021/nn700285d.
HUMMER G, 2001, NATURE, V414, P188.
KIM YT, 2004, APPL PHYS LETT, V87, UNSP 234106.
KONO S, 1999, SURF SCI, V420, P200.
KOREN HW, 1970, REV SCI INSTRUM, V41, P468.
KUMAR M, 2009, APPL PHYS LETT, V95, ARTN 013102.
KUMAR M, 2009, NANOTECHNOLOGY, V20, ARTN 235608.
LI C, 2004, APPL PHYS LETT, V84, P1949, DOI 10.1063/1.1667615.
LI YB, 2003, ADV MATER, V15, P581.
LI YB, 2003, APPL PHYS LETT, V83, P999, DOI 10.1063/1.1597422.
LIDE DR, 1990, HDB CHEM PHYS.
LIU M, 1994, SCANNING, V16, P1.
MAJUMDER M, 2005, NATURE, V438, P44, DOI 10.1038/43844a.
MANI RC, 2003, NANO LETT, V3, P671, DOI 10.1021/nl034125o.
MATTIA D, 2008, MICROFLUID NANOFLUID, V5, P289, DOI 10.1007/s10404-008-0293-5.
OTSUKA S, 1984, METALL TRANS B, V15, P329.
REGAN BC, 2004, NATURE, V428, P924, DOI 10.1038/nature02496.
ROSSI MP, 2004, NANO LETT, V4, P989, DOI 10.1021/nl049688u.
SHPILRAIN EE, 2002, HIGH TEMP+, V40, P825.
SVENSSON K, 2004, PHYS REV LETT, V93, ARTN 145901.
TANG LQ, 2008, CHEM ENG J, V139, P642, DOI 10.1016/j.cej.2008.01.027.
TUZUN RE, 1996, NANOTECHNOLOGY, V7, P241.
UGARTE D, 1996, SCIENCE, V274, P1897.
WAN Q, 2006, NANO LETT, V6, P2909, DOI 10.1021/nl062213d.
WANG B, 2006, NANOTECHNOLOGY, V17, P5916, DOI 10.1088/0957-4484/17/24/003.
WHITBY M, 2008, NANO LETT, V8, P2632, DOI 10.1021/nl080705f.
ZHONG M, 2008, APPL PHYS LETT, V92, ARTN 093118.

Cited Reference Count:
40

Times Cited:
0

Publisher:
AMER CHEMICAL SOC; 1155 16TH ST, NW, WASHINGTON, DC 20036 USA

Subject Category:
Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary

ISSN:
1932-7447

DOI:
10.1021/jp910252f

IDS Number:
556GQ

========================================================================

*Record 2 of 4.
*View Full Record: http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000274615600001
*Order Full Text [ ]

Title:
Carbon Nanotubes Anchored to Silicon for Device Fabrication

Authors:
Constantopoulos, KT; Shearer, CJ; Ellis, AV; Voelcker, NH; Shapter, JC

Author Full Names:
Constantopoulos, Kristina T.; Shearer, Cameron J.; Ellis, Amanda V.; Voelcker, Nicolas H.; Shapter, Joseph C.

Source:
ADVANCED MATERIALS 22 (5): 557-571 FEB 2 2010

Language:
English

Document Type:
Review

KeyWords Plus:
CHEMICAL-VAPOR-DEPOSITION; FAST MASS-TRANSPORT; FIELD-EMISSION; POLY(SILYL ESTER)S; MEMBRANE EQUILIBRIA; RAMAN-SPECTROSCOPY; NANOFIBER ARRAYS; MAMMALIAN-CELLS; POROUS SILICON; SINGLE

Abstract:
This report highlights recent progress in the fabrication of vertically aligned carbon nanotubes (VA-CNTs) on silicon-based materials. Research into these nanostructured composite materials is spurred by the importance of silicon as a basis for most current devices and the disruptive properties of CNTs. Various CNT attachments methods of covalent and adsorptive nature are critically compared. Selected examples of device applications where the VA-CNT on silicon assemblies are showing particular promise are discussed. These applications include field emitters, filtration membranes, dry adhesives, sensors and scaffolds for biointerfaces.

Reprint Address:
Shapter, JC, Flinders Univ S Australia, Sch Chem Phys & Earth Sci, GPO Box 2100, Bedford Pk, SA 5042, Australia.

Research Institution addresses:
[Constantopoulos, Kristina T.; Shearer, Cameron J.; Ellis, Amanda V.; Voelcker, Nicolas H.; Shapter, Joseph C.] Flinders Univ S Australia, Sch Chem Phys & Earth Sci, Bedford Pk, SA 5042, Australia

E-mail Address:
joe.shapter@flinders.edu.au

Cited References:
ALLEN BL, 2008, NANO LETT, V8, P3899, DOI 10.1021/nl802315h.
ANDERSON RC, 1993, J ELECTROCHEM SOC, V140, P1393.
AUTUMN K, 2000, NATURE, V405, P681.
BAUGHMAN RH, 2002, SCIENCE, V297, P787.
BECKER M, 1949, PHYS REV, V76, P1531.
BENJACOB E, 2008, J MATER CHEM, V18, P5181, DOI 10.1039/b805878b.
BONARD JM, 1998, APPL PHYS LETT, V73, P918.
BONARD JM, 2002, CARBON, V40, P1715.
BOWER C, 2000, APPL PHYS LETT, V77, P830.
BURIAK JM, 2002, CHEM REV, V102, P1271.
CAI D, 2005, NAT METHODS, V2, P449, DOI 10.1038/NMETH761.
CANHAM L, 1997, PROPERTIES POROUS SI.
CARDENAS JF, 2007, CHEM PHYS LETT, V442, P409, DOI 10.1016/j.cplett.2007.06.030.
CAZACU M, 2006, J ORGANOMET CHEM, V691, P3700, DOI 10.1016/j.jorganchem.2006.05.026.
CHAKRABARTI S, 2008, J PHYS CHEM C, V112, P8136, DOI 10.1021/jp802059t.
CHAMSSEDINE F, 2008, CARBON, V46, P957, DOI 10.1016/j.carbon.2008.03.001.
CHAUFER B, 1996, DESALINATION, V104, P37.
CHEN G, 2002, J NANOSCI NANOTECHNO, V2, P621, DOI 10.1166/jnn.2002.143.
CHEN GH, 2008, NANOTECHNOLOGY, V19, ARTN 415703.
CHEN LF, 2008, J NANOMATER, ARTN 783981.
CHEN X, 2007, P NATL ACAD SCI USA, V104, P8218, DOI 10.1073/pnas.0700567104.
CHENG Y, 2003, CR PHYS, V4, P1021, DOI 10.1016/S1631-0705(03)00103-8.
CHHOWALLA M, 2001, APPL PHYS LETT, V79, P2079.
CHOI KH, 2000, SURF SCI, V462, P195.
CONSTANTOPOULOS KT, 2008, P SPIE.
COOPER SM, 2004, NANO LETT, V4, P377, DOI 10.1021/nl0350682.
CORREADUARTE MA, 2004, NANO LETT, V4, P2233, DOI 10.1021/nl048574f.
CRAIGHEAD HG, 1998, BIOMED MICRODEVICES, V1, P49.
CURRAN SA, 2004, J CHEM PHYS, V120, P4886, DOI 10.1063/1.1644109.
CURRAN SA, 2006, J MATER RES, V21, P1071, DOI 10.1557/JMR.2006.0129.
DAI HJ, 2001, TOP APPL PHYS, V80, P29.
DERVISHI E, 2009, PARTICUL SCI TECHNOL, V27, P107, DOI 10.1080/02726350902775962.
DONNAN FG, 1924, CHEM REV, V1, P73.
DONNAN FG, 1995, J MEMBRANE SCI, V100, P45.
DYKE CA, 2003, NANO LETT, V3, P1215, DOI 10.1021/nl034537x.
ELLIS AV, 2005, CHEM PHYS LETT, V412, P449, DOI 10.1016/j.cplett.2005.07.052.
ELLIS AV, 2006, J CHEM PHYS, V125, ARTN 121103.
ELLIS AV, 2007, CHEM LETT, P36.
ENDO M, 1993, J PHYS CHEM SOLIDS, V54, P1841.
FABRE B, 2008, LANGMUIR, V24, P6595, DOI 10.1021/la800358w.
FAN SS, 1999, SCIENCE, V283, P512.
FAN SS, 2000, PHYSICA E, V8, P179.
FLATT AK, 2005, J AM CHEM SOC, V127, P8918, DOI 10.1021/ja051269r.
FORNASIERO F, 2008, P NATL ACAD SCI USA, V105, P17250, DOI 10.1073/pnas.0710437105.
GABAY T, 2005, PHYSICA A, V350, P611, DOI 10.1016/j.physa.2004.11.007.
GIANNONA S, 2007, J NANOSCI NANOTECHNO, V7, P1679, DOI 10.1166/jnn.2007.454.
GRAUPNER R, 2007, J RAMAN SPECTROSC, V38, P673, DOI 10.1002/jrs.1694.
HARRISON BS, 2007, BIOMATERIALS, V28, P344, DOI 10.1016/j.biomaterials.2006.07.044.
HART AJ, 2007, INT J NANOMANUF, V1, P701.
HATA K, 2004, SCIENCE, V306, P1362.
HAVEL BS, 2007, CARBON, V45, P2551.
HAYASHI T, 2002, NANO LETTERS, V2, P491.
HE JL, 2006, NAT MATER, V5, P63, DOI 10.1038/nmat1526.
HIGASHI GS, 1990, APPL PHYS LETT, V56, P656.
HINDS BJ, 2004, SCIENCE, V303, P62, DOI 10.1126/science.1092048.
HOLT JK, 2004, NANO LETT, V4, P2245, DOI 10.1021/nl048876h.
HOLT JK, 2006, SCIENCE, V312, P1034, DOI 10.1126/science.1126298.
HOMMA Y, 2005, J ELECTRON MICROS S1, V54, I3, DOI 10.1093/jmicro/dfi013.
HUANG XJ, 2007, LANGMUIR, V23, P991, DOI 10.1021/la0631441.
HUMMER G, 2001, NATURE, V414, P188.
IM J, 2006, J PHYS CHEM B, V110, P12839, DOI 10.1021/jp062146b.
IZAK T, 2008, J PHYS C SER, V100, UNSP 072008.
JENSEN KL, 1999, PHYS PLASMAS 2, V6, P2241.
JIANG J, 2005, PHYS REV B, V71, ARTN 045417.
JISHI RA, 1993, CHEM PHYS LETT, V209, P77.
JOSELEVICH E, 2008, TOP APPL PHYS, V111, P101.
KALRA A, 2003, P NATL ACAD SCI USA, V100, P10175.
KAM NWS, 2004, J AM CHEM SOC, V126, P6850, DOI 10.1021/ja0486059.
KAMEYAMA A, 1999, MACROMOLECULES, V32, P1407.
KAMINSKA K, 2007, NANOTECHNOLOGY, V18, ARTN 165707.
KHABASHESKU VN, 2002, ACCOUNTS CHEM RES, V35, P1087, DOI 10.1021/ar020146y.
KIM UJ, 2005, J AM CHEM SOC, V127, P15437, DOI 10.1021/ja052951o.
KIM UJ, 2005, PHYS REV LETT, V95, ARTN 157402.
KIMBALL DB, 2002, ANGEW CHEM INT EDIT, V41, P3338.
KOGA K, 2001, NATURE, V412, P802.
KOLESNIKOV AI, 2004, PHYS REV LETT, V93, ARTN 035503.
KRUPKE R, 2002, NANO LETT, V2, P1161, DOI 10.1021/nl025679e.
LACERDA L, 2007, NANO TODAY, V2, P38.
LI YM, 2001, J PHYS CHEM B, V105, P11424.
LIU C, 2005, J PHYS D APPL PHYS, V38, R231, DOI 10.1088/0022-3727/38/14/R01.
LIU J, 1999, CHEM PHYS LETT, V303, P125.
LIU XM, 2009, CARBON, V47, P500, DOI 10.1016/j.carbon.2008.10.033.
LIU ZF, 2000, LANGMUIR, V16, P3569.
LOBO AO, 2008, MAT SCI ENG C-BIO S, V28, P532, DOI 10.1016/j.msec.2007.04.016.
LU FS, 2009, ADV MATER, V21, P139, DOI 10.1002/adma.200801491.
MAJOR RC, 2006, PHYS REV LETT, V96, ARTN 177803.
MAJUMDER M, 2005, NATURE, V438, P44, DOI 10.1038/43844a.
MAJUMDER M, 2007, LANGMUIR, V23, P8624, DOI 10.1021/la700686k.
MAJUMDER M, 2008, J MEMBRANE SCI, V316, P89, DOI 10.1016/j.memsci.2007.09.068.
MANN D, 2006, CARBON NANOTUBES PRO, P19.
MARTINEZ J, 2005, NANOTECHNOLOGY, V16, P2493, DOI 10.1088/0957-4484/16/11/004.
MARUYAMA S, 2002, CHEM PHYS LETT, V360, P229.
MAWHINNEY DB, 2000, J AM CHEM SOC, V122, P2383.
MCKNIGHT TE, 2003, NANOTECHNOLOGY, V14, P551.
MCKNIGHT TE, 2004, NANO LETT, V4, P1213, DOI 10.1021/nl049504b.
MEYYAPPAN M, 2003, PLASMA SOURCES SCI T, V12, P205.
MISRA A, 2006, DIAM RELAT MATER, V15, P385, DOI 10.1016/j.diamond.2005.08.013.
MURAMATSU H, 2005, CHEM COMMUN 0421, P2002, DOI 10.1039/b416393a.
NAN XL, 2002, J COLLOID INTERF SCI, V245, P311.
NEWTON TA, 1999, SURF SCI, V430, P67.
NGUYENVU TDB, 2006, SMALL, V2, P89, DOI 10.1002/smll.200500175.
NOBUAKI N, 1993, APPL PHYS LETT, V62, P1429.
OCONNELL MJ, 2002, SCIENCE, V297, P593.
PARK JH, 2005, J VAC SCI TECHNOL B, V23, P749, DOI 10.1116/1.1851535.
PASTERNACK RM, 2008, LANGMUIR, V24, P12963, DOI 10.1021/la8024827.
PIETRASS T, 2006, J NANOSCI NANOTECHNO, V6, P135, DOI 10.1166/jnn.2006.058.
PLANK NOV, 2004, MICROELECTRON ENG, V73, P578, DOI 10.1016/j.mee.2004.02.088.
POH ZH, 2009, MATER LETT, V63, P757, DOI 10.1016/j.matlet.2008.12.043.
POLICICCHIO A, 2008, J PHYS C SER, V100, UNSP 052093.
PULIKKATHARA MX, 2008, CHEM MATER, V20, P2685, DOI 10.1021/cm7035037.
QU L, 2007, ADV MATER, V19, P3844, DOI 10.1002/adma.200700023.
QU LT, 2008, NANO LETT, V8, P2682, DOI 10.1021/nl800967n.
QU LT, 2008, SCIENCE, V322, P238, DOI 10.1126/science.1159503.
RANA S, 2009, J REINF PLAST COMP, V28, P461.
REN ZF, 1998, SCIENCE, V282, P1105.
RINZLER AG, 1995, SCIENCE, V269, P1550.
SATISHKUMAR BC, 1996, J PHYS B-AT MOL OPT, V29, P4925.
SAUVAJOL JL, 2006, LECT NOTE PHYS, V677, P277.
SCHAEP J, 1998, SEP PURIF TECHNOL, V14, P155.
SCHMELTZER JM, 2005, CHEM NANOMATERIALS, V1.
SEELABOYINA R, 2008, NANOTECHNOLOGY, V19, ARTN 065605.
SETHI S, 2008, NANO LETT, V8, P822, DOI 10.1021/nl0727765.
SGOBBA V, 2009, CHEM SOC REV, V38, P165, DOI 10.1039/b802652c.
SHEARER CJ, 2008, J MATER CHEM, V18, P5753, DOI 10.1039/b811546j.
SHEARER CJ, 2008, P SPIE SMART MAT 5 N, V7267.
SINGH R, 2005, J AM CHEM SOC, V127, P4388, DOI 10.1021/ja0441561.
SMART SK, 2006, CARBON, V44, P1034, DOI 10.1016/j.carbon.2005.10.011.
SONOGASHIRA K, 1975, TETRAHEDRON LETT, V16, P4467.
STEIN A, 2009, ADV MATER, V21, P265, DOI 10.1002/adma.200801492.
STEPHENS RD, 1963, J ORG CHEM, V28, P3313.
STEVENS JL, 2003, NANO LETT, V3, P331, DOI 10.1021/nl025944w.
STEWART MP, 2000, ADV MATER, V12, P859.
STEWART MP, 2004, J AM CHEM SOC, V126, P370.
STUART BH, 2004, INFRARED SPECTROSCOP.
SUDALAI A, 2000, ORG LETT, V2, P3213, DOI 10.1021/ol006407q.
TANG J, 2005, NANO LETT, V5, P11, DOI 10.1021/nl048803y.
TEO KBK, 2001, APPL PHYS LETT, V79, P1534.
TIAN Y, 2006, P NATL ACAD SCI USA, V103, P19320, DOI 10.1073/pnas.0608841103.
TING JM, 2009, NANOTECHNOLOGY, V20, ARTN 025608.
TUNE DD, CARBON UNPUB.
TUZLAKOGLU K, 2005, J MATER SCI-MATER M, V16, P1099, DOI 10.1007/s10856-005-4713-8.
VAJTAI R, 2007, TOP APPL PHYS, V109, P188.
VANDERWAL RL, 2001, CARBON, V39, P2277.
VEREB G, 2003, P NATL ACAD SCI USA, V100, P8053, DOI 10.1073/pnas.1332550100.
VERWEIJ H, 2007, SMALL, V3, P1996, DOI 10.1002/smll.200700368.
WAGHE A, 2002, J CHEM PHYS, V117, P10789, DOI 10.1063/1.1519861.
WALTHER JH, 2001, J PHYS CHEM B, V105, P9980.
WANG M, 1998, MACROMOLECULES, V31, P7606.
WANG M, 1999, J POLYM SCI POL CHEM, V37, P3606.
WANG QH, 1998, APPL PHYS LETT, V72, P2912.
WANG ZK, 2007, NANO LETT, V7, P697, DOI 10.1021/nl062853g.
WEI BQ, 2002, NATURE, V416, P495.
WIRTH CT, 2008, DIAM RELAT MATER, V17, P1518, DOI 10.1016/j.diamond.2007.11.019.
WONG SS, 1998, NATURE, V394, P52.
WORLEKNIRSCH JM, 2006, NANO LETT, V6, P1261, DOI 10.1021/nl060177c.
YAMADA T, 2006, NAT NANOTECHNOL, V1, P131, DOI 10.1038/nnano.2006.95.
YANG CM, 2006, PHYS REV B, V73, ARTN 075419.
YAQIONG X, 2006, APPL PHYS LETT, V89, UNSP 123116.
YU J, 2008, FULLER NANOTUB CAR N, V16, P18, DOI 10.1080/15363830701779299.
YU JX, 2006, SOFT MATTER, V2, P1081, DOI 10.1039/b611016a.
YU JX, 2007, PHYS CHEM CHEM PHYS, V9, P510, DOI 10.1039/b615096a.
YU JX, 2008, J AM CHEM SOC, V130, P8788, DOI 10.1021/ja801142k.
YUE GZ, 2002, APPL PHYS LETT, V81, P355.
YUN YH, 2006, J PHYS CHEM B, V110, P23920, DOI 10.1021/jp057171g.
ZANGI R, 2003, J CHEM PHYS, V119, P1694, DOI 10.1063/1.1580101.
ZANGI R, 2003, PHYS REV LETT, V91, ARTN 025502.
ZENG LL, 2008, J NANOSCI NANOTECHNO, V8, P1545, DOI 10.1166/jnn.2008.400.
ZHANG GY, 2005, P NATL ACAD SCI USA, V102, P16141, DOI 10.1073/pnas.0507064102.
ZHANG L, 2007, J PHYS CHEM C, V111, P11240, DOI 10.1021/jp0729011.
ZHANG NY, 2002, SMART MATER STRUCT, V11, P962.
ZHANG X, 2005, SENSOR ACTUAT B-CHEM, V106, P843, DOI 10.1016/j.snb.2004.10.039.
ZHENG G, 2007, NANO LETT, V7, P1622, DOI 10.1021/nl070585w.
ZHU W, 1999, APPL PHYS LETT, V75, P873.

Cited Reference Count:
173

Times Cited:
0

Publisher:
WILEY-V C H VERLAG GMBH; PO BOX 10 11 61, D-69451 WEINHEIM, GERMANY

Subject Category:
Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter

ISSN:
0935-9648

DOI:
10.1002/adma.200900945

IDS Number:
556TP

========================================================================

*Record 3 of 4.
*View Full Record: http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000274635800024
*Order Full Text [ ]

Title:
Role of Surfactants in Carbon Nanotubes Density Gradient Separation

Authors:
Carvalho, EJF; dos Santos, MC

Author Full Names:
Carvalho, Elton J. F.; dos Santos, Maria Cristina

Source:
ACS NANO 4 (2): 765-770 FEB 2010

Language:
English

Document Type:
Article

Author Keywords:
molecular dynamics; carbon nanotube density; surfactants

KeyWords Plus:
WATER; DYNAMICS; SIMULATIONS; AMPHIPHILES

Abstract:
Several strategies aimed at sorting single-walled carbon nanotubes (SWNT) by diameter and/or electronic structure have been developed in recent years. A nondestructive sorting method was recently proposed in which nanotube bundles are dispersed in water-surfactant solutions and submitted to ultracentrifugation in a density gradient. By this method, SWNTs of different diameters are distributed according to their densities along the centrifuge tube. A mixture of two anionic amphiphiles, namely sodium dodecylsulfate (SIDS) and sodium cholate (SC), presented the best performance in discriminating nanotubes by diameter. We present molecular dynamics studies of the water-surfactant-SWNT system. The simulations revealed one aspect of the discriminating power of surfactants: they can actually be attracted toward the interior of the nanotube cage. The binding energies of SDS and SC on the outer nanotube surface are very similar and depend weakly on diameter. The binding inside the tu!
bes, on the contrary, is strongly diameter dependent: SDS fits best inside tubes with diameters ranging from 8 to 9 angstrom, while SC is best accommodated in larger tubes, with diameters in the range 10.5-12 angstrom. The dynamics at room temperature showed that, as the amphiphile moves to the hollow cage, water molecules are dragged together, thereby promoting the nanotube filling. The resulting densities of filled SWNT are in agreement with measured densities.

Reprint Address:
dos Santos, MC, Univ Sao Paulo, Inst Fis, Dept Fis Mat & Mecan, BR-05315970 Sao Paulo, Brazil.

Research Institution addresses:
[Carvalho, Elton J. F.; dos Santos, Maria Cristina] Univ Sao Paulo, Inst Fis, Dept Fis Mat & Mecan, BR-05315970 Sao Paulo, Brazil

E-mail Address:
mcsantos@if.usp.br

Cited References:
*ACC INC, 2005, CERIUS2 VERS 4 10.
ARAI N, 2008, J AM CHEM SOC, V130, P7916, DOI 10.1021/ja7108739.
ARNOLD MS, 2006, NAT NANOTECHNOL, V1, P60, DOI 10.1038/nnano.2006.52.
ARNOLD MS, 2008, ACS NANO, V2, P2291, DOI 10.1021/nn800512t.
DAUBEROSGUTHORP.P, 1988, PROTEINS, V4, P31.
FRIDDLE RW, 2007, NAT NANOTECHNOL, V2, P692, DOI 10.1038/nnano.2007.334.
GUILLOT B, 2002, J MOL LIQ, V101, P219.
HEADGORDON T, 2002, CHEM REV, V102, P2561.
HENNRICH F, 2007, PHYS STATUS SOLIDI B, V244, P3896, DOI 10.1002/pssb.200776104.
HERSAM MC, 2008, NAT NANOTECHNOL, V3, P387, DOI 10.1038/nnano.2008.135.
HOBZA P, 1997, J COMPUT CHEM, V18, P1136.
HOOVER WG, 1985, PHYS REV A, V31, P1695.
HUMMER G, 2001, NATURE, V414, P188.
KE PC, 2007, PHYS CHEM CHEM PHYS, V9, P439, DOI 10.1039/b611142d.
KOGA K, 2001, NATURE, V412, P802.
MALLIK AB, 2003, CRYST GROWTH DES, V3, P467, DOI 10.1021/cg030005i.
NAIR N, 2008, LANGMUIR, V24, P1790, DOI 10.1021/la702516u.
OKAZAKI T, 2005, NANO LETT, V5, P2618, DOI 10.1021/nl051888y.
RAPPE AK, 1991, J PHYS CHEM-US, V95, P3358.
RINZLER AG, 2006, NAT NANOTECHNOL, V1, P17, DOI 10.1038/nnano.2006.76.
TUMMALA NR, 2009, ACS NANO, V3, P595, DOI 10.1021/nn8007756.
TUMMALA NR, 2009, PHYS REV E, V80, UNSP 0214081-10.
WENSELEERS W, 2007, ADV MATER, V19, P2274, DOI 10.1002/adma.200700773.
ZHANG XR, 2008, J PHYS CHEM C, V112, P2943, DOI 10.1021/jp710840b.

Cited Reference Count:
24

Times Cited:
0

Publisher:
AMER CHEMICAL SOC; 1155 16TH ST, NW, WASHINGTON, DC 20036 USA

Subject Category:
Chemistry, Multidisciplinary; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary

ISSN:
1936-0851

DOI:
10.1021/nn901350s

IDS Number:
556ZI

========================================================================

*Record 4 of 4.
*View Full Record: http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000274635800051
*Order Full Text [ ]

Title:
Single-File Diffusion of Water Inside Narrow Carbon Nanorings

Authors:
Mukherjee, B; Maiti, PK; Dasgupta, C; Sood, AK

Author Full Names:
Mukherjee, Biswaroop; Maiti, Prabal K.; Dasgupta, Chandan; Sood, A. K.

Source:
ACS NANO 4 (2): 985-991 FEB 2010

Language:
English

Document Type:
Article

Author Keywords:
water; carbon; nanotube; nanoring; single-file diffusion; hydrophobicity; transport; hydrogen bond

KeyWords Plus:
ONE-DIMENSIONAL DIFFUSION; LONG-TIME LIMIT; NANOTUBES; CHANNEL; EQUILIBRIUM; CONFINEMENT; BOUNDARIES; PARTICLES; KINETICS; LATTICE

Abstract:
We use atomistic molecular dynamics (MD) simulations to study the diffusion of water molecules confined inside narrow (6,6) carbon nanorings. The water molecules form two oppositely polarized chains. It is shown that the effective interaction between these two chains is repulsive in nature. The computed mean-squared displacement (MSD) clearly shows a scaling with time <Delta theta(2)(t)> similar to t(1/2), which is consistent with single-file diffusion (SFD). The time up to which the water molecules undergo SFD is shown to be the lifetime of the water molecules inside these chains. Simulations of "uncharged" water molecules inside the nanoring show the formation of several water chains and yield SFD. These observations conclusively prove that the diffusion is Fickian when there is a single chain of water and SFD is observed only when two or more chains are present.

Reprint Address:
Mukherjee, B, Indian Inst Sci, Dept Phys, Ctr Condensed Matter Theory, Bangalore 560012, Karnataka, India.

Research Institution addresses:
[Mukherjee, Biswaroop; Maiti, Prabal K.; Dasgupta, Chandan] Indian Inst Sci, Dept Phys, Ctr Condensed Matter Theory, Bangalore 560012, Karnataka, India; [Dasgupta, Chandan] Jawaharlal Nehru Ctr Adv Sci Res, Condensed Matter Theory Unit, Bangalore 560064, Karnataka, India

E-mail Address:
biswa@physics.iisc.ernet.in

Cited References:
AGRE P, 2004, ANGEW CHEM INT EDIT, V43, P4278, DOI 10.1002/anie.200460804.
ALEXANDER S, 1978, PHYS REV B, V18, P2011.
BEREZHKOVSKII A, 2002, PHYS REV LETT, UNSP 89064503(1)-064503(4).
CASE DA, 1999, AMBER 7.
FEDDERS PA, 1978, PHYS REV B, V17, P40.
HAHN K, 1996, PHYS REV LETT, V76, P2762.
HAHN K, 1998, J PHYS CHEM B, V102, P5766.
HARRIS TE, 1965, J APPL PROBAB, V2, P323.
HUMMER G, 2001, NATURE, V414, P188.
JESPEN D, 1965, J MATH PHYS, V6, P405.
JOBIC H, 1997, J PHYS CHEM B, V101, P5834.
JORGENSEN WL, 1983, J CHEM PHYS, V79, P926.
KARGER J, 1992, PHYS REV A, V45, P4173.
KARGER J, 1993, PHYS REV E, V47, P1427.
KOLLMANN M, 2003, PHYS REV LETT, UNSP 90180602(1)-180602(4).
KUKLA V, 1996, SCIENCE, V272, P702.
LEE KH, 2005, NANO LETT, V5, P793, DOI 10.1021/nl0502219.
LEVITT DG, 1973, PHYS REV A, V8, P3050.
LIN B, 2005, PHYS REV LETT, UNSP 94216001(1)-216001(4).
LIN BH, 2002, EUROPHYS LETT, V57, P724.
LIU J, 1997, NATURE, V385, P780.
LUTZ C, 2004, PHYS REV LETT, UNSP 93026001(1)-026011(4).
MAIBAUM L, 2003, J PHYS CHEM B, V107, P1189, DOI 10.1021/jp0267196.
MAJUMDER SR, 2006, J CHEM PHYS, UNSP 125201103(1)-201103(4).
MAJUMDER SR, 2007, J CHEM PHYS, UNSP 127054706(1)-054706(5).
MAO ZG, 2000, J PHYS CHEM B, V104, P4618.
MARTEL R, 1999, J PHYS CHEM B, V103, P7551.
MARTEL R, 1999, NATURE, V398, P299.
MASHL RJ, 2003, NANO LETT, V3, P589, DOI 10.1021/nl0340226.
MUKHERJEE B, 2007, J CHEM PHYS, UNSP 126124704(1)-124704(8).
MURATA K, 2000, NATURE, V407, P599.
NELSON PH, 1999, J CHEM PHYS, V110, P9235.
PRESTON GM, 1991, P NATL ACAD SCI USA, V88, P11110.
RASAIAH JC, 2008, ANNU REV PHYS CHEM, V59, P713, DOI 10.1146/annurev.physchem.59.032607.093815.
RICHARDS PM, 1977, PHYS REV B, V16, P1393.
SCHURING A, 2005, J PHYS CHEM B, V109, P16711, DOI 10.1021/jp052314k.
STRIOLO A, 2006, NANO LETT, V6, P633, DOI 10.1021/nl052254u.
VANBEIJEREN H, 1983, PHYS REV B, V28, P5711.
VASENKOV S, 2006, LANGMUIR, V22, P5728, DOI 10.1021/la060378w.
WAGHE A, 2002, J CHEM PHYS, V117, P10789, DOI 10.1063/1.1519861.
WEI QH, 2000, SCIENCE, V287, P625.
ZEIDEL ML, 1992, BIOCHEMISTRY-US, V31, P7436.
ZHOU X, 2004, J CHEM PHYS, V121, P7996, DOI 10.1063/1.1799971.

Cited Reference Count:
43

Times Cited:
0

Publisher:
AMER CHEMICAL SOC; 1155 16TH ST, NW, WASHINGTON, DC 20036 USA

Subject Category:
Chemistry, Multidisciplinary; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary

ISSN:
1936-0851

DOI:
10.1021/nn900858a

IDS Number:
556ZI

========================================================================
*Order Full Text*
All Customers
--------------
Please contact your library administrator, or person(s) responsible for
document delivery, to find out more about your organization's policy for
obtaining the full text of the above articles. If your organization does
not have a current document delivery provider, your administrator can
contact ISI Document Solution at service@isidoc.com, or call 800-603-4367
or 734-459-8565.

IDS Customers
--------------
IDS customers can purchase the full text of an article (having page number,
volume, and issue information) by returning this ENTIRE message as a Reply
to Sender or Forward to orders@isidoc.com. Mark your choices with an X in
the "Order Full Text: []" brackets for each item. For example, [X].

Please enter your account number here:

========================================================================
*Help Desk Contact Information*
If you have any questions, please visit the Thomson Scientific Technical Support Contact Information Web page:
http://www.thomsonscientific.com/support/techsupport
========================================================================

No comments: