Friday, February 6, 2009

ISI Web of Knowledge Alert - Majumder M

ISI Web of Knowledge Citation Alert

Cited Article: Majumder M. Nanoscale hydrodynamics - Enhanced flow in carbon nanotubes
Alert Expires: 18 OCT 2009
Number of Citing Articles: 3 new records this week (3 in this e-mail)
Organization ID: 3b97d1bbc1878baed0ab183d8b03130b
========================================================================
Note: Instructions on how to purchase the full text of an article and Help Desk Contact information are at the end of the e-mail.
========================================================================

*Record 1 of 3.
*View Full Record: http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000262519100039
*Order Full Text [ ]

Title:
Nanotube Fluidic Junctions: Internanotube Attogram Mass Transport through Walls

Authors:
Dong, LX; Tao, XY; Hamdi, M; Zhang, L; Zhang, XB; Ferreira, A; Nelson, BJ

Author Full Names:
Dong, Lixin; Tao, Xinyong; Hamdi, Mustapha; Zhang, Li; Zhang, Xiaobin; Ferreira, Antoine; Nelson, Bradley J.

Source:
NANO LETTERS 9 (1): 210-214 JAN 2009

Language:
English

Document Type:
Article

KeyWords Plus:
FILLED CARBON NANOTUBES; ELECTRON-BEAM; DEPOSITION; NANOSCALE; NANOSTRUCTURES; NANOFLUIDICS; BEHAVIOR; SCALE; FLOW

Abstract:
We report an experimental and theoretical investigation into mass transport between individual carbon nanotubes (CNTs) via their central cores. These CNT fluidic junctions can serve as basic elements for more complex nanofluidic systems and can also provide a structure for testing theories of fluid flow at the nanoscale. Controlled melting, evaporation, and flowing of copper and tin within and between nanotube shells are investigated experimentally. Cap-to-wall and wall-to-cap mass flow are realized by electric current driven heating, diffusion, and electromigration under low bias voltages between 1.5 and 1.8 V. A comparison shows that the mass loss for the cap-to-wall architecture is much smaller than that for the wall-to-cap junction. A molecular dynamics simulation is presented that provides further insight into the transport mechanism.

Reprint Address:
Dong, LX, Swiss Fed Inst Technol, Inst Robot & Intelligent Syst, CH-8092 Zurich, Switzerland.

Research Institution addresses:
[Dong, Lixin; Zhang, Li; Nelson, Bradley J.] Swiss Fed Inst Technol, Inst Robot & Intelligent Syst, CH-8092 Zurich, Switzerland; [Tao, Xinyong; Zhang, Xiaobin] Zhejiang Univ, Dept Mat Sci & Engn, Hangzhou 310027, Peoples R China; [Tao, Xinyong] Zhejiang Univ Technol, Coll Chem Engn & Mat Sci, Hangzhou 310032, Zhejiang, Peoples R China; [Hamdi, Mustapha; Ferreira, Antoine] ENSI Bourges, Inst PRISMS, F-18000 Bourges, France

E-mail Address:
ldong@ethz.ch

Cited References:
AJAYAN PM, 1993, NATURE, V361, P333.
AJAYAN PM, 1994, PHYS REV LETT, V72, P1722.
AJAYAN PM, 1995, NATURE, V375, P564.
CHEN X, 2007, P NATL ACAD SCI USA, V104, P8218, DOI 10.1073/pnas.0700567104.
COSTA PMFJ, 2008, NANO LETT, V8, P3120, DOI 10.1021/nl8012506.
DAIGUJI H, 2005, NANO LETT, V5, P2274, DOI 10.1021/nl051646y.
DEKKER C, 2007, NAT NANOTECHNOL, V2, P209, DOI 10.1038/nnano.2007.27.
DONG LX, 2002, APPL PHYS LETT, V81, P1919, DOI 10.1063/1.1504486.
DONG LX, 2004, IEEE-ASME T MECH, V9, P350, DOI 10.1109/TMECH.2004.828653.
DONG LX, 2007, NANO LETT, V7, P58, DOI 10.1021/nl061980+.
EIJKEL JCT, 2005, MICROFLUID NANOFLUID, V1, P249, DOI 10.1007/s10404-004-0012-9.
FREEDMAN JR, 2007, APPL PHYS LETT, V90, P3108.
GAO YH, 2002, NATURE, V415, P599.
GOGOTSI Y, 2001, APPL PHYS LETT, V79, P1021.
GOLBERG D, 2007, ADV MATER, V19, P1937, DOI 10.1002/adma.200700126.
GOLDBERGER J, 2006, ACCOUNTS CHEM RES, V39, P239.
HOLT JK, 2008, MICROFLUID NANOFLUID, V5, P425, DOI 10.1007/s10404-008-0301-9.
KRAL P, 1999, PHYS REV LETT, V82, P5373.
MADSEN DN, 2003, NANO LETT, V3, P47, DOI 10.1021/nl0257972.
MAJUMDER M, 2005, NATURE, V438, P44, DOI 10.1038/43844a.
MATSUI S, 2000, J VAC SCI TECHNOL B, V18, P3181.
MATTIA D, 2008, MICROFLUID NANOFLUID, V5, P289, DOI 10.1007/s10404-008-0293-5.
MIJATOVIC D, 2005, LAB CHIP, V5, P492, DOI 10.1039/b416951d.
REGAN BC, 2004, NATURE, V428, P924, DOI 10.1038/nature02496.
SCHRLAU MG, 2008, NANOTECHNOLOGY, V19, UNSP 4-015101.
SMITH BW, 1998, NATURE, V396, P323.
SUPPLE S, 2003, PHYS REV LETT, V90, ARTN 214501.
SVENSSON K, 2004, PHYS REV LETT, V93, ARTN 145901.
TAO XY, 2006, DIAM RELAT MATER, V15, P1271, DOI 10.1016/j.diamond.2005.09.043.
TSANG SC, 1994, NATURE, V372, P159.
UGARTE D, 1996, SCIENCE, V274, P1897.
VANDERHEYDEN FHJ, 2006, NANO LETT, V6, P2232, DOI 10.1021/nl061524l.
WHITBY M, 2007, NAT NANOTECHNOL, V2, P87, DOI 10.1038/nnano.2006.175.
XU SY, 2005, SMALL, V1, P1221, DOI 10.1002/smll.200500240.
YOKOTA T, 2003, PHYS REV LETT, V91, UNSP 4-265504.

Cited Reference Count:
35

Times Cited:
0

Publisher:
AMER CHEMICAL SOC; 1155 16TH ST, NW, WASHINGTON, DC 20036 USA

Subject Category:
Chemistry, Multidisciplinary; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary

ISSN:
1530-6984

DOI:
10.1021/nl8027747

IDS Number:
395IZ

========================================================================

*Record 2 of 3.
*View Full Record: http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000262519100042
*Order Full Text [ ]

Title:
High Density, Vertically-Aligned Carbon Nanotube Membranes

Authors:
Yu, M; Funke, HH; Falconer, JL; Noble, RD

Author Full Names:
Yu, Miao; Funke, Hans H.; Falconer, John L.; Noble, Richard D.

Source:
NANO LETTERS 9 (1): 225-229 JAN 2009

Language:
English

Document Type:
Article

KeyWords Plus:
GAS-TRANSPORT; FLUX

Abstract:
A method is presented to prepare high-density, vertically aligned carbon nanotube (VA-CNT) membranes. The CNT arrays were prepared by chemical vapor deposition (CO), and the arrays were collapsed into dense membranes by capillary-forces due to solvent evaporation. The average space between the CNTs after shrinkage was similar to 3 nm, which is comparable to the pore size of the CNTs. Thus, the interstitial pores between CNTs were not sealed, and gas permeated through both CNTs and interstitial pores. Nanofiltration of gold nanoparticles and N-2 adsorption indicated the pore diameters were approximately 3 nm. Gas permeances, based on total membrane area, were 1-4 orders of magnitude higher than VA-CNT membranes in the literature, and gas permeabilities were 4-7 orders of magnitude higher than literature values. Gas permeances were approximately 450 times those predicted for Knudsen diffusion, and ideal selectivities were similar to or higher than Knudsen selectivities. These !
membranes separated a larger molecule (triisopropyl orthoformate (TIPO)) from a smaller molecule (n-. hexane) during pervaporation, possibly due to the preferential adsorption, which indicates separation potential for liquid mixtures.

Reprint Address:
Falconer, JL, Univ Colorado, Dept Biol & Chem Engn, Boulder, CO 80309 USA.

Research Institution addresses:
[Yu, Miao; Funke, Hans H.; Falconer, John L.; Noble, Richard D.] Univ Colorado, Dept Biol & Chem Engn, Boulder, CO 80309 USA

E-mail Address:
john.falconer@colorado.edu

Cited References:
CHAKRABARTI S, 2006, JPN J APPL PHYS 2, V45, L720, DOI 10.1143/JJAP.45.L720.
CHAKRABARTI S, 2007, J PHYS CHEM C, V111, P1929, DOI 10.1021/jp0666986.
CHEN HB, 2006, J MEMBRANE SCI, V269, P152, DOI 10.1016/j.memsci.2005.06.030.
CI LJ, 2007, ADV MATER, V19, P3300, DOI 10.1002/adma.200602974.
FUTABA DN, 2006, NAT MATER, V5, P987, DOI 10.1038/nmat1782.
HATA K, 2004, SCIENCE, V306, P1362.
HINDS BJ, 2004, SCIENCE, V303, P62, DOI 10.1126/science.1092048.
HOLT JK, 2006, SCIENCE, V312, P1034, DOI 10.1126/science.1126298.
KIM S, 2007, NANO LETT, V7, P2806, DOI 10.1021/nl071414u.
MAJUMDER M, 2005, NATURE, V438, P44, DOI 10.1038/43844a.
NEWSOME DA, 2006, NANO LETT, V6, P2150, DOI 10.1021/nl061181r.
SKOULIDAS AI, 2002, PHYS REV LETT, V89, ARTN 185901.
SRIVASTAVA A, 2004, NAT MATER, V3, P610, DOI 10.1038/nmat1192.
ZHU LB, 2005, NANO LETT, V5, P2641, DOI 10.1021/nl051906b.

Cited Reference Count:
14

Times Cited:
0

Publisher:
AMER CHEMICAL SOC; 1155 16TH ST, NW, WASHINGTON, DC 20036 USA

Subject Category:
Chemistry, Multidisciplinary; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary

ISSN:
1530-6984

DOI:
10.1021/nl802816h

IDS Number:
395IZ

========================================================================

*Record 3 of 3.
*View Full Record: http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000262644600013
*Order Full Text [ ]

Title:
Fluid transport in nanospaces

Authors:
Nicholson, D; Bhatia, SK

Author Full Names:
Nicholson, David; Bhatia, Suresh K.

Source:
MOLECULAR SIMULATION 35 (1-2): 109-121 2009

Language:
English

Document Type:
Article

Author Keywords:
adsorbate; transport; nanopores; momentum accomodation

KeyWords Plus:
INHOMOGENEOUS NONEQUILIBRIUM FLUIDS; MOMENTUM ACCOMMODATION COEFFICIENTS; MOLECULAR-DYNAMICS SIMULATION; WALLED CARBON NANOTUBES; SPINNING ROTOR GAUGE; MULTICOMPONENT SYSTEMS; BOUNDARY-CONDITIONS; MASS-TRANSPORT; SELF-DIFFUSION; KINETIC-THEORY

Abstract:
We review recent progress in the transport of a fluid phase through spaces of simple geometry (parallel sided slits or cylinders) in which the confining walls restrict the fluid phase to a few molecular widths in at least one dimension. We emphasise the fact that in such spaces, the contingent solid phase plays a major role in creating strong non-uniformity in directions normal to the confining surface, even at very low fluid densities and ambient temperatures. Furthermore, the adsorbent field of the solid distorts molecular trajectories from linear and is a major factor in determining the extent to which momentum tangential to the surface is re-allocated in the collision process. The first part of the review surveys briefly the contributions that can be made from computer simulation, and the nature of some theoretical constructs relating to the problem; we focus, in particular on the theoretical advances that have been made in Queensland over the last few years. Following t!
his we turn attention to progress in understanding the molecular scattering process at the point of normal momentum reversal at the surface and the theoretical and experimental developments relating to the intriguing possibility of 'superfast' flow in carbon nanotubes.

Reprint Address:
Nicholson, D, Univ Queensland, Div Chem Engn, Brisbane, Qld, Australia.

Research Institution addresses:
[Nicholson, David; Bhatia, Suresh K.] Univ Queensland, Div Chem Engn, Brisbane, Qld, Australia

E-mail Address:
d.nicholson@uq.edu.au

Cited References:
ACKERMAN DM, 2003, MOL SIMULAT, V29, P677, DOI 10.1080/0892702031000103239.
AKHMATSKAYA E, 1997, J CHEM PHYS, V106, P4684.
ARYA G, 2001, J CHEM PHYS, V115, P8112.
ARYA G, 2003, MOL SIMULAT, V29, P697, DOI 10.1080/0892702031000103257.
ARYA G, 2003, PHYS REV LETT, V91, ARTN 026102.
BANDYOPADHYAY S, 1995, J PHYS CHEM-US, V99, P4286.
BARRER RM, 1967, SOLID GAS INTERFACE, V2, P557.
BEARMAN RJ, 1958, J CHEM PHYS, V28, P136.
BENTZ JA, 1997, VACUUM, V48, P817.
BHATIA SK, 2002, PHYS REV LETT, V90, UNSP 016105.
BHATIA SK, 2003, J CHEM PHYS, V119, P1719, DOI 10.1063/1.1580797.
BHATIA SK, 2004, J CHEM PHYS, V120, P4472, DOI 10.1063/1.1644108.
BHATIA SK, 2005, MOL SIMULAT, V31, P643, DOI 10.1080/00268970500108403.
BHATIA SK, 2006, ADSORPT SCI TECHNOL, V24, P101.
BHATIA SK, 2006, AICHE J, V52, P29, DOI 10.1002/aic.10580.
BHIDE SY, 2004, CURR SCI INDIA, V87, P971.
BITSANIS I, 1988, J CHEM PHYS, V89, P3151.
BITSANIS I, 1990, J CHEM PHYS, V93, P3427.
CELESTINI F, 2008, PHYS REV E 1, V77, ARTN 021202.
CHAPMAN S, 1970, MATH THEORY NONUNIFO.
CHEN HB, 2006, J PHYS CHEM B, V110, P1971, DOI 10.1021/jp056911i.
CHIRITA V, 1997, NUCL INSTRUM METH B, V124, P12.
COPPENS MO, 2006, FLUID PHASE EQUILIBR, V241, P308, DOI 10.1016/j.fluid.2005.12.039.
CRACKNELL RF, 1994, MOL SIMULAT, V13, P161.
CRACKNELL RF, 1995, PHYS REV LETT, V74, P2463.
DEROUANE EG, 1987, CHEM PHYS LETT, V142, P200.
DEROUANE EG, 1988, J CATAL, V110, P58.
DUBBELDAM D, 2007, MOL SIMULAT, V33, P305, DOI 10.1080/08927020601156418.
EVANS RB, 1961, J CHEM PHYS, V35, P2076.
FERES R, 2004, CHEM ENG SCI, V59, P1541, DOI 10.1016/j.ces.2004.01.016.
GABIS DH, 1996, J VAC SCI TECHNOL A, V14, P2592.
GHOSH M, 1994, J PHYS CHEM-US, V98, P9354.
GUANTES R, 2004, SURF SCI REP, V53, P199, DOI 10.1016/j.surfrep.2004.02.001.
HADJICONSTANTINOU NG, 2006, PHYS FLUIDS, V18, ARTN 111301.
HAGER J, 1997, SURF SCI, V374, P181.
HINDS BJ, 2004, SCIENCE, V303, P62, DOI 10.1126/science.1092048.
HIRSCHFELDER JO, 1954, MOL THEORY GASES LIQ.
HOLT JK, 2004, NANO LETT, V4, P2245, DOI 10.1021/nl048876h.
HOLT JK, 2006, SCIENCE, V312, P1034, DOI 10.1126/science.1126298.
IRVING JH, 1950, J CHEM PHYS, V18, P817.
JAKOBTORWEIHEN S, 2005, PHYS REV LETT, V95, ARTN 044501.
JAKOBTORWEIHEN S, 2006, J PHYS CHEM B, V110, P16332, DOI 10.1021/jp063424+.
JEPPS OG, 2003, PHYS REV E 1, V67, ARTN 041206.
JEPPS OG, 2003, PHYS REV LETT, V9, P1.
JEPPS OG, 2004, J CHEM PHYS, V120, P5396, DOI 10.1063/1.1647516.
KERKHOF PJA, 2001, CHEM ENG J, V183, P107.
KERKHOF PJAM, 1996, CHEM ENG J, V64, P319.
KERKHOF PJAM, 2005, AICHE J, V51, P79, DOI 10.1002/aic.10309.
KERKHOF PJAM, 2005, CHEM ENG SCI, V60, P3129, DOI 10.1016/j.ces.2004.12.042.
KIRKWOOD JG, 1946, J CHEM PHYS, V14, P180.
KNUDSEN M, 1909, ANN PHYS, V28, P75.
KUMAR AVA, 2006, J PHYS CHEM B, V110, P3109, DOI 10.1021/jp056670e.
MACELROY JMD, 1994, J CHEM PHYS, V101, P5274.
MACELROY JMD, 2001, COLLOID SURFACE A, V187, P493.
MAJUMDER M, 2005, NATURE, V438, P44, DOI 10.1038/43844a.
MALEK K, 2001, PHYS REV LETT, V87, ARTN 125505.
MALEK K, 2003, J CHEM PHYS, V119, P2801, DOI 10.1063/1.1584652.
MASON EA, 1978, J CHEM PHYS, V68, P3562.
MAXWELL JC, 1879, PHILOS T R SOC LONDO, V170, P231.
MYONG RS, 2005, PHYS FLUIDS, V17, ARTN 087105.
NGUYEN TX, 2006, MOL SIMULAT, V32, P567, DOI 10.1080/08927020600675699.
NICHOLSON D, 2005, J MEMBRANE SCI, V275, P244.
NOY A, 2007, NANO TODAY, V2, P22.
OHARE L, 2007, INT J HEAT FLUID FL, V28, P37, DOI 10.1016/j.ijheatfluidflow.2006.04.012.
POZHAR LA, 1991, J CHEM PHYS, V94, P1367.
POZHAR LA, 1999, INT J THERMOPHYS, V20, P805.
POZHAR LA, 2000, PHYS REV E, V61, P1432.
POZHAR LA, 2002, J NANOSCI NANOTECHNO, V2, P209.
RAFIITABAR H, 2004, PHYS REP, V390, P235, DOI 10.1016/j.physrep.2003.10.012.
REMICK RR, 1973, IND ENG CHEM FUND, V12, P214.
RETTNER CT, 1998, IEEE T MAGN 2, V34, P2387.
ROTH C, 1992, J CHEM PHYS, V97, P6880.
SKOULIDAS AI, 2002, PHYS REV LETT, V89, ARTN 185901.
SKOULIDAS AI, 2006, J CHEM PHYS, V124, ARTN 054708.
SNELL FM, 1967, J CHEM PHYS, V47, P4959.
SOKHAN VP, 2001, J CHEM PHYS, V115, P3878.
SOKHAN VP, 2002, J CHEM PHYS, V117, P8531, DOI 10.1063/1.1512643.
SOKHAN VP, 2004, J CHEM PHYS, V120, P3855, DOI 10.1063/1.1643726.
SOKHAN VP, 2004, MOL SIMULAT, V30, P217, DOI 10.1080/08927020310001659106.
STRANDBURG KJ, 1988, REV MOD PHYS, V60, P161.
TODD BD, 1995, J CHEM PHYS, V103, P9804.
TODD BD, 1995, PHYS REV E A, V51, P4362.
VONSMOLUCHOWSKI M, 1910, ANN PHYS-BERLIN, V33, P1559.
WATANABE Y, 2005, CHEM PHYS LETT, V413, P331, DOI 10.1016/j.cplett.2005.07.103.
WHITBY M, 2007, NAT NANOTECHNOL, V2, P87, DOI 10.1038/nnano.2006.175.
YASHONATH S, 1994, CHEM PHYS LETT, V228, P284.
YASHONATH S, 1994, J CHEM PHYS, V100, P4013.
YASHONATH S, 1994, J PHYS CHEM-US, V98, P6368.

Cited Reference Count:
88

Times Cited:
0

Publisher:
TAYLOR & FRANCIS LTD; 4 PARK SQUARE, MILTON PARK, ABINGDON OX14 4RN, OXON, ENGLAND

Subject Category:
Chemistry, Physical; Physics, Atomic, Molecular & Chemical

ISSN:
0892-7022

DOI:
10.1080/08927020802301912

IDS Number:
397EG

========================================================================
*Order Full Text*
All Customers
--------------
Please contact your library administrator, or person(s) responsible for
document delivery, to find out more about your organization's policy for
obtaining the full text of the above articles. If your organization does
not have a current document delivery provider, your administrator can
contact ISI Document Solution at service@isidoc.com, or call 800-603-4367
or 734-459-8565.

IDS Customers
--------------
IDS customers can purchase the full text of an article (having page number,
volume, and issue information) by returning this ENTIRE message as a Reply
to Sender or Forward to orders@isidoc.com. Mark your choices with an X in
the "Order Full Text: []" brackets for each item. For example, [X].

Please enter your account number here:

========================================================================
*Help Desk Contact Information*
If you have any questions, please visit the Thomson Scientific Technical Support Contact Information Web page:
http://www.thomsonscientific.com/support/techsupport
========================================================================

No comments: