Friday, February 6, 2009

ISI Web of Knowledge Alert - Holt JK

ISI Web of Knowledge Citation Alert

Cited Article: Holt JK. Fast mass transport through sub-2-nanometer carbon nanotubes
Alert Expires: 18 OCT 2009
Number of Citing Articles: 7 new records this week (7 in this e-mail)
Organization ID: 3b97d1bbc1878baed0ab183d8b03130b
========================================================================
Note: Instructions on how to purchase the full text of an article, import the records into an
ISI ResearchSoft product, and Help Desk Contact information are at the end of the e-mail.
========================================================================

FN ISI Export Format
VR 1.0

PT J
*Record 1 of 7.
L5 <http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;UT=000262519100012>
*Order Full Text [ ]
AU Zambrano, HA
Walther, JH
Koumoutsakos, P
Sbalzarini, IF
AF Zambrano, Harvey A.
Walther, Jens H.
Koumoutsakos, Petros
Sbalzarini, Ivo F.
TI Thermophoretic Motion of Water Nanodroplets Confined inside Carbon
Nanotubes
SO NANO LETTERS
LA English
DT Article
ID MOLECULAR-DYNAMICS; THERMAL-DIFFUSION; MASS-TRANSPORT; CALIBRATION;
POTENTIALS; SIMULATION; PARTICLES; MEMBRANES; TRACKING; LIQUIDS
AB We study the thermophoretic motion of water nanodroplets confined
inside carbon nanotubes using molecular dynamics simulations. We find
that the nanodroplets move in the direction opposite the imposed
thermal gradient with a terminal velocity that is linearly proportional
to the gradient. The translational motion is associated with a solid
body rotation of the water nanodroplet coinciding with the helical
symmetry of the carbon nanotube. The thermal diffusion displays a weak
dependence on the wetting of the water-carbon nanotube interface. We
introduce the use of the moment scaling spectrum (MSS) in order to
determine the characteristics of the motion of the nanoparticles inside
the carbon nanotube. The MSS indicates that affinity of the nanodroplet
with the walls of the carbon nanotubes is important for the isothermal
diffusion and hence for the Soret coefficient of the system.
C1 [Zambrano, Harvey A.; Walther, Jens H.] Tech Univ Denmark, Dept Mech Engn, DK-2800 Lyngby, Denmark.
[Walther, Jens H.; Koumoutsakos, Petros] ETH, Computat Sci & Engn Lab, CH-8092 Zurich, Switzerland.
[Sbalzarini, Ivo F.] ETH, Inst Computat Sci, CH-8092 Zurich, Switzerland.
[Sbalzarini, Ivo F.] ETH, Swiss Inst Bioinformat, CH-8092 Zurich, Switzerland.
RP Walther, JH, Tech Univ Denmark, Dept Mech Engn, DK-2800 Lyngby, Denmark.
EM jhw@mek.dtu.dk
CR BARREIRO A, 2008, SCIENCE, V320, P775, DOI 10.1126/science.1155559
BELIKOV AV, 2004, CHEM PHYS LETT, V385, P72, DOI
10.1016/j.cplett.2003.12.049
BERENDSEN HJC, 1984, J CHEM PHYS, V81, P3684
BERENDSEN HJC, 1987, J PHYS CHEM-US, V91, P6269
BRENNER H, 2006, PHYS REV E 2, V74, ARTN 036306
DOMMERSNES PG, 2005, EUROPHYS LETT, V70, P271, DOI
10.1209/epl/i2004-10477-9
DUHR S, 2006, P NATL ACAD SCI USA, V103, P19678, DOI
10.1073/pnas.0603873103
DUTRIEUX JF, 2002, J PHYS CHEM B, V106, P6104
EWERS H, 2005, P NATL ACAD SCI USA, V102, P15110, DOI
10.1073/pnas.0504407102
FERRARI R, 2001, PHYSICA D, V154, P111
GASPARAC R, 2004, NANO LETT, V4, P513, DOI 10.1021/nl0352494
GOGOTSI Y, 2001, APPL PHYS LETT, V79, P1021
GREZ KE, 1969, TRANSPORT PHENOMENA, V10, P333
HOLT JK, 2006, SCIENCE, V312, P1034, DOI 10.1126/science.1126298
IBBS TL, 1921, P R SOC LOND A-CONTA, V99, P385
IBBS TL, 1937, PHYSICA, V10, P1133
JAFFE RL, 2004, MOL SIMULAT, V30, P205, DOI 10.1080/08927020310001659124
KALRA A, 2003, P NATL ACAD SCI USA, V100, P10175
KASSINOS SC, 2004, LECT NOTES COMPUT SC, V39, P215
KOTSALIS EM, 2004, INT J MULTIPHAS FLOW, V30, P995, DOI
10.1016/j.imultiphaseflow.2004.03.009
LEVITT M, 1997, J PHYS CHEM B, V101, P5051
LIU YC, 2008, PHYS REV B, V77, ARTN 125438
LUDWIG C, 1856, S B AKAD WISS VIENNA, V20, P539
MARANGONI CGM, 1871, ANN PHYS, V143, P337
MITCHELL DT, 2002, J AM CHEM SOC, V124, P11864, DOI 10.1021/ja027247b
PLATTEN JK, 2006, J APPL MECH-T ASME, V73, P5, DOI 10.1115/1.1992517
REGAZZETTI A, 2004, J PHYS CHEM B, V108, P15285, DOI 10.1021/jp031321a
REITH D, 2000, J CHEM PHYS, V112, P2436
SAGHIR MZ, 2004, EUR PHYS J E, V15, P241
SBALZARINI IF, 2005, J STRUCT BIOL, V151, P182, DOI
10.1016/j.jsb.2005.06.002
SCHOEN PAE, 2006, NANO LETT, V6, P1910, DOI 10.1021/nl060982r
SCHOEN PAE, 2007, APPL PHYS LETT, V90, ARTN 253116
SEGA M, 2005, PHYS REV E 1, V72, ARTN 041201
SORET C, 1881, ANN CHIM PHYS, V22, P293
STRIOLO A, 2006, NANO LETT, V6, P633, DOI 10.1021/nl052254u
TOKARZ M, 2005, P NATL ACAD SCI USA, V102, P9127, DOI
10.1073/pnas.0500081102
VANHIJKOOP VJ, 2007, J CHEM PHYS, V127, ARTN 085101
VODINH T, 2001, SENSOR ACTUAT B-CHEM, V74, P2
WALTHER JH, 2001, J PHYS CHEM B, V105, P9980
WALTHER JH, 2004, CARBON, V42, P1185, DOI 10.1016/j.carbon.2003.12.071
WALTHER JH, 2004, PHYS CHEM CHEM PHYS, V6, P1988, DOI 10.1039/b312740k
WALTHER JH, 2004, PHYS REV E 1, V69, ARTN 062201
WERDER T, 2001, NANO LETT, V1, P697, DOI 10.1021/nl015640u
WERDER T, 2003, J PHYS CHEM B, V107, P1345, DOI 10.1021/jp0268112
ZHOU JJ, 2006, NANOTECHNOLOGY, P4845
ZIMMERLI U, 2005, NANO LETT, V5, P1017, DOI 10.1021/nl0503126
NR 46
TC 0
PU AMER CHEMICAL SOC; 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 1530-6984
DI 10.1021/nl802429s
PD JAN
VL 9
IS 1
BP 66
EP 71
SC Chemistry, Multidisciplinary; Nanoscience & Nanotechnology; Materials
Science, Multidisciplinary
GA 395IZ
UT ISI:000262519100012
ER

PT J
*Record 2 of 7.
L5 <http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;UT=000262519100042>
*Order Full Text [ ]
AU Yu, M
Funke, HH
Falconer, JL
Noble, RD
AF Yu, Miao
Funke, Hans H.
Falconer, John L.
Noble, Richard D.
TI High Density, Vertically-Aligned Carbon Nanotube Membranes
SO NANO LETTERS
LA English
DT Article
ID GAS-TRANSPORT; FLUX
AB A method is presented to prepare high-density, vertically aligned
carbon nanotube (VA-CNT) membranes. The CNT arrays were prepared by
chemical vapor deposition (CO), and the arrays were collapsed into
dense membranes by capillary-forces due to solvent evaporation. The
average space between the CNTs after shrinkage was similar to 3 nm,
which is comparable to the pore size of the CNTs. Thus, the
interstitial pores between CNTs were not sealed, and gas permeated
through both CNTs and interstitial pores. Nanofiltration of gold
nanoparticles and N-2 adsorption indicated the pore diameters were
approximately 3 nm. Gas permeances, based on total membrane area, were
1-4 orders of magnitude higher than VA-CNT membranes in the literature,
and gas permeabilities were 4-7 orders of magnitude higher than
literature values. Gas permeances were approximately 450 times those
predicted for Knudsen diffusion, and ideal selectivities were similar
to or higher than Knudsen selectivities. These membranes separated a
larger molecule (triisopropyl orthoformate (TIPO)) from a smaller
molecule (n-. hexane) during pervaporation, possibly due to the
preferential adsorption, which indicates separation potential for
liquid mixtures.
C1 [Yu, Miao; Funke, Hans H.; Falconer, John L.; Noble, Richard D.] Univ Colorado, Dept Biol & Chem Engn, Boulder, CO 80309 USA.
RP Falconer, JL, Univ Colorado, Dept Biol & Chem Engn, Boulder, CO 80309
USA.
EM john.falconer@colorado.edu
CR CHAKRABARTI S, 2006, JPN J APPL PHYS 2, V45, L720, DOI
10.1143/JJAP.45.L720
CHAKRABARTI S, 2007, J PHYS CHEM C, V111, P1929, DOI 10.1021/jp0666986
CHEN HB, 2006, J MEMBRANE SCI, V269, P152, DOI
10.1016/j.memsci.2005.06.030
CI LJ, 2007, ADV MATER, V19, P3300, DOI 10.1002/adma.200602974
FUTABA DN, 2006, NAT MATER, V5, P987, DOI 10.1038/nmat1782
HATA K, 2004, SCIENCE, V306, P1362
HINDS BJ, 2004, SCIENCE, V303, P62, DOI 10.1126/science.1092048
HOLT JK, 2006, SCIENCE, V312, P1034, DOI 10.1126/science.1126298
KIM S, 2007, NANO LETT, V7, P2806, DOI 10.1021/nl071414u
MAJUMDER M, 2005, NATURE, V438, P44, DOI 10.1038/43844a
NEWSOME DA, 2006, NANO LETT, V6, P2150, DOI 10.1021/nl061181r
SKOULIDAS AI, 2002, PHYS REV LETT, V89, ARTN 185901
SRIVASTAVA A, 2004, NAT MATER, V3, P610, DOI 10.1038/nmat1192
ZHU LB, 2005, NANO LETT, V5, P2641, DOI 10.1021/nl051906b
NR 14
TC 0
PU AMER CHEMICAL SOC; 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 1530-6984
DI 10.1021/nl802816h
PD JAN
VL 9
IS 1
BP 225
EP 229
SC Chemistry, Multidisciplinary; Nanoscience & Nanotechnology; Materials
Science, Multidisciplinary
GA 395IZ
UT ISI:000262519100042
ER

PT J
*Record 3 of 7.
L5 <http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;UT=000262519100046>
*Order Full Text [ ]
AU Wang, Q
AF Wang, Quan
TI Atomic Transportation via Carbon Nanotubes
SO NANO LETTERS
LA English
DT Article
ID SIMULATIONS; DYNAMICS
AB The transportation of helium atoms in a single-walled carbon nanotube
is reported via molecular dynamics simulations. The efficiency of the
atomic transportation is found to be dependent on the type of the
applied loading and the loading rate as well as the temperature in the
process. Simulations show the transportation is a result of the van der
Waals force between the nanotube and the helium atoms through a kink
propagation initiated in the nanotube.
C1 Univ Manitoba, Dept Mech & Mfg Engn, Winnipeg, MB R3T 5V6, Canada.
RP Wang, Q, Univ Manitoba, Dept Mech & Mfg Engn, Winnipeg, MB R3T 5V6,
Canada.
EM q_wang@umanitoba.ca
CR ANDERSEN HC, 1980, J CHEM PHYS, V72, P2384
BALL P, 2001, NATURE, V414, P142
DARHUBER AA, 2005, ANNU REV FLUID MECH, V37, P425, DOI
10.1146/annurev.fluid.36.050802.122052
HOLT JK, 2006, SCIENCE, V312, P1034, DOI 10.1126/science.1126298
IIJIMA S, 1991, NATURE, V354, P56
INSEPOV Z, 2006, NANO LETT, V6, P1893, DOI 10.1021/nl060932m
JEONG BW, 2007, J APPL PHYS, V101, ARTN 084309
KRAL P, 1999, PHYS REV LETT, V82, P5373
LI HY, 2007, CHEM PHYS LETT, V437, P108, DOI
10.1016/j.cplett.2007.02.015
NI B, 2002, PHYS REV LETT, V88, ARTN 205505
RIGBY D, 1997, POLYM INT, V44, P311
SKOULIDAS AI, 2002, PHYS REV LETT, V89, ARTN 185901
SVENSSON K, 2004, PHYS REV LETT, V93, ARTN 145901
THOMAS JA, 2008, J CHEM PHYS, V128, ARTN 084715
THORSEN T, 2002, SCIENCE, V298, P580, DOI 10.1126/science.1076996
TOMBLER TW, 2000, NATURE, V405, P769
TUZUN RE, 1996, NANOTECHNOLOGY, V7, P241
WANG L, 2007, APPL PHYS LETT, V91, ARTN 051122
WANG Q, 2007, APPL PHYS LETT, V90, ARTN 033110
WANG Q, 2008, APPL PHYS LETT, V92, ARTN 043120
WILDOER JWG, 1998, NATURE, V391, P59
YAKOBSON BI, 1996, PHYS REV LETT, V76, P2511
YAKOBSON BI, 1997, COMP MATER SCI, V8, P341
NR 23
TC 0
PU AMER CHEMICAL SOC; 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 1530-6984
DI 10.1021/nl802829z
PD JAN
VL 9
IS 1
BP 245
EP 249
SC Chemistry, Multidisciplinary; Nanoscience & Nanotechnology; Materials
Science, Multidisciplinary
GA 395IZ
UT ISI:000262519100046
ER

PT J
*Record 4 of 7.
L5 <http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;UT=000262644600009>
*Order Full Text [ ]
AU Jee, SE
McGaughey, AJH
Sholl, DS
AF Jee, Sang Eun
McGaughey, Alan J. H.
Sholl, David S.
TI Molecular simulations of hydrogen and methane permeation through pore
mouth modified zeolite membranes
SO MOLECULAR SIMULATION
LA English
DT Article
DE zeolites; membranes; molecular dynamics
ID ASSISTED HYDROTHERMAL TREATMENT; MFI-TYPE ZEOLITE; ATOMISTIC
SIMULATIONS; DYNAMICS SIMULATIONS; SURFACE RESISTANCES; TRANSPORT
DIFFUSIVITIES; ABINITIO CALCULATIONS; SILICALITE MEMBRANES; CATALYTIC
CRACKING; CARBON NANOTUBES
AB Membrane-based separations are an attractive means to separate hydrogen
from gas mixtures in order to use hydrogen in energy-related
applications. Zeolite membranes are robust materials that are well
suited to be used in harsh conditions, but they are not typically
selective for hydrogen. Several studies have shown that highly
selective separations of hydrogen are possible using zeolite membranes
whose pore mouths have been chemically modified. An important challenge
for materials of this kind is to develop methods by which hydrogen
selectivity can be retained without significantly reducing the hydrogen
flux possible with an unmodified zeolite membrane. Motivated by this,
the effect of the pore mouth modification of silicalite was examined
using atomic-scale simulations. We developed methods to mimic the
chemical vapour deposition of Si and O atoms near the surface of a
silicalite crystal, and examined the flux of CH4 and H2 through the
resulting materials. Under some degrees of surface modification, the
CH4 flux was reduced much more than the H2 flux. This observation
indicates that careful control of surface modifying layers may be a
useful means of tailoring the performance of zeolite membranes for H2
separations.
C1 [Jee, Sang Eun; Sholl, David S.] Georgia Inst Technol, Sch Chem & Biomol Engn, Atlanta, GA 30332 USA.
[McGaughey, Alan J. H.] Carnegie Mellon Univ, Dept Mech Engn, Pittsburgh, PA 15213 USA.
RP Sholl, DS, Georgia Inst Technol, Sch Chem & Biomol Engn, 311 Ferst Dr,
Atlanta, GA 30332 USA.
EM david.sholl@chbe.gatech.edu
CR *US DOE, 2004, FUEL CELL HDB
AHUNBAY MG, 2005, J PHYS CHEM B, V109, P923, DOI 10.1021/j.jp046384n
AOKI K, 1998, J MEMBRANE SCI, V141, P197
BOWEN TC, 2002, IND ENG CHEM RES, V41, P1641
BOWEN TC, 2004, J MEMBRANE SCI, V245, P1, DOI
10.1016/j.memsci.2004.06.059
CHEN HB, 2004, J AM CHEM SOC, V126, P7778, DOI 10.1021/ja039462d
DONG WY, 2004, MICROPOR MESOPOR MAT, V76, P9, DOI
10.1016/j.micromeso.2004.07.013
DUBBELDAM D, 2004, PHYS REV LETT, V93, ARTN 088302
FRENKEL D, 2002, UNDERSTANDING MOL SI
GOPALAKRISHNAN S, 2007, J MEMBRANE SCI, V297, P5, DOI
10.1016/j.memsci.2007.03.034
GOUMANS TPM, 2007, PHYS CHEM CHEM PHYS, V9, P2146, DOI 10.1039/b701176h
GUAN GQ, 2003, J MEMBRANE SCI, V214, P191, DOI
10.1016/S0376-7388(02)00544-6
GUISSANI Y, 1996, J CHEM PHYS, V104, P7633
HAN JW, 2008, SURF SCI, V602, P2478, DOI 10.1016/j.susc.2008.05.030
HEDLUND J, 2002, MICROPOR MESOPOR MAT, V52, P179
HEUCHEL M, 1997, LANGMUIR, V13, P6795
HOLT JK, 2006, SCIENCE, V312, P1034, DOI 10.1126/science.1126298
HONG M, 2005, IND ENG CHEM RES, V44, P4035, DOI 10.1021/ie048739v
JULBE A, 2005, STUD SURF SCI CA A-B, V158, P129
KAMAKOTI P, 2005, SCIENCE, V307, P569, DOI 10.1126/science.1107041
KESKIN S, 2007, J PHYS CHEM C, V111, P14055, DOI 10.1021/jp0752901CCC
KRAMER GJ, 1991, PHYS REV B, V43, P5068
LAI R, 2000, MICROPOR MESOPOR MAT, V38, P239
LOVALLO MC, 1996, AICHE J, V42, P3020
MAGINN EJ, 1993, J PHYS CHEM-US, V97, P4173
MASUDA T, 2001, MICROPOR MESOPOR MAT, V48, P239
MCGAUGHEY AJH, 2004, INT J HEAT MASS TRAN, V47, P1799, DOI
10.1016/j.ijheatmasstransfer.2003.11.009
MORI H, 1965, PROG THEOR PHYS SUPP, V33, P423
MOTUZAS J, 2005, MICROPOR MESOPOR MAT, V80, P73, DOI
10.1016/j.micromeso.2004.12.002
MOTUZAS J, 2006, MICROPOR MESOPOR MAT, V92, P259, DOI
10.1016/j.micromeso.2006.01.014
MUKHOPADHYAY AB, 2003, PHYS REV B, V67, ARTN 014106
MUKHOPADHYAY AB, 2004, J PHYS CHEM B, V108, P16085, DOI
10.1021/jp0474778
NEWSOME DA, 2005, J PHYS CHEM B, V109, P7237, DOI 10.1021/jp044247k
NEWSOME DA, 2006, J PHYS CHEM B, V110, P22681, DOI 10.1021/jp063287g
NEWSOME DA, 2006, NANO LETT, V6, P2150, DOI 10.1021/nl061181r
NEWSOME DA, 2008, MICROPOR MESOPOR MAT, V107, P286, DOI
10.1016/j.micromeso.2007.03.016
OCKWIG NW, 2007, CHEM REV, V107, P4078, DOI 10.1021/cr0501792
OLSON DH, 1981, J PHYS CHEM-US, V85, P2238
POSHUSTA JC, 1998, IND ENG CHEM RES, V37, P3924
POSHUSTA JC, 1999, J MEMBRANE SCI, V160, P115
SHOLL DS, 2000, IND ENG CHEM RES, V39, P3737
SHOLL DS, 2006, ACCOUNTS CHEM RES, V39, P403, DOI 10.1021/ar0402199
SKOULIDAS AI, 2001, J PHYS CHEM B, V105, P3151
SKOULIDAS AI, 2002, J PHYS CHEM B, V106, P5058
SKOULIDAS AI, 2002, PHYS REV LETT, V89, ARTN 185901
SKOULIDAS AI, 2003, J PHYS CHEM A, V107, P10132, DOI 10.1021/jp0354301
VANBEEST BWH, 1990, PHYS REV LETT, V64, P1955
WANG Z, 2002, MICROPOR MESOPOR MAT, V52, P191
WOLF D, 1999, J CHEM PHYS, V110, P8254
YU M, 2007, J MEMBRANE SCI, V298, P182, DOI 10.1016/j.memsci.2007.04.017
NR 50
TC 0
PU TAYLOR & FRANCIS LTD; 4 PARK SQUARE, MILTON PARK, ABINGDON OX14 4RN,
OXON, ENGLAND
SN 0892-7022
DI 10.1080/08927020802162900
VL 35
IS 1-2
BP 70
EP 78
SC Chemistry, Physical; Physics, Atomic, Molecular & Chemical
GA 397EG
UT ISI:000262644600009
ER

PT J
*Record 5 of 7.
L5 <http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;UT=000262644600011>
*Order Full Text [ ]
AU Jakobtorweihen, S
Keil, FJ
AF Jakobtorweihen, S.
Keil, F. J.
TI Adsorption of alkanes, alkenes and their mixtures in single-walled
carbon nanotubes and bundles
SO MOLECULAR SIMULATION
LA English
DT Article
DE carbon nanotube; adsorption; alkanes; alkenes; molecular simulations
ID MONTE-CARLO-SIMULATION; UNITED-ATOM DESCRIPTION; MOLECULAR SIMULATION;
N-ALKANES; TRANSFERABLE POTENTIALS; HYDROGEN STORAGE; PHASE-EQUILIBRIA;
SILICALITE; ZEOLITES; NITROGEN
AB Monte Carlo simulations are employed to calculate pure component
adsorption isotherms of linear alkanes (C2-C12), alkenes (C2-C4) and
some of their binary mixtures (ethane-ethene, propane-propene,
cis-2-butene-trans-2-butene, propene-1-butene) in single-walled carbon
nanotubes. The zigzag structures of carbon nanotubes (CNTs) of various
diameters [(10,0), (20,0), (30,0) and (40,0)] are used. Furthermore,
Henry coefficients and isosteric heats of adsorption are calculated.
The dependence of these properties as a function of chain length
(carbon number) is presented. The relation of the critical parameters
and the isosteric heats of adsorption, observed earlier for zeolites,
could be confirmed for CNTs. The adsorption behaviour of 1-butene,
cis-2-butene and trans-2-butene are compared in detail. Radial density
profiles of 1-butene in a (40,0) nanotube for various pressures reveal
a build-up of three layers inside the pores with increasing pressure.
For all investigated binary mixtures, one of the component isotherms
shows a distinct maximum owing to an entropic effect and non-idealities
of the bulk gas phase behaviour. Additionally, adsorption in CNT
bundles in hexagonal arrangement is studied. Depending on the pore
arrangements, pore diameters and pressures, a fraction of the adsorbed
gases is located in the interstitial space.
C1 [Jakobtorweihen, S.; Keil, F. J.] Hamburg Univ Technol, Inst Chem React Engn, Hamburg, Germany.
RP Keil, FJ, Hamburg Univ Technol, Inst Chem React Engn, Hamburg, Germany.
EM keil@tu-harburg.de
CR AGNIHOTRI S, 2006, AICHE SPRING NAT M C
ALLEN M, 1987, COMPUTER SIMULATION
ARORA G, 2004, LANGMUIR, V20, P6268, DOI 10.1021/la036432f
ARORA G, 2005, J CHEM PHYS, V123, ARTN 044705
BRUCE CD, 1997, J COLLOID INTERF SCI, V194, P448
BURDE JT, 2007, J PHYS CHEM C, V111, P5057, DOI 10.1021/jp065428k
CAO DP, 2003, J PHYS CHEM B, V107, P13286, DOI 10.1021/jp036094r
CHARLIER JC, 1995, EPL-EUROPHYS LETT, V29, P43
DARKRIM FL, 2002, INT J HYDROGEN ENERG, V27, P193
DENAYER JF, 1998, J PHYS CHEM B, V102, P4588
DU ZM, 1998, AICHE J, V44, P1756
FRENKEL D, 1992, J PHYS-CONDENS MAT, V4, P3053
FRENKEL D, 2002, UNDERSTANDING MOL SI
FROUDAKIS GE, 2002, J PHYS-CONDENS MAT, V14, R453
GORDILLO MC, 2004, PHYS REV B, V70, ARTN 245420
HEYDEN A, 2002, CHEM ENG SCI, V57, P2439
HINDS BJ, 2004, SCIENCE, V303, P62, DOI 10.1126/science.1092048
HOLT JK, 2006, SCIENCE, V312, P1034, DOI 10.1126/science.1126298
IIJIMA S, 1991, NATURE, V354, P56
JAKOBTORWEIHEN S, 2005, MOL PHYS, V103, P471, DOI
10.1080/00268970512331316021
JAKOBTORWEIHEN S, 2005, PHYS REV LETT, V95, ARTN 044501
JAKOBTORWEIHEN S, 2006, J CHEM PHYS, V125, ARTN 224709
JIANG JW, 2003, PHYS REV B, V68, ARTN 245412
JIANG JW, 2004, LANGMUIR, V20, P10910, DOI 10.1021/la0492254
JIANG JW, 2004, NANO LETT, V4, P241, DOI 10.1021/nl034961y
JIANG JW, 2004, PHYS CHEM CHEM PHYS, V6, P4440, DOI 10.1039/b409116g
JIANG JW, 2005, PHYS REV B, V72, ARTN 045447
KONDRATYUK P, 2005, J PHYS CHEM B, V109, P20999, DOI 10.1021/jp0582078
MACEDONIA MD, 1999, MOL PHYS, V96, P1375
MARCONE B, 2006, PHYS REV B, V74, ARTN 085415
MARTIN MG, 1998, J PHYS CHEM B, V102, P2569
MEREGALLI V, 2001, APPL PHYS A-MATER, V72, P143
MYERS AL, 1965, AICHE J, V11, P121
PAREDES JI, 2003, J PHYS CHEM B, V107, P8905, DOI 10.1021/jp026662n
POLING BE, 2000, PROPERTIES GASES LIQ
RAFIITABAR H, 2008, COMPUTATIONAL PHYS C
SAITO R, 1992, APPL PHYS LETT, V60, P2204
SCHENK M, 2001, LANGMUIR, V17, P1558
SIEPMANN JI, 1992, MOL PHYS, V75, P59
SIMONYAN VV, 2001, J CHEM PHYS, V114, P4180
SMIT B, 1994, J PHYS CHEM-US, V98, P8442
SMIT B, 1994, SCIENCE, V264, P1118
STEELE WA, 1974, INTERACTION GASES SO
STRIOLO A, 2005, J CHEM PHYS, V122, ARTN 234712
THAMM H, 1984, Z CHEM, V24, P420
VLUGT TJH, 1999, J PHYS CHEM B, V103, P1102
VLUGT TJH, 2002, J PHYS CHEM B, V106, P12757, DOI 10.1021/jp0263931
WICK CD, 2000, J PHYS CHEM B, V104, P8008
NR 48
TC 0
PU TAYLOR & FRANCIS LTD; 4 PARK SQUARE, MILTON PARK, ABINGDON OX14 4RN,
OXON, ENGLAND
SN 0892-7022
DI 10.1080/08927020802378936
VL 35
IS 1-2
BP 90
EP 99
SC Chemistry, Physical; Physics, Atomic, Molecular & Chemical
GA 397EG
UT ISI:000262644600011
ER

PT J
*Record 6 of 7.
L5 <http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;UT=000262644600013>
*Order Full Text [ ]
AU Nicholson, D
Bhatia, SK
AF Nicholson, David
Bhatia, Suresh K.
TI Fluid transport in nanospaces
SO MOLECULAR SIMULATION
LA English
DT Article
DE adsorbate; transport; nanopores; momentum accomodation
ID INHOMOGENEOUS NONEQUILIBRIUM FLUIDS; MOMENTUM ACCOMMODATION
COEFFICIENTS; MOLECULAR-DYNAMICS SIMULATION; WALLED CARBON NANOTUBES;
SPINNING ROTOR GAUGE; MULTICOMPONENT SYSTEMS; BOUNDARY-CONDITIONS;
MASS-TRANSPORT; SELF-DIFFUSION; KINETIC-THEORY
AB We review recent progress in the transport of a fluid phase through
spaces of simple geometry (parallel sided slits or cylinders) in which
the confining walls restrict the fluid phase to a few molecular widths
in at least one dimension. We emphasise the fact that in such spaces,
the contingent solid phase plays a major role in creating strong
non-uniformity in directions normal to the confining surface, even at
very low fluid densities and ambient temperatures. Furthermore, the
adsorbent field of the solid distorts molecular trajectories from
linear and is a major factor in determining the extent to which
momentum tangential to the surface is re-allocated in the collision
process. The first part of the review surveys briefly the contributions
that can be made from computer simulation, and the nature of some
theoretical constructs relating to the problem; we focus, in particular
on the theoretical advances that have been made in Queensland over the
last few years. Following this we turn attention to progress in
understanding the molecular scattering process at the point of normal
momentum reversal at the surface and the theoretical and experimental
developments relating to the intriguing possibility of 'superfast' flow
in carbon nanotubes.
C1 [Nicholson, David; Bhatia, Suresh K.] Univ Queensland, Div Chem Engn, Brisbane, Qld, Australia.
RP Nicholson, D, Univ Queensland, Div Chem Engn, Brisbane, Qld, Australia.
EM d.nicholson@uq.edu.au
CR ACKERMAN DM, 2003, MOL SIMULAT, V29, P677, DOI
10.1080/0892702031000103239
AKHMATSKAYA E, 1997, J CHEM PHYS, V106, P4684
ARYA G, 2001, J CHEM PHYS, V115, P8112
ARYA G, 2003, MOL SIMULAT, V29, P697, DOI 10.1080/0892702031000103257
ARYA G, 2003, PHYS REV LETT, V91, ARTN 026102
BANDYOPADHYAY S, 1995, J PHYS CHEM-US, V99, P4286
BARRER RM, 1967, SOLID GAS INTERFACE, V2, P557
BEARMAN RJ, 1958, J CHEM PHYS, V28, P136
BENTZ JA, 1997, VACUUM, V48, P817
BHATIA SK, 2002, PHYS REV LETT, V90, UNSP 016105
BHATIA SK, 2003, J CHEM PHYS, V119, P1719, DOI 10.1063/1.1580797
BHATIA SK, 2004, J CHEM PHYS, V120, P4472, DOI 10.1063/1.1644108
BHATIA SK, 2005, MOL SIMULAT, V31, P643, DOI 10.1080/00268970500108403
BHATIA SK, 2006, ADSORPT SCI TECHNOL, V24, P101
BHATIA SK, 2006, AICHE J, V52, P29, DOI 10.1002/aic.10580
BHIDE SY, 2004, CURR SCI INDIA, V87, P971
BITSANIS I, 1988, J CHEM PHYS, V89, P3151
BITSANIS I, 1990, J CHEM PHYS, V93, P3427
CELESTINI F, 2008, PHYS REV E 1, V77, ARTN 021202
CHAPMAN S, 1970, MATH THEORY NONUNIFO
CHEN HB, 2006, J PHYS CHEM B, V110, P1971, DOI 10.1021/jp056911i
CHIRITA V, 1997, NUCL INSTRUM METH B, V124, P12
COPPENS MO, 2006, FLUID PHASE EQUILIBR, V241, P308, DOI
10.1016/j.fluid.2005.12.039
CRACKNELL RF, 1994, MOL SIMULAT, V13, P161
CRACKNELL RF, 1995, PHYS REV LETT, V74, P2463
DEROUANE EG, 1987, CHEM PHYS LETT, V142, P200
DEROUANE EG, 1988, J CATAL, V110, P58
DUBBELDAM D, 2007, MOL SIMULAT, V33, P305, DOI 10.1080/08927020601156418
EVANS RB, 1961, J CHEM PHYS, V35, P2076
FERES R, 2004, CHEM ENG SCI, V59, P1541, DOI 10.1016/j.ces.2004.01.016
GABIS DH, 1996, J VAC SCI TECHNOL A, V14, P2592
GHOSH M, 1994, J PHYS CHEM-US, V98, P9354
GUANTES R, 2004, SURF SCI REP, V53, P199, DOI
10.1016/j.surfrep.2004.02.001
HADJICONSTANTINOU NG, 2006, PHYS FLUIDS, V18, ARTN 111301
HAGER J, 1997, SURF SCI, V374, P181
HINDS BJ, 2004, SCIENCE, V303, P62, DOI 10.1126/science.1092048
HIRSCHFELDER JO, 1954, MOL THEORY GASES LIQ
HOLT JK, 2004, NANO LETT, V4, P2245, DOI 10.1021/nl048876h
HOLT JK, 2006, SCIENCE, V312, P1034, DOI 10.1126/science.1126298
IRVING JH, 1950, J CHEM PHYS, V18, P817
JAKOBTORWEIHEN S, 2005, PHYS REV LETT, V95, ARTN 044501
JAKOBTORWEIHEN S, 2006, J PHYS CHEM B, V110, P16332, DOI
10.1021/jp063424+
JEPPS OG, 2003, PHYS REV E 1, V67, ARTN 041206
JEPPS OG, 2003, PHYS REV LETT, V9, P1
JEPPS OG, 2004, J CHEM PHYS, V120, P5396, DOI 10.1063/1.1647516
KERKHOF PJA, 2001, CHEM ENG J, V183, P107
KERKHOF PJAM, 1996, CHEM ENG J, V64, P319
KERKHOF PJAM, 2005, AICHE J, V51, P79, DOI 10.1002/aic.10309
KERKHOF PJAM, 2005, CHEM ENG SCI, V60, P3129, DOI
10.1016/j.ces.2004.12.042
KIRKWOOD JG, 1946, J CHEM PHYS, V14, P180
KNUDSEN M, 1909, ANN PHYS, V28, P75
KUMAR AVA, 2006, J PHYS CHEM B, V110, P3109, DOI 10.1021/jp056670e
MACELROY JMD, 1994, J CHEM PHYS, V101, P5274
MACELROY JMD, 2001, COLLOID SURFACE A, V187, P493
MAJUMDER M, 2005, NATURE, V438, P44, DOI 10.1038/43844a
MALEK K, 2001, PHYS REV LETT, V87, ARTN 125505
MALEK K, 2003, J CHEM PHYS, V119, P2801, DOI 10.1063/1.1584652
MASON EA, 1978, J CHEM PHYS, V68, P3562
MAXWELL JC, 1879, PHILOS T R SOC LONDO, V170, P231
MYONG RS, 2005, PHYS FLUIDS, V17, ARTN 087105
NGUYEN TX, 2006, MOL SIMULAT, V32, P567, DOI 10.1080/08927020600675699
NICHOLSON D, 2005, J MEMBRANE SCI, V275, P244
NOY A, 2007, NANO TODAY, V2, P22
OHARE L, 2007, INT J HEAT FLUID FL, V28, P37, DOI
10.1016/j.ijheatfluidflow.2006.04.012
POZHAR LA, 1991, J CHEM PHYS, V94, P1367
POZHAR LA, 1999, INT J THERMOPHYS, V20, P805
POZHAR LA, 2000, PHYS REV E, V61, P1432
POZHAR LA, 2002, J NANOSCI NANOTECHNO, V2, P209
RAFIITABAR H, 2004, PHYS REP, V390, P235, DOI
10.1016/j.physrep.2003.10.012
REMICK RR, 1973, IND ENG CHEM FUND, V12, P214
RETTNER CT, 1998, IEEE T MAGN 2, V34, P2387
ROTH C, 1992, J CHEM PHYS, V97, P6880
SKOULIDAS AI, 2002, PHYS REV LETT, V89, ARTN 185901
SKOULIDAS AI, 2006, J CHEM PHYS, V124, ARTN 054708
SNELL FM, 1967, J CHEM PHYS, V47, P4959
SOKHAN VP, 2001, J CHEM PHYS, V115, P3878
SOKHAN VP, 2002, J CHEM PHYS, V117, P8531, DOI 10.1063/1.1512643
SOKHAN VP, 2004, J CHEM PHYS, V120, P3855, DOI 10.1063/1.1643726
SOKHAN VP, 2004, MOL SIMULAT, V30, P217, DOI
10.1080/08927020310001659106
STRANDBURG KJ, 1988, REV MOD PHYS, V60, P161
TODD BD, 1995, J CHEM PHYS, V103, P9804
TODD BD, 1995, PHYS REV E A, V51, P4362
VONSMOLUCHOWSKI M, 1910, ANN PHYS-BERLIN, V33, P1559
WATANABE Y, 2005, CHEM PHYS LETT, V413, P331, DOI
10.1016/j.cplett.2005.07.103
WHITBY M, 2007, NAT NANOTECHNOL, V2, P87, DOI 10.1038/nnano.2006.175
YASHONATH S, 1994, CHEM PHYS LETT, V228, P284
YASHONATH S, 1994, J CHEM PHYS, V100, P4013
YASHONATH S, 1994, J PHYS CHEM-US, V98, P6368
NR 88
TC 0
PU TAYLOR & FRANCIS LTD; 4 PARK SQUARE, MILTON PARK, ABINGDON OX14 4RN,
OXON, ENGLAND
SN 0892-7022
DI 10.1080/08927020802301912
VL 35
IS 1-2
BP 109
EP 121
SC Chemistry, Physical; Physics, Atomic, Molecular & Chemical
GA 397EG
UT ISI:000262644600013
ER

PT J
*Record 7 of 7.
L5 <http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;UT=000262586300014>
*Order Full Text [ ]
AU Mehta, A
Nelson, EJ
Webb, SM
Holt, JK
AF Mehta, Apurva
Nelson, Erik J.
Webb, Samuel M.
Holt, Jason K.
TI The Interaction of Bromide Ions with Graphitic Materials
SO ADVANCED MATERIALS
LA English
DT Article
ID X-RAY-DIFFRACTION; CARBON NANOTUBES
AB The detailed interactions between hydrated bromine ions and a number of
graphene-like surfaces are elucidated for the first time. A common edge
site that exhibits preferential binding of bromide is observed for all
materials. The local structure around the hydrated bromide in this
interaction region is that of the ion binding to a zigzag, convex site
on the graphene sheet edge, consistent with predictions of a recent
theoretical model.
C1 [Holt, Jason K.] Lawrence Livermore Natl Lab, Div Chem Sci, Livermore, CA 94550 USA.
[Mehta, Apurva; Nelson, Erik J.; Webb, Samuel M.] Stanford Synchrotron Radiat Lab, Menlo Pk, CA 94025 USA.
RP Holt, JK, Lawrence Livermore Natl Lab, Div Chem Sci, 7000 E Ave,
Livermore, CA 94550 USA.
EM jasonkholt@gmail.com
CR ANKUDINOV AL, 1998, PHYS REV B, V58, P7565
BOEHM HP, 2002, CARBON, V40, P145
CHMIOLA J, 2006, SCIENCE, V313, P1760, DOI 10.1126/science/1132195
FORNASIERO F, 2008, PNAS IN PRESS
GARTEN VA, 1957, AUST J CHEM, V10, P309
GENG HZ, 2004, CHEM PHYS LETT, V399, P109, DOI
10.1016/j.cplett.2004.09.150
HOLT JK, 2006, SCIENCE, V312, P1034, DOI 10.1126/science.1126298
LEON CAL, 1994, CHEM PHYS CARBON, V24, CH4
LEON CALY, 1992, CARBON, V30, P797
LICHERI G, 1975, CHEM PHYS LETT, V35, P119
MONTESMORAN MA, 1998, J PHYS CHEM B, V102, P5595
NARTEN AH, 1970, J AM CHEM SOC, V74, P765
OM J, 1977, MODERN ELECTROCHEMIS, V1, CH2
RADOVIC LR, 2001, SERIES ADV, V27, CH4
RADOVIC LR, 2005, J AM CHEM SOC, V127, P5917, DOI 10.1021/ja050124h
SAYERS DE, 1988, XRAY ABSORPTION PRIN, V92, CH6
TEO BK, 1986, EXAFS BASIC PRINCIPL, V9
WAKITA H, 1982, B CHEM SOC JPN, V55, P817
WALLEN SL, 1997, J PHYS CHEM A, V101, P9632
WEBB SM, 2005, PHYS SCRIPTA T, V115, P1011
NR 20
TC 0
PU WILEY-V C H VERLAG GMBH; PO BOX 10 11 61, D-69451 WEINHEIM, GERMANY
SN 0935-9648
DI 10.1002/adma.200801602
PD JAN 5
VL 21
IS 1
BP 102
EP 106
SC Chemistry, Multidisciplinary; Chemistry, Physical; Materials Science,
Multidisciplinary
GA 396IV
UT ISI:000262586300014
ER

EF

========================================================================
*Order Full Text*
All Customers
--------------
Please contact your library administrator, or person(s) responsible for
document delivery, to find out more about your organization's policy for
obtaining the full text of the above articles. If your organization does
not have a current document delivery provider, your administrator can
contact ISI Document Solution at service@isidoc.com, or call 800-603-4367
or 734-459-8565.

IDS Customers
--------------
IDS customers can purchase the full text of an article (having page number,
volume, and issue information) by returning this ENTIRE message as a Reply
to Sender or Forward to orders@isidoc.com. Mark your choices with an X in
the "Order Full Text: []" brackets for each item. For example, [X].

Please enter your account number here:

========================================================================
*Import Records into an ISI ResearchSoft product*
1) Save the email as a text file. If your e-mail software removed extra line breaks, restore them before saving.
2) From within an ISI ResearchSoft product, import the text file using the ISI-CE filter.
========================================================================
*Help Desk Contact Information*
If you have any questions, please visit the Thomson Scientific Technical Support Contact Information Web page:
http://www.thomsonscientific.com/support/techsupport
========================================================================

No comments: