Friday, February 13, 2009

ISI Web of Knowledge Alert - Majumder M

ISI Web of Knowledge Citation Alert

Cited Article: Majumder M. Nanoscale hydrodynamics - Enhanced flow in carbon nanotubes
Alert Expires: 18 OCT 2009
Number of Citing Articles: 3 new records this week (3 in this e-mail)
Organization ID: 3b97d1bbc1878baed0ab183d8b03130b
========================================================================
Note: Instructions on how to purchase the full text of an article and Help Desk Contact information are at the end of the e-mail.
========================================================================

*Record 1 of 3.
*View Full Record: http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000262240300057
*Order Full Text [ ]

Title:
Drainage of a nanoconfined simple fluid: Rate effects on squeeze-out dynamics

Authors:
Bureau, L; Arvengas, A

Author Full Names:
Bureau, Lionel; Arvengas, Arnaud

Source:
PHYSICAL REVIEW E 78 (6): Art. No. 061501 Part 1 DEC 2008

Language:
English

Document Type:
Article

Author Keywords:
confined flow; liquid films; monolayers; nucleation; organic compounds; spinodal decomposition; viscosity

KeyWords Plus:
SURFACE FORCES APPARATUS; MOLECULARLY THIN-LAYERS; SPINODAL DECOMPOSITION; LIQUID-FILMS; PHASE-TRANSITIONS; SOLID-SURFACES; MICA SURFACES; NUCLEATION; SEPARATION; PATTERNS

Abstract:
We investigate the effect of loading rate on drainage in molecularly thin films of a simple fluid made of quasispherical molecules [octamethylcyclotetrasiloxane (OMCTS)]. We find that (i) rapidly confined OMCTS retains its tendency to organize into layers parallel to the confining surfaces, and (ii) flow resistance in such layered films can be described by bulklike viscous forces if one accounts for the existence of one monolayer immobilized on each surface. The latter result is fully consistent with the recent work of Becker and Mugele, who reached a similar conclusion by analyzing the dynamics of squeeze-out fronts in OMCTS [T. Becker and F. Mugele, Phys. Rev. Lett. 91, 166104 (2003)]. Furthermore, we show that the confinement rate controls the nature of the thinning transitions: layer-by-layer expulsion of molecules in metastable, slowly confined films proceeds by a nucleation-growth mechanism, whereas deeply and rapidly quenched films are unstable and undergo thinning tr!
ansitions akin to spinodal decomposition.

Reprint Address:
Bureau, L, Univ Paris 06, CNRS, UMR 7588, Inst Nanosci Paris, 140 Rue Lourmel, F-75015 Paris, France.

Research Institution addresses:
[Bureau, Lionel] Univ Paris 06, CNRS, UMR 7588, Inst Nanosci Paris, F-75015 Paris, France; Univ Paris 07, F-75015 Paris, France

E-mail Address:
bureau@insp.jussieu.fr

Cited References:
BECKER T, 2003, J PHYS-CONDENS MAT, V15, S321.
BECKER T, 2003, PHYS REV LETT, V91, ARTN 166104.
BINDER K, 1987, REP PROG PHYS, V50, P783.
BUREAU L, 2007, PHYS REV LETT, V99, ARTN 225503.
BUREAU L, 2007, REV SCI INSTRUM, V78, P65110, ARTN 065110.
CAHN JW, 1965, J CHEM PHYS, V42, P93.
CHAN DYC, 1985, J CHEM PHYS, V83, P5311.
CHRISTENSON HK, 1987, J CHEM PHYS, V87, P1834.
COTTINBIZONNE C, 2002, EUR PHYS J E, V9, P47, DOI 10.1140/epje/i2002-10112-9.
DEGENNES PG, 1990, CR ACAD SCI II-MEC P, V310, P1601.
DEMIREL AL, 1996, PHYS REV LETT, V77, P2261.
EIJKEL JCT, 2005, MICROFLUID NANOFLUID, V1, P249, DOI 10.1007/s10404-004-0012-9.
FRANTZ P, 1998, TRIBOL LETT, V5, P151.
GAO JP, 1997, J CHEM PHYS, V106, P4309.
GEMINARD JC, 1997, PHYS REV LETT, V78, P1924.
GUENOUN P, 1987, PHYS REV A, V36, P4876.
HESLOT F, 1989, NATURE, V338, P640.
HEUBERGER M, 2001, REV SCI INSTRUM, V72, P1700.
HORN RG, 1980, CHEM PHYS LETT, V71, P192.
HORN RG, 1981, J CHEM PHYS, V75, P1400.
ISRAELACHVILI JN, 1972, P ROY SOC LOND A MAT, V331, P19.
ISRAELACHVILI JN, 1978, J CHEM SOC FARAD T 1, V74, P975.
ISRAELACHVILI JN, 1988, SCIENCE, V240, P189.
ISRAELACHVILI JN, 1992, INTERMOLECULAR SURFA.
JOHNSON KL, 1985, CONTACT MECH.
KLEIN J, 1998, J CHEM PHYS, V108, P6996.
KUMACHEVA E, 1998, J CHEM PHYS, V108, P7010.
LEE EH, 1960, J APPL MECH, V27, P438.
LIU K, 2001, MACROMOLECULES, V34, P3060.
MAALI A, 2006, PHYS REV LETT, V96, ARTN 086105.
MAJUMDER M, 2005, NATURE, V438, P44, DOI 10.1038/43844a.
MUGELE F, 2000, PHYS REV LETT, V84, P5796.
PERSSON BNJ, 1994, PHYS REV B, V50, P5590.
PERSSON BNJ, 2000, CHEM PHYS LETT, V324, P231.
PERSSON BNJ, 2000, NANOSCIENCE TECHNOLO.
PERSSON BNJ, 2004, J PHYS-CONDENS MAT, V16, R295, DOI 10.1088/0953-8984/16/10/L01.
PICANO F, 2001, PHYS REV E 1, V63, ARTN 021705.
REITER G, 1993, LANGMUIR, V9, P1344.
REITER G, 1994, SCIENCE, V263, P1741.
SEEMANN R, 2001, PHYS REV LETT, V86, P5534.
TABOR D, 1969, P ROY SOC LOND A MAT, V312, P435.
TANAKA H, 1990, PHYS REV LETT, V65, P3136.
THOMPSON PA, 1995, ISR J CHEM, V35, P93.
ZHU Y, 2003, LANGMUIR, V19, P8248.
ZHU YX, 2004, PHYS REV LETT, V93, ARTN 096101.
ZILBERMAN S, 2001, PHYS REV E 2, V63, ARTN 055103.
ZILBERMAN S, 2003, J CHEM PHYS, V118, P11160, DOI 10.1063/1.1574790.

Cited Reference Count:
47

Times Cited:
0

Publisher:
AMER PHYSICAL SOC; ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA

Subject Category:
Physics, Fluids & Plasmas; Physics, Mathematical

ISSN:
1539-3755

DOI:
10.1103/PhysRevE.78.061501

IDS Number:
391NP

========================================================================

*Record 2 of 3.
*View Full Record: http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000262668500002
*Order Full Text [ ]

Title:
Carbon nanotubes as functional excipients for nanomedicines: II. Drug delivery and biocompatibility issues

Authors:
Foldvari, M; Bagonluri, M

Author Full Names:
Foldvari, Marianna; Bagonluri, Mukasa

Source:
NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 4 (3): 183-200 SEP 2008

Language:
English

Document Type:
Review

Author Keywords:
Carbon nanotubes (CNTs); Drug delivery; Nanotube functionalization; Encapsulation, pharmaceutical; Neural tissue regeneration; Cellular toxicity; In vivo toxicity

KeyWords Plus:
HUMAN EPIDERMAL-KERATINOCYTES; IN-VITRO; NEURONAL GROWTH; PULMONARY TOXICITY; TARGETED DELIVERY; MAMMALIAN-CELLS; NEURAL-NETWORKS; GENE DELIVERY; PLASMID DNA; CYTOTOXICITY

Abstract:
Carbon nanotubes (CNTs) have potential novel application in nanomedicine as biocompatible and supportive substrates, and as pharmaceutical excipients for creating versatile drug delivery systems. In the second part of this two-part review we focus on the application of CNTs as potential drug delivery systems via chemical functionalization of CNTs for exterior binding of therapeutic and biologically relevant molecules, and via encapsulation of these molecules within the inner cavities of CNTs. We review experimental results of CNT-mediated delivery of small molecules, DNA, proteins, and vaccines, and the potential of CNTs as matrices to support and stimulate neural growth. Last, we examine some toxicological and biocompatibility issues related to the use of CNTs as pharmaceutical excipients and discuss attributes that affect toxicity, such as structure (single-walled vs. multi-walled CNTs), length and aspect ratio, surface area, degree of aggregation, extent of oxidation, sur!
face topology, bound functional group(s), and method of manufacturing. (C) 2008 Elsevier Inc. All rights reserved.

Reprint Address:
Foldvari, M, Univ Waterloo, Sch Pharm, Fac Sci, Waterloo, ON N2L 3G1, Canada.

Research Institution addresses:
[Foldvari, Marianna] Univ Waterloo, Sch Pharm, Fac Sci, Waterloo, ON N2L 3G1, Canada; [Bagonluri, Mukasa] Univ Saskatchewan, Coll Pharm Nutr, Saskatoon, SK, Canada

E-mail Address:
foldvari@uwaterloo.ca

Cited References:
*US FDA, 2007, NAN REP US FOOD DRUG.
BARBER AH, 2004, PHYS REV LETT, V92, ARTN 186103.
BARTHEL F, 1993, DNA CELL BIOL, V12, P553.
BIANCO A, 2004, EXPERT OPIN DRUG DEL, V1, P57.
BIANCO A, 2005, CHEM COMMUN, P571, DOI 10.1039/b410943k.
BIANCO A, 2005, J AM CHEM SOC, V127, P58, DOI 10.1021/ja044293y.
BOTTINI M, 2006, TOXICOL LETT, V160, P121, DOI 10.1016/j.toxlet.2005.06.020.
CAI D, 2005, NAT METHODS, V2, P449, DOI 10.1038/NMETH761.
CHATTOPADHYAY J, 2006, CHEM MATER, V18, P6864.
CHEN J, 1998, SCIENCE, V282, P95.
CUI D, 2004, MECH CHEM BIOSYST, V1, P113.
DAVOREN M, 2007, TOXICOL IN VITRO, V21, P438, DOI 10.1016/j.tiv.2006.10.007.
DENICOLA M, 2007, J PHYS-CONDENS MAT, V19, ARTN 395013.
DING LH, 2005, NANO LETT, V5, P2448, DOI 10.1021/nl051748o.
DUJARDIN E, 1994, SCIENCE, V265, P1850.
FOLDVARI M, 2008, NANOMEDICINE, V4.
GABAY T, 2005, PHYSICA A, V350, P611, DOI 10.1016/j.physa.2004.11.007.
GAO C, 2006, J PHYS CHEM B, V110, P7213, DOI 10.1021/jp0602474.
HEILMANN K, 1983, CURR MED RES OPIN S2, V8, P3.
HU H, 2004, NANO LETT, V4, P507, DOI 10.1021/nl035193d.
HU H, 2005, J PHYS CHEM B, V109, P4285, DOI 10.1021/jp0441137.
HUANG L, 2005, J PHYS CHEM B, V109, P7746, DOI 10.1021/jp046549s.
JAN E, 2007, NANO LETT, V7, P1123, DOI 10.1021/nl0620132.
JIA G, 2005, ENVIRON SCI TECHNOL, V39, P1378, DOI 10.1021/es048729l.
KAM NWS, 2004, J AM CHEM SOC, V126, P6850, DOI 10.1021/ja0486059.
KAM NWS, 2005, J AM CHEM SOC, V127, P12492, DOI 10.1021/ja053962k.
KAM NWS, 2005, J AM CHEM SOC, V127, P6021, DOI 10.1021/ja040062v.
KAM NWS, 2005, P NATL ACAD SCI USA, V102, P11600, DOI 10.1073/pnas.0502680102.
KAM NWS, 2006, ANGEW CHEM INT EDIT, V45, P577, DOI 10.1002/anie.200503389.
KANEKO T, 2007, CONTRIB PLASM PHYS, V47, P57, DOI 10.1002/ctpp.200710009.
KANG S, 2007, LANGMUIR, V23, P8670, DOI 10.1021/la701067r.
KIM BM, 2005, NANO LETT, V5, P873, DOI 10.1021/nl050278v.
KORNEVA G, 2005, NANO LETT, V5, P879, DOI 10.1021/nl0502928.
LAM CW, 2004, TOXICOL SCI, V77, P126, DOI 10.1093/toxsci/kfg243.
LEONHARDT A, 2006, ADV SCI TECHNOLOGY, V49, P74.
LIN AJ, 2000, J DRUG TARGET, V8, P13.
LIOPO AV, 2006, J NANOSCI NANOTECHNO, V6, P1365, DOI 10.1166/jnn.2006.155.
LIU H, 2007, NAT NANOTECHNOL, V2, P47.
LOVAT V, 2005, NANO LETT, V5, P1107, DOI 10.1021/nl050637m.
MAGREZ A, 2006, NANO LETT, V6, P1121, DOI 10.1021/nl060162e.
MAJUMDER M, 2005, NATURE, V438, P44, DOI 10.1038/43844a.
MANNA SK, 2005, NANO LETT, V5, P1676, DOI 10.1021/nl0507966.
MATSUMOTO K, 2007, J BIOSCI BIOENG, V103, P216, DOI 10.1263/jbb.103.216.
MATTSON MP, 2000, J MOL NEUROSCI, V14, P175.
MAYNARD AD, 2004, J TOXICOL ENV HEAL A, V67, P87, DOI 10.1080/15287390490253688.
MCDEVITT MR, 2007, J NUCL MED, V48, P1180, DOI 10.2967/jnumed.106.039131.
MCKENZIE JL, 2004, BIOMATERIALS, V25, P1309, DOI 10.1016/j.biomaterials.2003.08.006.
MONTEIRORIVIERE NA, 2005, TOXICOL LETT, V155, P377, DOI 10.1016/j.toxlet.2004.11.004.
MULLER J, 2005, TOXICOL APPL PHARM, V207, P221, DOI 10.1016/j.taap.2005.01.008.
NADARAJAN SB, 2007, APPL PHYS A-MATER, V89, P437, DOI 10.1007/s00339-007-4182-7.
NAHAR M, 2006, CRIT REV THER DRUG, V23, P259.
NI YC, 2005, J NANOSCI NANOTECHNO, V5, P1707, DOI 10.1166/jnn.2005.189.
PANTAROTTO D, 2003, CHEM BIOL, V10, P961, DOI 10.1016/j.chembiol.2003.09.011.
PANTAROTTO D, 2003, J AM CHEM SOC, V125, P6160, DOI 10.1021/ja034342r.
PANTAROTTO D, 2004, ANGEW CHEM INT EDIT, V43, P5242, DOI 10.1002/anie.200460437.
PANTAROTTO D, 2004, CHEM COMMUN 0107, P16, DOI 10.1039/b311254c.
PORTER AE, 2007, NAT NANOTECHNOL, V2, P713, DOI 10.1038/nnano.2007.347.
PULSKAMP K, 2007, TOXICOL LETT, V168, P58, DOI 10.1016/j.toxlet.2006.11.001.
SALVADORMORALES C, 2006, MOL IMMUNOL, V43, P193, DOI 10.1016/j.molimm.2005.02.006.
SATO Y, 2005, MOL BIOSYST, V1, P176, DOI 10.1039/b502429c.
SAYES CM, 2006, TOXICOL LETT, V161, P135, DOI 10.1016/j.toxlet.2005.08.011.
SHAITAN KV, 2006, J DRUG DELIV SCI TEC, V16, P253.
SHVEDOVA AA, 2003, J TOXICOL ENV HEAL A, V66, P1909, DOI 10.1080/15287390390231566.
SHVEDOVA AA, 2005, AM J PHYSIOL-LUNG C, V289, L698, DOI 10.1152/ajplung.00084.2005.
SINGH R, 2005, J AM CHEM SOC, V127, P4388, DOI 10.1021/ja0441561.
SORKIN R, 2006, J NEURAL ENG, V3, P95, DOI 10.1088/1741-2560/3/2/003.
TIAN FR, 2006, TOXICOL IN VITRO, V20, P1202, DOI 10.1016/j.tiv.2006.03.008.
UGARTE D, 1996, SCIENCE, V274, P1897.
VENKATESAN N, 2005, BIOMATERIALS, V26, P7154, DOI 10.1016/j.biiomaterials.2005.05.012.
WANG K, 2006, NANO LETT, V6, P2043, DOI 10.1021/nl061241t.
WARHEIT DB, 2004, TOXICOL SCI, V77, P117, DOI 10.1093/toxsci/kfg228.
WU W, 2005, ANGEW CHEM INT EDIT, V44, P6358, DOI 10.1002/anie.200501613.
YANG R, 2006, GENE THER, V13, P1714, DOI 10.1038/sj.gt.3302808.
YEH IC, 2004, P NATL ACAD SCI USA, V101, P12177, DOI 10.1073/pnas.0402699101.
YEHIA HN, 2007, J NANOBIOTECHNOL, V5, ARTN 8.
YINGHUAI Z, 2005, J AM CHEM SOC, V127, P9875, DOI 10.1021/ja0517116.
ZHANG LW, 2007, INT J TOXICOL, V26, P103, DOI 10.1080/10915810701225133.
ZHANG X, 2005, SENSOR ACTUAT B-CHEM, V106, P843, DOI 10.1016/j.snb.2004.10.039.
ZHANG ZH, 2006, CLIN CANCER RES, V12, P4933, DOI 10.1158/1078-0432.CCR-05-2831.
ZHU LB, 2006, J PHYS CHEM B, V110, P15945, DOI 10.1021/jp063265u.

Cited Reference Count:
80

Times Cited:
0

Publisher:
ELSEVIER SCIENCE BV; PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS

Subject Category:
Nanoscience & Nanotechnology; Medicine, Research & Experimental

ISSN:
1549-9634

DOI:
10.1016/j.nano.2008.04.003

IDS Number:
397ND

========================================================================

*Record 3 of 3.
*View Full Record: http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000262677900044
*Order Full Text [ ]

Title:
Assessment of a Metal-Organic Framework Membrane for Gas Separations Using Atomically Detailed Calculations: CO2, CH4, N-2, H-2 Mixtures in MOF-5

Authors:
Keskin, S; Sholl, DS

Author Full Names:
Keskin, Seda; Sholl, David S.

Source:
INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH 48 (2): 914-922 JAN 21 2009

Language:
English

Document Type:
Article

KeyWords Plus:
MOLECULAR-DYNAMICS SIMULATIONS; MIXED MATRIX MEMBRANES; MAXWELL-STEFAN FORMULATION; MONTE-CARLO SIMULATIONS; SINGLE-CRYSTAL MEMBRANE; CARBON NANOTUBES; ZEOLITE MEMBRANES; ATOMISTIC SIMULATIONS; BINARY-MIXTURES; MD SIMULATIONS

Abstract:
Metal-organic frameworks (MOFs) have emerged as a fascinating alternative to more traditional nanoporous materials. Although hundreds of different MOF structures have been synthesized in powder form, little is currently known about the potential performance of MOFs for membrane-based separations. We have used atomistic calculations to predict the performance of a MOF membrane for separation of various gas mixtures in order to provide information for material selection in membrane design. Specifically, we investigated the performance of MOF-5 as a membrane for separation Of CO2/CH4, CO2/H-2, CO2/N-2, CH4/H-2, N-2/H-2, and N-2/CH4 mixtures at room temperature. In every case, mixture effects play a crucial role in determining the membrane performance. Although the membrane selectivities predicted for MOF-5 are not large for the mixtures we studied, our result suggest that atomistic simulations will be a useful tool for considering the large number of MOF crystal structures that!
are known in order to seek membrane materials with more desirable characteristics.

Reprint Address:
Sholl, DS, Georgia Inst Technol, Sch Chem & Biomol Engn, Atlanta, GA 30332 USA.

Research Institution addresses:
[Keskin, Seda; Sholl, David S.] Georgia Inst Technol, Sch Chem & Biomol Engn, Atlanta, GA 30332 USA

E-mail Address:
david.sholl@chbe.gatech.edu

Cited References:
AHUNBAY MG, 2002, J PHYS CHEM B, V106, P5163.
AHUNBAY MG, 2004, J PHYS CHEM B, V108, P7801.
AMIRJALAYER S, 2007, ANGEW CHEM INT EDIT, V46, P463, DOI 10.1002/anie.200601746.
AOKI K, 2000, IND ENG CHEM RES, V39, P2245.
BABARAO R, 2007, LANGMUIR, V23, P659, DOI 10.1021/la062289p.
BABARAO R, 2008, LANGMUIR, V24, P5474, DOI 10.1021/la703434s.
BOUMA RHB, 1997, J MEMBRANE SCI, V128, P141.
BOWEN TC, 2002, IND ENG CHEM RES, V41, P1641.
CAO DP, 2005, CARBON, V43, P1364, DOI 10.1016/j.carbon.2005.01.004.
CHEMPATH S, 2004, J PHYS CHEM B, V108, P13481, DOI 10.1021/jp048863s.
CHEN HB, 2004, J AM CHEM SOC, V126, P7778, DOI 10.1021/ja039462d.
CHEN HB, 2006, J MEMBRANE SCI, V269, P152, DOI 10.1016/j.memsci.2005.06.030.
CHEN HB, 2007, LANGMUIR, V23, P6431, DOI 10.1021/la700351c.
DUREN T, 2004, J PHYS CHEM B, V108, P15703, DOI 10.1021/jp0477856.
DUREN T, 2004, LANGMUIR, V20, P2683, DOI 10.1021/la0355500.
EDDAOUDI M, 2000, J AM CHEM SOC, V122, P1391.
ELKADERI HM, 2007, SCIENCE, V316, P268, DOI 10.1126/science.1139915.
FREEMAN BD, 1999, MACROMOLECULES, V32, P375.
FROST H, 2006, J PHYS CHEM B, V110, P9565, DOI 10.1021/jp060433+.
GARBEROGLIO G, 2005, J PHYS CHEM B, V109, P13094, DOI 10.1021/jp0509481.
GREATHOUSE JA, 2006, J AM CHEM SOC, V128, P10678, DOI 10.1021/ja063506b.
GUMP CJ, 1999, IND ENG CHEM RES, V38, P2775.
HARRIS JG, 1995, J PHYS CHEM-US, V99, P12021.
HOLT JK, 2006, SCIENCE, V312, P1034, DOI 10.1126/science.1126298.
HSIEH HP, 1996, INORGANIC MEMBRANES.
JAMES SL, 2003, CHEM SOC REV, V32, P276, DOI 10.1039/b200393g.
KAPTEIJN F, 2000, CHEM ENG SCI, V55, P2923.
KARGER J, 1992, DIFFUSION ZEOLITES O.
KEIL FJ, 2000, REV CHEM ENG, V16, P71.
KESKIN S, IND ENG CHE IN PRESS.
KESKIN S, 2007, J PHYS CHEM C, V111, P14055, DOI 10.1021/jp0752901CCC.
KESKIN S, 2008, LANGMUIR, V24, P8254, DOI 10.1021/la800486f.
KIM S, 2006, CHEM MATER, V18, P1149, DOI 10.1021/cm052305o.
KIM S, 2007, NANO LETT, V7, P2806, DOI 10.1021/nl071414u.
KITAGAWA S, 2004, ANGEW CHEM INT EDIT, V43, P2334, DOI 10.1002/anie.200300610.
KRISHNA R, 2001, PHYS CHEM CHEM PHYS, V3, P453.
KRISHNA R, 2005, CHEM PHYS LETT, V407, P159, DOI 10.1016/j.cplett.2005.03.073.
KRISHNA R, 2005, J PHYS CHEM B, V109, P6386, DOI 10.1021/jp0442571.
LAI ZP, 2003, SCIENCE, V300, P456, DOI 10.1126/science.1082169.
LI H, 1999, NATURE, V402, P276.
LI SG, 2006, ADV MATER, V18, P2601, DOI 10.1002/adma.200601147.
LIU B, 2008, J PHYS CHEM C, V112, P9854, DOI 10.1021/jp802343n.
MAHAJAN R, 2000, IND ENG CHEM RES, V39, P2692.
MAJUMDER M, 2005, NATURE, V438, P44, DOI 10.1038/43844a.
MAKRODIMITRIS K, 2001, J PHYS CHEM B, V105, P777.
MARTIN MG, 2001, J CHEM PHYS, V114, P7174.
MILLWARD AR, 2005, J AM CHEM SOC, V127, P17998.
MUELLER U, 2006, J MATER CHEM, V16, P626, DOI 10.1039/b511962f.
MULDER FM, 2005, CHEM PHYS, V317, P113, DOI 10.1016/j.chemphys.2005.06.003.
MURTHI M, 2004, LANGMUIR, V20, P2489, DOI 10.1021/la035556p.
MYERS AL, 1965, AICHE J, V11, P121.
NEWSOME DA, 2005, J PHYS CHEM B, V109, P7237, DOI 10.1021/jp044247k.
PAL R, 2008, J COLLOID INTERF SCI, V317, P191, DOI 10.1016/j.jcis.2007.09.032.
PASCHEK D, 2001, LANGMUIR, V17, P247.
PASCHEK D, 2001, PHYS CHEM CHEM PHYS, V3, P3185.
PECHAR TW, 2006, J MEMBRANE SCI, V277, P195, DOI 10.1016/j.memsci.2005.10.029.
POSHUSTA JC, 2000, AICHE J, V46, P779.
RICHARD V, 2001, CHEM ENG J, V84, P593.
ROBESON LM, 1991, J MEMBRANE SCI, V62, P165.
ROSSEINSKY MJ, 2004, MICROPOR MESOPOR MAT, V73, P15, DOI 10.1016/j.micromeso.2003.05.001.
ROWSELL JLC, 2004, MICROPOR MESOPOR MAT, V73, P3, DOI 10.1016/j.micromeso.2004.03.034.
RUTHVEN DM, 1984, PRINCIPLES ADSORPTIO.
SALLES F, 2008, PHYS REV LETT, V100, ARTN 245901.
SANBORN MJ, 2000, SEP PURIF TECHNOL, V20, P1.
SANBORN MJ, 2001, AICHE J, V47, P2032.
SARKISOV L, 2004, MOL PHYS, V102, P211, DOI 10.1080/00268970410001654854.
SHOLL DS, 2000, IND ENG CHEM RES, V39, P3737.
SHOLL DS, 2006, ACCOUNTS CHEM RES, V39, P403, DOI 10.1021/ar0402199.
SHOLL DS, 2006, SCIENCE, V312, P1003, DOI 10.1126/science.1127261.
SKOULIDAS AI, 2002, PHYS REV LETT, V89, ARTN 185901.
SKOULIDAS AI, 2003, J MEMBRANE SCI, V227, P123, DOI 10.1016/j.memsci.2003.08.021.
SKOULIDAS AI, 2003, J PHYS CHEM A, V107, P10132, DOI 10.1021/jp0354301.
SKOULIDAS AI, 2003, LANGMUIR, V19, P7977, DOI 10.1021/la034759a.
SKOULIDAS AI, 2004, J AM CHEM SOC, V126, P1356, DOI 10.1021/ja039215+.
SKOULIDAS AI, 2005, AICHE J, V51, P867, DOI 10.1002/aic.10335.
SKOULIDAS AI, 2005, J PHYS CHEM B, V109, P15760, DOI 10.1021/jp051771y.
STALLMACH F, 2006, ANGEW CHEM INT EDIT, V45, P2123, DOI 10.1002/anie.200502553.
VANBATEN JM, 2005, MICROPOR MESOPOR MAT, V84, P179, DOI 10.1016/j.micromeso.2005.05.025.
VIEIRALINHARES AM, 2003, CHEM ENG SCI, V58, P4129, DOI 10.1016/S0009-2509(03)00304-X.
WANG QY, 1999, PHYS REV LETT, V82, P956.
WANG S, 2006, J PHYS CHEM B, V110, P20526.
WANG SY, 2007, ENERG FUEL, V21, P953, DOI 10.1021/ef060578f.
WESSELINGH JA, 2000, MASS TRANSFER MULTIC.
YANG QY, 2006, CHEMPHYSCHEM, V7, P1417, DOI 10.1002/cphc.200600191.
YANG QY, 2006, J PHYS CHEM B, V110, P17776, DOI 10.1021/jp062723w.
YANG QY, 2007, AICHE J, V53, P2832, DOI 10.1002/aic.11298.
YANG RT, 1987, GAS SEPARATION ADSOR.
YILDIRIM T, 2005, PHYS REV LETT, V95, ARTN 215504.
ZHANG YF, 2008, J MEMBRANE SCI, V313, P170, DOI 10.1016/j.memsci.2008.01.005.

Cited Reference Count:
89

Times Cited:
0

Publisher:
AMER CHEMICAL SOC; 1155 16TH ST, NW, WASHINGTON, DC 20036 USA

Subject Category:
Engineering, Chemical

ISSN:
0888-5885

DOI:
10.1021/ie8010885

IDS Number:
397QT

========================================================================
*Order Full Text*
All Customers
--------------
Please contact your library administrator, or person(s) responsible for
document delivery, to find out more about your organization's policy for
obtaining the full text of the above articles. If your organization does
not have a current document delivery provider, your administrator can
contact ISI Document Solution at service@isidoc.com, or call 800-603-4367
or 734-459-8565.

IDS Customers
--------------
IDS customers can purchase the full text of an article (having page number,
volume, and issue information) by returning this ENTIRE message as a Reply
to Sender or Forward to orders@isidoc.com. Mark your choices with an X in
the "Order Full Text: []" brackets for each item. For example, [X].

Please enter your account number here:

========================================================================
*Help Desk Contact Information*
If you have any questions, please visit the Thomson Scientific Technical Support Contact Information Web page:
http://www.thomsonscientific.com/support/techsupport
========================================================================

No comments: