Friday, February 20, 2009

ISI Web of Knowledge Alert - Hummer, G

ISI Web of Knowledge Citation Alert

Cited Article: Hummer, G. Water conduction through the hydrophobic channel of a carbon nanotube
Alert Expires: 22 OCT 2009
Number of Citing Articles: 5 new records this week (5 in this e-mail)
Organization ID: 3b97d1bbc1878baed0ab183d8b03130b
========================================================================
Note: Instructions on how to purchase the full text of an article and Help Desk Contact information are at the end of the e-mail.
========================================================================

*Record 1 of 5.
*View Full Record: http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000262855600023
*Order Full Text [ ]

Title:
Transition to the Condensate State for Classical Gases and Clusterization

Authors:
Maslov, VP

Author Full Names:
Maslov, V. P.

Source:
MATHEMATICAL NOTES 84 (5-6): 795-813 NOV-DEC 2008

Language:
English

Document Type:
Article

Author Keywords:
Bose condensation; clusterization; dimer; scattering theory; Lennard-Jones potential; Maxwell distribution; neutral gas flow

KeyWords Plus:
CARBON NANOTUBES; PHASE-TRANSITION; QUASI-PARTICLES; FERMIONS; QUANTIZATION; BOSONS; WATER; LAW

Abstract:
In this paper, using of the rigorous statement and rigorous proof the Maxwell distribution as all example, we establish estimates of the distribution depending on the parameter N, the number of particles. Further, we consider the problem of the occurrence of dimers in a classical gas as an analog of Bose condensation and establish estimates of the lower level of the analog of Bose condensation. We find the relationship of this level to "capture" theory in the scattering problem corresponding to an interaction of the form of the Lennard-Jones potential. This also solves the problem of the Gibbs paradox. We derive the equation of state for a nonideal gas as a result of pair interactions of particles in Lennard-Jones models and, for classical gases, discuss the lambda-transition to the condensed state (the state in which V-spec does not vary with increasing pressure; for heat capacity, this is the lambda-point). We also present new quantum equations of the flow of a neutral gas!
consisting of particles with all odd number of neutrons in the capillaries in the Sutherland model.

Reprint Address:
Maslov, VP, Moscow MV Lomonosov State Univ, Moscow, Russia.

Research Institution addresses:
Moscow MV Lomonosov State Univ, Moscow, Russia

E-mail Address:
v.p.maslov@mail.ru

Cited References:
AMBARTSUMYAN RV, 1989, INTRO STOCHASTIC GEO.
ANDREWS GE, 1976, ENCY MATH APPL, V2.
BERESLETSKII VB, 1980, QUANTUM ELECTRODYNAM, V4.
BERTRAND J, 1889, CALCUL PROBABILITES.
BOGOLYUBOV NN, 1970, SUPERFLUIDITY THEORY, V2, P210.
BURSHTEIN AI, 1986, MOL PHYS.
HUMMER G, 2001, NATURE, V414, P188.
JOSEPH S, 2008, NANO LETT, V8, P452, DOI 10.1021/nl072385q.
KLAIN DA, 1997, INTRO GEOMETRIC PROB.
KOZLOV VV, 2002, THERMAL EQUILIBRIUM.
LANDA PS, 2001, J COMMUN TECHNOL EL+, V46, P1068.
MASLOV VP, MATH NOTES, V78, P347.
MASLOV VP, 1972, PERTURBATION THEORY.
MASLOV VP, 1978, IZV AKAD NAUK SSSR M, V42, P1063.
MASLOV VP, 1995, RUSS J MATH PHYS, V3, P271.
MASLOV VP, 1998, MATH NOTES+, V63, P560.
MASLOV VP, 1998, MATH NOTES+, V63, P695.
MASLOV VP, 1999, MATH NOTES+, V66, P701.
MASLOV VP, 2005, RUSS J MATH PHYS, V12, P483.
MASLOV VP, 2006, MATH NOTES+, V80, P679.
MASLOV VP, 2006, RUSS J MATH PHYS, V13, P315.
MASLOV VP, 2007, RUSS J MATH PHYS, V14, P304, DOI 10.1134/S1061920807030065.
MASLOV VP, 2007, RUSS J MATH PHYS, V14, P401.
MASLOV VP, 2008, MATH NOTES+, V83, P512, DOI 10.1134/S0001434608030255.
MASLOV VP, 2008, MATH NOTES+, V83, P790, DOI 10.1134/S0001434608050258.
MASLOV VP, 2008, MATH NOTES+, V84, P73, DOI 10.1134/S0001434608070079.
MASLOV VP, 2008, RUSS J MATH PHYS, V15, P61.
MASLOV VP, 2008, RUSSIAN J MATH PHYS, V15, P401.
MASLOV VP, 2008, RUSSIAN J MATH PHYS, V15, P494.
MASLOV VP, 2008, RUSSIAN J MATH PHYS, V83, P804.
MASLOV VP, 2008, THEOR MATH PHYS+, V156, P1101.
NOY A, 2007, NANO TODAY, V2, P22.
PONTRYAGIN L, 1933, ZH EKSP TEOR FIZ, V3, P165.
SHIRYAEV AN, 1984, PROBABILITY.
SKOULIDAS A, 2002, PHYS REV LETT, V3.
VERSHIK AM, 1996, FUNCT ANAL APPL+, V30, P90.

Cited Reference Count:
36

Times Cited:
0

Publisher:
CONSULTANTS BUREAU/SPRINGER; 233 SPRING ST, NEW YORK, NY 10013 USA

Subject Category:
Mathematics

ISSN:
0001-4346

DOI:
10.1134/S0001434608110230

IDS Number:
400GI

========================================================================

*Record 2 of 5.
*View Full Record: http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000262902600027
*Order Full Text [ ]

Title:
Effect of Surface Polarity on the Structure and Dynamics of Water in Nanoscale Confinement

Authors:
Castrillon, SRV; Giovambattista, N; Aksay, IA; Debenedetti, PG

Author Full Names:
Castrillon, Santiago Romero-Vargas; Giovambattista, Nicolas; Aksay, Ilhan A.; Debenedetti, Pablo G.

Source:
JOURNAL OF PHYSICAL CHEMISTRY B 113 (5): 1438-1446 FEB 5 2009

Language:
English

Document Type:
Article

KeyWords Plus:
HYDROGEN-BOND DYNAMICS; LIQUID WATER; MOLECULAR-DYNAMICS; NEUTRON-SCATTERING; GLASS-TRANSITION; HYDRATION LAYER; CARBON NANOTUBE; CELL WATER; SIMULATION; INTERFACES

Abstract:
We present a molecular dynamics simulation study of the structure and dynamics of water confined between silica surfaces using beta-cristobalite as a model template. We scale the surface Coulombic charges by means of a dimensionless number, k, ranging from 0 to 1, and thereby we can model systems ranging frorn hydrophobic apolar to hydrophilic, respectively. Both rotational and translational dynamics exhibit a nonmonotonic dependence on k characterized by a maximum in the in-plane diffusion coefficient, D-parallel to, at values between 0.6 and 0.8, and a minimum in the rotational relaxation time, tau(R), at k = 0.6. The slow dynamics observed in the proximity of the hydrophobic apolar surface are a consequence of beta-cristobalite templating an ice-like water layer. The fully hydrophilic surfaces (k = 1.0), on the other hand, result in slow interfacial dynamics due to the presence of dense but disordered water that forms strong hydrogen bonds with surface silanol groups. Con!
finement also induces decoupling between translational and rotational dynamics, as evidenced by the fact that TR attains values similar to that of the bulk, while D-parallel to is always lower than in the bulk. The decoupling is characterized by a more drastic reduction in the translational dynamics of water compared to rotational relaxation.

Reprint Address:
Debenedetti, PG, Princeton Univ, Dept Chem Engn, Princeton, NJ 08544 USA.

Research Institution addresses:
[Castrillon, Santiago Romero-Vargas; Giovambattista, Nicolas; Aksay, Ilhan A.; Debenedetti, Pablo G.] Princeton Univ, Dept Chem Engn, Princeton, NJ 08544 USA

E-mail Address:
pdebene@princeton.edu

Cited References:
ASAY DB, 2005, J PHYS CHEM B, V109, P16760, DOI 10.1021/jp053042o.
AUSTIN R, 2007, NAT NANOTECHNOL, V2, P79, DOI 10.1038/nnano.2007.18.
BAGCHI B, 2005, CHEM REV, V105, P3197, DOI 10.1021/cr020661+.
BALASUBRAMANIAN S, 2002, PHYS REV LETT, V89, ARTN 115505.
BALL P, 2008, CHEM REV, V108, P74, DOI 10.1021/cr068037a.
BENJAMIN I, 2005, J PHYS CHEM B, V109, P13711, DOI 10.1021/jp044157f.
BERENDSEN HJC, 1981, INTERMOLECULAR FORCE, P331.
BERENDSEN HJC, 1984, J CHEM PHYS, V81, P3684.
BERENDSEN HJC, 1987, J PHYS CHEM-US, V91, P6269.
BRATKO D, 2001, J CHEM PHYS, V115, P3973.
CHENG YK, 1998, NATURE, V392, P696.
CHRISTENSON HK, 1988, SCIENCE, V239, P390.
CICERONE MT, 1996, J CHEM PHYS, V104, P7210.
DEBENEDETTI PG, 2001, NATURE, V410, P259.
DEBYE P, 1945, POLAR MOL.
EINSTEIN A, 1956, INVESTIGATIONS THEOR.
FRANK HS, 1945, J CHEM PHYS, V13, P507.
GALLO P, 2003, J PHYS-CONDENS MAT, V15, P7625.
GIOVAMBATTISTA N, 2006, PHYS REV E 1, V73, ARTN 041604.
GIOVAMBATTISTA N, 2007, J PHYS CHEM B, V111, P9581, DOI 10.1021/jp071957s.
GIOVAMBATTISTA N, 2007, J PHYS CHEM C, V111, P1323.
GOEL G, 2008, PHYS REV LETT, V100, ARTN 106001.
HARPHAM MR, 2004, J CHEM PHYS, V121, P7855, DOI 10.1063/1.1792592.
HEYES DM, 1994, J CHEM SOC FARADAY T, V90, P3039.
HUA L, 2007, J PHYS CHEM B, V111, P9069, DOI 10.1021/jp0707923.
HUMMER G, 2001, NATURE, V414, P188.
JENSEN TR, 2003, PHYS REV LETT, V90, ARTN 086101.
JINESH KB, 2008, PHYS REV LETT, V101, ARTN 036101.
JORGENSEN WL, 1983, J CHEM PHYS, V79, P926.
KALRA A, 2003, P NATL ACAD SCI USA, V100, P10175.
KLAPP S, 2007, REV COMPUTATIONAL CH, V24.
KUMAR P, 2005, PHYS REV E 1, V72, ARTN 051503.
LAAGE D, 2006, SCIENCE, V311, P832, DOI 10.1126/science.1122154.
LEE SH, 1994, J CHEM PHYS, V100, P3334.
LIU P, 2004, J PHYS CHEM B, V108, P6595, DOI 10.1021/jp0375057.
LIU P, 2005, J PHYS CHEM B, V109, P2949, DOI 10.1021/jp0468071.
LOMBARDO TG, 2006, J CHEM PHYS, V125, ARTN 174507.
LUZAR A, 1996, PHYS REV LETT, V76, P928.
MARK P, 2002, J COMPUT CHEM, V23, P1211, DOI 10.1002/jcc.10117.
MARTI J, 1996, J CHEM PHYS, V105, P639.
MARTI J, 2006, J CHEM PHYS, V124, ARTN 094703.
MAZZA MG, 2007, PHYS REV E 1, V76, ARTN 031203.
MCGRATH KM, 1997, SCIENCE, V277, P552.
MCQUARRIE DA, 1976, STAT MECH.
NANGIA S, 2007, J PHYS CHEM C, V111, P5169, DOI 10.1021/jp0678608.
OSTROVERKHOV V, 2005, PHYS REV LETT, V94, ARTN 046102.
PAL S, 2005, J PHYS CHEM B, V109, P12879, DOI 10.1021/jp0510793.
PERSSON E, 2008, P NATL ACAD SCI USA, V105, P6266, DOI 10.1073/pnas.0709585105.
REZUS YLA, 2007, PHYS REV LETT, V99, ARTN 148301.
RUAN CY, 2004, SCIENCE, V304, P80.
SCHEIDLER P, 2002, EUROPHYS LETT, V59, P701.
SCIORTINO F, 1991, NATURE, V354, P218.
SCIORTINO F, 1996, PHYS REV E, V54, P6331.
SEGA M, 2005, PHYS REV E 1, V72, ARTN 041201.
SHEN YR, 2006, CHEM REV, V106, P1140, DOI 10.1021/cr040377d.
SOSMAN RB, 1965, PHASES SILICA.
STARR FW, 1999, PHYS REV E A, V60, P6757.
STILLINGER FH, 1973, J SOLUTION CHEM, V2, P141.
TEHEI M, 2007, P NATL ACAD SCI USA, V104, P766, DOI 10.1073/pnas.0601639104.
TEMPERLEY HNV, 1968, PHYS SIMPLE LIQUIDS.
TOKUSHIMA T, 2008, CHEM PHYS LETT, V460, P387, DOI 10.1016/j.cplett.2008.04.077.
VANDERSPOEL D, 1998, J CHEM PHYS, V108, P10220.
VANHIJKOOP VJ, 2007, J CHEM PHYS, V127, ARTN 085101.
VERDAGUER A, 2006, CHEM REV, V106, P1478, DOI 10.1021/cr040376l.
WERNET P, 2004, SCIENCE, V304, P995, DOI 10.1126/science.1096205.
ZANGI R, 2004, J PHYS-CONDENS MAT, V16, S5371, DOI 10.1088/0953-8984/16/45/005.
ZHOU RH, 2004, SCIENCE, V305, P1605.
ZHU FQ, 2003, BIOPHYS J, V85, P236.

Cited Reference Count:
68

Times Cited:
0

Publisher:
AMER CHEMICAL SOC; 1155 16TH ST, NW, WASHINGTON, DC 20036 USA

Subject Category:
Chemistry, Physical

ISSN:
1520-6106

DOI:
10.1021/jp809032n

IDS Number:
400XL

========================================================================

*Record 3 of 5.
*View Full Record: http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000262970900101
*Order Full Text [ ]

Title:
Temperature variation in liquid infiltration and defiltration in a MCM41

Authors:
Han, AJ; Lu, WY; Punyamurtula, VK; Kim, T; Qiao, Y

Author Full Names:
Han, Aijie; Lu, Weiyi; Punyamurtula, Venkata K.; Kim, Taewan; Qiao, Yu

Source:
JOURNAL OF APPLIED PHYSICS 105 (2): Art. No. 024309 JAN 15 2009

Language:
English

Document Type:
Article

Author Keywords:
calorimetry; melt infiltration; surface diffusion

KeyWords Plus:
CARBON NANOTUBES; MASS-TRANSPORT; PRESSURE; HYDRODYNAMICS; NANOFLUIDICS; MEMBRANES; SYSTEMS; SLIP; FLOW

Abstract:
In a calometric measurement of infiltration and defiltration of pressurized liquid in a hydrophobic MCM41, it is observed that in nanopores the energy change between solid and liquid phases is dependent on the direction of liquid motion: liquid infiltration is exothermic and liquid defiltration is endothermic. The sorption curves and the temperature variation are insensitive to the loading rate. The magnitude of temperature decrease in defiltration is smaller than the temperature increase in infiltration, fitting well with the hysteresis of the sorption curve. These phenomena can be attributed to the confinement effect of nanopore walls and the thermally/mechanically aided surface diffusion of liquid molecules.

Reprint Address:
Qiao, Y, Univ Calif San Diego, Dept Struct Engn, La Jolla, CA 92093 USA.

Research Institution addresses:
[Han, Aijie; Lu, Weiyi; Punyamurtula, Venkata K.; Qiao, Yu] Univ Calif San Diego, Dept Struct Engn, La Jolla, CA 92093 USA; [Kim, Taewan; Qiao, Yu] Univ Calif San Diego, Program Mat Sci & Engn, La Jolla, CA 92093 USA

E-mail Address:
yqiao@ucsd.edu

Cited References:
ALLEN MP, 1990, COMPUTER SIMULATION.
ASHBY PD, 2004, J AM CHEM SOC, V126, P16973, DOI 10.1021/ja045970r.
CROWE CT, 2006, ENG FLUID MECH.
DELLAGO C, 2006, PHYS REV LETT, V97, ARTN 245901.
DIKIN DA, 2007, NATURE, V448, P457, DOI 10.1038/nature06016.
ELLIS JS, 2004, PHYS CHEM CHEM PHYS, V6, P4928, DOI 10.1039/b409342a.
GROB RL, 2004, MODERN PRACTICE GAS.
GUSEV AA, 2007, ADV MATER, V19, P2672, DOI 10.1002/adma.200602018.
HAN AJ, 2007, CHEM LETT, V36, P882.
HAN AJ, 2007, LANGMUIR, V23, P11396, DOI 10.1021/la702606s.
HOLT JK, 2006, SCIENCE, V312, P1034, DOI 10.1126/science.1126298.
HOLTZEL A, 2007, J SEP SCI, V30, P1398, DOI 10.1002/jssc.200600427.
HU GQ, 2007, CHEM ENG SCI, V62, P3443, DOI 10.1016/j.ces.2006.11.058.
HUMMER G, 2001, NATURE, V414, P188.
KOHLI P, 2004, SCIENCE, V305, P984.
KONG X, 2005, APPL PHYS LETT, V86, ARTN 151919.
KONG X, 2005, PHIL MAG LETT, V85, P331, DOI 10.1080/09500830500071135.
KOUMOUTSAKOS P, 2005, ANNU REV FLUID MECH, V37, P457, DOI 10.1146/annurev.fluid.37.061903.175753.
LIM MH, 1999, CHEM MATER, V11, P3285.
MAJUMDER M, 2005, NATURE, V438, P44, DOI 10.1038/43844a.
MIJATOVIC D, 2005, LAB CHIP, V5, P492, DOI 10.1039/b416951d.
NETO C, 2005, REP PROG PHYS, V68, P2859, DOI 10.1088/0034-4885/68/12/R05.
QIAN TZ, 2006, COMMUN COMPUT PHYS, V1, P1.
QIAO Y, 2007, J AM CHEM SOC, V129, P2355, DOI 10.1021/ja067185f.
ROBERT LM, 2006, APPL FLUID MECH.
ROSSI M, 2005, PHYS REV B, V72, ARTN 064516.
SUN L, 2006, SCIENCE, V312, P1199, DOI 10.1126/science.1124594.
TAKAIWA D, 2007, MOL SIMULAT, V33, P127, DOI 10.1080/08927020601059893.

Cited Reference Count:
28

Times Cited:
0

Publisher:
AMER INST PHYSICS; CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA

Subject Category:
Physics, Applied

ISSN:
0021-8979

DOI:
10.1063/1.3068328

IDS Number:
401VQ

========================================================================

*Record 4 of 5.
*View Full Record: http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000262925200120
*Order Full Text [ ]

Title:
NON-EQUILIBRIUM STUDIES OF MOLECULAR FLOW THROUGH CARBON NANOTUBES

Authors:
Cannon, J; Hess, O

Author Full Names:
Cannon, James; Hess, Ortwin

Source:
PROCEEDINGS OF THE 6TH INTERNATIONAL CONFERENCE ON NANOCHANNELS, MICROCHANNELS, AND MINICHANNELS, PTS A AND B : 953-957 2008

Language:
English

Document Type:
Proceedings Paper

KeyWords Plus:
THERMAL-CONDUCTIVITY; SELF-DIFFUSION; DYNAMICS; HYDROGEN; LIQUID

Abstract:
Carbon nanotubes are likely to form an integral part of future nano-fluidic devices. In order to realise such devices, an understanding of the dynamics of molecular flow through nanotubes is crucial. We have conducted continuous-flow non-equilibrium molecular dynamics simulations of argon and hydrogen flow through nanotubes, in order to decipher the fundamental driving forces behind the flow dynamics, upon which the motions of more complex molecules are based. We detail the fundamental mechanisms of flow in the nano-confined space of a carbon nanotube, and demonstrate how this knowledge can be utilised to control the flow-rate and even convert from smooth to pulsed flow.

Reprint Address:
Cannon, J, Univ Surrey, Adv Technol Inst, Guildford GU2 7XH, Surrey, England.

Research Institution addresses:
[Cannon, James; Hess, Ortwin] Univ Surrey, Adv Technol Inst, Guildford GU2 7XH, Surrey, England

Cited References:
ACKERMAN DM, 2003, MOL SIMULAT, V29, P677, DOI 10.1080/0892702031000103239.
ALLEN MP, 1987, COMPUTER SIMULATION.
ANDO Y, 1999, INT J INORG MATER, V1, P77.
BAUGHMAN RH, 2002, SCIENCE, V297, P787.
BERBER S, 2000, PHYS REV LETT, V84, P4613.
CHENG HS, 2005, J PHYS CHEM B, V109, P3780, DOI 10.1021/jp045358m.
DEMCZYK BG, 2002, MAT SCI ENG A-STRUCT, V334, P173.
FAN X, 2000, PHYS REV LETT, V84, P4621.
HIRSCH A, 2002, ANGEW CHEM INT EDIT, V41, P1853.
HONE J, 1999, SYNTHETIC MET, V103, P2498.
HUMMER G, 2001, NATURE, V414, P188.
KOSTOV MK, 2002, PHYS REV LETT, V89, P6105.
LIU YC, 2005, PHYS REV B, V72, P5420.
MAJUMDER M, 2005, NATURE, V438, P44, DOI 10.1038/43844a.
MARMIER A, 2005, MOL SIMULAT, V31, P385, DOI 10.1080/08927020500066338.
MARUYAMA S, 2000, AM SOC MECH ENG, V366, P405.
MELLEFRANCO M, 2006, NANO LETT, V6, P969, DOI 10.1021/nl060154y.
PAVESE M, 1996, CHEM PHYS LETT, V249, P231.
SHOLL DS, 2006, SCIENCE, V312, P1003, DOI 10.1126/science.1127261.
SUN YP, 2002, ACCOUNTS CHEM RES, V35, P1096, DOI 10.1021/er010160v.
TUZUN RE, 1996, NANOTECHNOLOGY, V7, P241.
VERLET L, 1967, PHYS REV, V159, P98.
XIE HQ, 2003, J APPL PHYS, V94, P4967, DOI 10.1063/1.1613374.

Cited Reference Count:
23

Times Cited:
0

Publisher:
AMER SOC MECHANICAL ENGINEERS; THREE PARK AVENUE, NEW YORK, NY 10016-5990 USA

IDS Number:
BIU45

========================================================================

*Record 5 of 5.
*View Full Record: http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000262944100021
*Order Full Text [ ]

Title:
Atomic, electronic and transport properties of quasi-one-dimensional nanostructures - art. no. 70370X

Authors:
Xue, YQ; Hmiel, A; Stiles, C

Author Full Names:
Xue, Yongqiang; Hmiel, Abraham; Stiles, Christopher

Source:
CARBON NANOTUBES AND ASSOCIATED DEVICES 7037: X370-X370 2008

Language:
English

Document Type:
Proceedings Paper

Author Keywords:
Nanostructures; Nanoelectronics; Nanofluidics

KeyWords Plus:
CARBON NANOTUBES; DYNAMICS

Abstract:
We present theoretical study of the atomic, electronic and transport properties of silicon nanowires and single-walled carbon nanotubes using atomistic simulation. For silicon nanowires, we present investigation of the atomic structure and electronic properties of ultra,thin nanowires with different surface structures and growth directions and the trend of such property variations with increasing nanowire diameters using density functional theory with both local atomic basis and plane waves. For single-walled carbon nanotubes, we present self-consistent tight-binding study of the electronic and transport properties of semiconducting carbon nanotubes in contact with metal electrodes. We discuss insights obtained from such atomistic study on the contact, and diameter dependence of junction conductance. Finally, we examine the application of single-walled carbon nanotubes as novel nanofluidic channels by analyzing the structure and kinetics of water molecules confined and trans!
ported through the nanotube channels using molecular dynamics simulation.

Reprint Address:
Xue, YQ, SUNY Albany, Coll Nanoscale Sci & Engn, Theoret Nanosci Grp, Albany, NY 12203 USA.

Research Institution addresses:
[Xue, Yongqiang; Hmiel, Abraham; Stiles, Christopher] SUNY Albany, Coll Nanoscale Sci & Engn, Theoret Nanosci Grp, Albany, NY 12203 USA

Cited References:
AVOURIS P, 2003, P IEEE, V91, P1772, DOI 10.1109/JPROC.2003.818338.
BERENDSEN HJC, 1981, INTERMOLECULAR FORCE, P331.
BERENDSEN HJC, 1984, J CHEM PHYS, V81, P3684.
CASE DA, 2004, AMBER 8.
EIJKEL JCT, 2005, MICROFLUID NANOFLUID, V1, P249, DOI 10.1007/s10404-004-0012-9.
GAO HJ, 2003, NANO LETT, V3, P471, DOI 10.1021/nl025967a.
GELB LD, 1999, REP PROG PHYS, V62, P1573.
HUMMER G, 2001, NATURE, V414, P188.
KRESSE G, 1996, PHYS REV B, V54, P11169.
LOISEAU A, 2006, UNDERSTANDING CARBON.
LU W, 2006, J PHYS D APPL PHYS, V39, R387, DOI 10.1088/0022-3727/39/21/R01.
PATOLSKY F, 2006, ANAL CHEM, V78, P4260.
RURALI R, 2006, PHYS REV B, V74, P5324.
SOLER JM, 2002, J PHYS-CONDENS MAT, V14, P2745.
TASIS D, 2006, CHEM REV, V106, P1105, DOI 10.1021/cr050569o.
VANDERSPOEL D, 2005, J COMPUT CHEM, V26, P1701, DOI 10.1002/jcc.20291.
VANGUNSTEREN WF, 1996, BIOMOLECULAR SIMULAT.
WHITBY M, 2007, NAT NANOTECHNOL, V2, P87, DOI 10.1038/nnano.2006.175.
XUE YQ, 2002, CHEM PHYS, V281, P151.
XUE YQ, 2004, PHYS REV B, V69, P1402.
XUE YQ, 2004, PHYS REV B, V70, P5416.
XUE YQ, 2005, NANOTECHNOLOGY, V16, P5, DOI 10.1088/0957-4484/16/1/002.
XUE YQ, 2006, NANOTECHNOLOGY, V17, P5216, DOI 10.1088/0957-4484/17/20/029.
YAN JA, 2007, PHYS REV B, V76, P5319.

Cited Reference Count:
24

Times Cited:
0

Publisher:
SPIE-INT SOC OPTICAL ENGINEERING; 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98227-0010 USA

ISSN:
0277-786X

IDS Number:
BIU60

========================================================================
*Order Full Text*
All Customers
--------------
Please contact your library administrator, or person(s) responsible for
document delivery, to find out more about your organization's policy for
obtaining the full text of the above articles. If your organization does
not have a current document delivery provider, your administrator can
contact ISI Document Solution at service@isidoc.com, or call 800-603-4367
or 734-459-8565.

IDS Customers
--------------
IDS customers can purchase the full text of an article (having page number,
volume, and issue information) by returning this ENTIRE message as a Reply
to Sender or Forward to orders@isidoc.com. Mark your choices with an X in
the "Order Full Text: []" brackets for each item. For example, [X].

Please enter your account number here:

========================================================================
*Help Desk Contact Information*
If you have any questions, please visit the Thomson Scientific Technical Support Contact Information Web page:
http://www.thomsonscientific.com/support/techsupport
========================================================================

No comments: