Friday, February 20, 2009

ISI Web of Knowledge Alert - Thompson, P

ISI Web of Knowledge Citation Alert
Cited Article:   Thompson, P. A general boundary condition for liquid flow at solid surfaces
Alert Expires:   21 OCT 2009
Number of Citing Articles:   3 new records this week (3 in this e-mail)
Organization ID:   3b97d1bbc1878baed0ab183d8b03130b

Note: Instructions on how to purchase the full text of an article and Help Desk Contact information are at the end of the e-mail.

*Record 1 of 3.
*Click Here to View Full Record
*Order Full Text [ ]
Title: Slip velocity of amorphous fluid inside wavy-rough microtubes tuned by temperature
Authors: Kwang-Hua, CA; Liu, SJ
Author Full Names: Kwang-Hua, Chu A.; Liu, Sheng-Jun
Source: PHYSICA SCRIPTA 79 (2): Art. No. 025801 FEB 2009
Language: English
Document Type: Article
KeyWords Plus: BOUNDARY-CONDITION; SOLID-SURFACES; FLOW; LIQUIDS
Abstract: Using the boundary perturbation technique together with Eyring's transition-rate-theory model, we can obtain approximately the slip velocity of amorphous fluids inside the wavy-rough microtube. Our calculations show that, once the slip length is set to zero, there is a temperature as well as an activation energy-dependent slip velocity (up to second order) near the wall. This nonzero velocity near the boundary of the microtube is proportional to the small amplitude of wavy-roughness, the curvature of the tube (inner) surface, the applied forcing, the orientation and the referenced shear rate, which is strongly temperature dependent once the activation energy is fixed.
Reprint Address: Kwang-Hua, CA, 2-F,24,Lane 260,Sect 1,Mucha Rd, Taipei 11646, Taiwan.
Research Institution addresses: [Liu, Sheng-Jun] Beijing Normal Univ, Coll Nucl Sci & Technol, Beijing 100875, Peoples R China
E-mail Address: ustcphysqin@gmail.com
Cited References: BRILLOUIN M, 1907, LECONS VISCOSITE LIQ, P43.
CAGLE FW, 1951, J APPL PHYS, V22, P771.
CHU AKH, 2004, CR MECANIQUE, V332, P895, DOI 10.1016/j.crme.2004.06.010.
CHU KHW, 2007, ARXIV07072828.
CHU KHW, 2008, J PHYS CHEM B, V112, P3019, DOI 10.1021/jp076114f.
CHU WKH, 1996, Z ANGEW MATH MECH, V76, P363.
CHU WKH, 1996, Z ANGEW MATH PHYS, V47, P591.
CHURAEV NV, 1984, J COLLOID INTERF SCI, V97, P574.
DEGENNES PG, 1979, CR ACAD SCI B PHYS, V288, P219.
DEGENNES PG, 2002, LANGMUIR, V18, P3413.
DUBBELDAM JLA, 2003, PHYS REV E 1, V67, ARTN 011803.
EINZEL D, 1990, PHYS REV LETT, V64, P2269.
EINZEL D, 1997, J LOW TEMP PHYS, V109, P1.
EYRING H, 1936, J CHEM PHYS, V4, P283.
GUPTA SA, 1997, J CHEM PHYS, V107, P10316.
JABBARZADEH A, 1998, J NONNEWTONIAN FLUID, V77, P2612.
JOSEPH P, 2005, PHYS REV E 2, V71, P5303.
KARNIADAKIS GE, 2002, MICRO FLOWS FUNDAMEN.
KHARE R, 1996, MACROMOLECULES, V29, P7910.
LARSON RG, 1999, STRUCTURE RHEOLOGY C.
LEGER L, 1999, ADV POLYM SCI, V138, P185.
LICHTER S, 2007, PHYS REV LETT, V98, ARTN 226001.
MAJUMDER M, 2005, NATURE, V438, P930, DOI 10.1038/438930b.
MARTINI A, 2008, J FLUID MECH, V600, P257, DOI 10.1017/S0022112008000475.
MARTINI A, 2008, PHYS REV LETT, V100, ARTN 206001.
MAXWELL JC, 1879, PHILOS T R SOC LONDO, V170, P231.
MIGLER KB, 1993, PHYS REV LETT, V70, P287.
MIKSIS MJ, 1994, J FLUID MECH, V273, P125.
MOONEY M, 1931, J RHEOL, V2, P210.
NAVIER CLM, 1827, MEM ACAD SCI I FR, V6, P839.
PANZER P, 1992, INT J MOD PHYS B, V6, P3251.
PIT R, 2000, PHYS REV LETT, V85, P980.
PRIEZJEV NV, 2007, J CHEM PHYS, V127, ARTN 144708.
REE FH, 1962, ADV CHEM PHYS, V4, P1.
RICHARDSON S, 1973, J FLUID MECHANICS 4, V59, P707.
ROTTLER J, 2003, PHYS REV E 1, V68, ARTN 011507.
SAHU KC, 2008, ARXIV08014644.
TAPADIA P, 2006, PHYS REV LETT, V96, ARTN 016001.
THOMPSON PA, 1997, NATURE, V389, P360.
TRETHEWAY DC, 2002, PHYS FLUIDS, V14, P9.
VINOGRADOVA OI, 1999, INT J MINER PROCESS, V56, P31.
ZHU YX, 2001, PHYS REV LETT, V87, ARTN 096105.
ZHU YX, 2002, PHYS REV LETT, V88, ARTN 106102.
Cited Reference Count: 43
Times Cited: 0
Publisher: IOP PUBLISHING LTD; DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND
Subject Category: Physics, Multidisciplinary
ISSN: 0031-8949
DOI: 10.1088/0031-8949/79/02/025801
IDS Number: 403GL

*Record 2 of 3.
*Click Here to View Full Record
*Order Full Text [ ]
Title: NUMERICAL ANALYSIS OF THE DRAG FORCES ACTING ON THE STATIONARY IMPENETRABLE NANO-TUBE
Authors: Meigounpoory, MR; Rahi, A; Mirbozorgi, A
Author Full Names: Meigounpoory, M. R.; Rahi, A.; Mirbozorgi, A.
Source: PROCEEDINGS OF THE 6TH INTERNATIONAL CONFERENCE ON NANOCHANNELS, MICROCHANNELS, AND MINICHANNELS, PTS A AND B : 1063-1067 2008
Language: English
Document Type: Proceedings Paper
KeyWords Plus: FLOW; CYLINDERS; SURFACES
Abstract: The motion of nano-particles is important in many technical areas, for example super hydrophobic spray for coating materials, nano-capsules for detecting cancer, and additive nano-particles in oil and fuel for automotive engines. In this paper computations are performed to determine the steady flow forces acting on the stationary nano-tube for Reynolds numbers in the range of 0.1<Re<40 and 0.01<Kn<0.1 with the slip boundary condition. A single dimensionless parameter, the so-called slip number (Tr), is defined to account for the slip at the cylinder's boundary. Increasing slip causes to delay of flow separation around the nano-tube surface. Numerical results confirm that slip variations can not affect on the drag coefficient values at low Reynolds regime. At higher Reynolds number increasing slip causes to drag reduction of flow around the nano tube.
Reprint Address: Meigounpoory, MR, Iran Univ Ind & Mines, New Technol Dept, Tehran, Iran.
Research Institution addresses: [Meigounpoory, M. R.; Rahi, A.] Iran Univ Ind & Mines, New Technol Dept, Tehran, Iran
Cited References: ATEFI GH, 2007, J DISPER SCI TECHNOL, V28, P591, DOI 10.1080/01932690701282625.
CLIFT R, 1970, DROPS PARTICLES.
FINN RK, 1993, J APPL PHYS, V24.
HAMIELEC AE, 1969, PHYS FLUIDS, V12, P11.
MEIGOUNPOORY MR, 2007, J DISPER SCI TECHNOL, V28, P991.
NASSERI SM, 1991, GESCHWINDIGKEITSSLIP.
SUCKER D, 1975, WARME STOFFUBERTRAG, V8, P149.
TAKAMI H, 1969, PHYS FLUIDS S, V2.
TANEDA S, 1978, J PHYS SOC JPN, V45, P25.
THOMPSON PA, 1997, NATURE, V389, P360.
TOMOTIKA S, 1950, Q J MECH APPL MATH, V3, P140.
TRETHWAY D, 2002, ANAL SLIP FLOW MICRO.
TROSTEL R, 1988, TUB FORSCHUNGSBERICH, V7.
TYRRELL JWG, 2001, PHYS REV LETT, V87, P176.
VINOGRADOVA OI, 1999, INT J MINER PROCESS, V56, P31.
WIESELSBERGER C, 1923, ERGEBNISSE AERODYNAM.
Cited Reference Count: 16
Times Cited: 0
Publisher: AMER SOC MECHANICAL ENGINEERS; THREE PARK AVENUE, NEW YORK, NY 10016-5990 USA
IDS Number: BIU45

*Record 3 of 3.
*Click Here to View Full Record
*Order Full Text [ ]
Title: SLIPPAGE AND WETTING TRANSITION OF WATER FLOW IN SUPERHYDROPHOBIC MICRO-CHANNEL
Authors: Byun, D; Kim, J; Hong, J
Author Full Names: Byun, Doyoung; Kim, Jihoon; Hong, Jongin
Source: PROCEEDINGS OF THE 6TH INTERNATIONAL CONFERENCE ON NANOCHANNELS, MICROCHANNELS, AND MINICHANNELS, PTS A AND B : 1229-1235 2008
Language: English
Document Type: Proceedings Paper
KeyWords Plus: MOLECULAR-DYNAMICS SIMULATION; FLUID-SOLID INTERFACE; HYDROPHOBIC SURFACE; ROUGH SURFACES; WETTABILITY; FORCE; REPELLENT; LIQUID; STATES; WALLS
Abstract: We investigate the slippage effect in a super-hydrophobic micro-channel. The micro-scale grooves are fabricated on the vertical wall to make the super-hydrophobic surfaces, which enable us visualize the flow fields near walls and directly measure the slip length. Velocity profiles are measured using micro-particle image velocimetry (PIV). The velocity profile near the wall shows larger slip length and, if the groove structure is high and wide, the liquid meniscus forms curves into the valley so that the wavy flow is created after the grooves. Also depending on the ratio of pitch to width of the groove structure, the water meniscus status can be either sustained between the valleys or collapsed to be wet. This Cassie to Wenzel transition is observed in the micro-channel. And we investigate the effects of grooves shape and the flow rate on the wetting transition.
Reprint Address: Byun, D, Korea Univ, Seoul, South Korea.
Research Institution addresses: [Byun, Doyoung; Kim, Jihoon] Korea Univ, Seoul, South Korea
Cited References: BARBIERI L, 2007, LANGMUIR, V23, P1723, DOI 10.1021/la0617964.
BARRAT JL, 1999, PHYS REV LETT, V82, P4671.
CASSIE ABD, 1944, T FARADAY SOC, V40, P546.
CHEN Y, 2005, J COLLOID INTERF SCI, V281, P458, DOI 10.1016/j.jcis.2004.07.038.
CHOI CH, 2003, PHYS FLUIDS, V15, P10.
CHOI CH, 2006, PHYS FLUIDS, V18, P87105.
CHOI CH, 2006, PHYS REV LETT, V96, P6001.
CHURAEV NV, 1984, J COLLOID INTERF SCI, V97, P574.
CIEPLAK M, 2001, PHYS REV LETT, V86, P803.
DAVIES J, 2006, PHYS FLUIDS, V18, P87110.
HARTING J, 2006, EUROPHYS LETT, V75, P328, DOI 10.1209/epl/i2006-10107-8.
HUANG P, 2007, PHYS FLUIDS, V19, P28104.
ISHIDA N, 2000, LANGMUIR, V16, P6377.
JOSEPH P, 2005, PHYS REV E 2, V71, P5303.
KOPLIK J, 1989, PHYS FLUIDS A-FLUID, V1, P781.
LAFUMA A, 2003, NAT MATER, V2, P457, DOI 10.1038/nmat924.
LI Y, 2007, LANGMUIR, V23, P2169, DOI 10.1021/la0620758.
MULLER EA, 1998, CARBON, V36, P1433.
NAGAYAMA G, 2004, INT J HEAT MASS TRAN, V47, P501, DOI 10.1016/j.ijheatmasstransfer.2003.07.013.
NEINHUIS C, 1997, ANN BOT-LONDON, V79, P667.
NOSONOVSKY M, 2005, MICROSYST TECHNOL, V11, P535, DOI 10.1007/s00542-005-0602-9.
NOSONOVSKY M, 2007, LANGMUIR, V23, P3157, DOI 10.1021/la062301d.
ONER D, 2000, LANGMUIR, V16, P7777.
PATANKAR NA, 2004, LANGMUIR, V20, P7097, DOI 10.1021/la049329e.
PIT R, 2000, PHYS REV LETT, V85, P980.
SAKURAI M, 1998, CHEM PHYS LETT, V289, P567.
SANTIAGO JG, 1998, EXP FLUIDS, V25, P316.
SCHNELL E, 1956, J APPL PHYS, V27, P1149.
SHIU JY, 2004, CHEM MATER, V16, P561, DOI 10.1021/cm034696h.
THOMPSON PA, 1997, NATURE, V389, P360.
TRETHEWAY DC, 2002, PHYS FLUIDS, V14, L9.
TYRRELL JWG, 2001, PHYS REV LETT, V87, P6104.
TYRRELL JWG, 2002, LANGMUIR, V18, P160.
WATANABE K, 1999, J FLUID MECH, V381, P225.
WENZEL RN, 1936, IND ENG CHEM, V28, P988.
ZHU LD, 2005, J COMPUT PHYS, V202, P181, DOI 10.1016/j.jcp.2004.07.004.
ZHU YX, 2001, PHYS REV LETT, V87, ARTN 096105.
Cited Reference Count: 37
Times Cited: 0
Publisher: AMER SOC MECHANICAL ENGINEERS; THREE PARK AVENUE, NEW YORK, NY 10016-5990 USA
IDS Number: BIU45

Order Full Text

All Customers
    Please contact your library administrator, or person(s) responsible for document delivery, to find out more about your organization's policy for obtaining the full text of the above articles. If your organization does not have a current document delivery provider, your administrator can contact ISI Document Solution at service@isidoc.com, or call 800-603-4367 or 734-459-8565.
IDS Customers
    IDS customers can purchase the full text of an article (having page number, volume, and issue information) by returning this ENTIRE message as a Reply to Sender or Forward to orders@isidoc.com. Mark your choices with an X in the "Order Full Text: []" brackets for each item. For example, [X].

 Please enter your account number here:

Help Desk Contact Information
If you have any questions, please visit the Thomson Scientific Technical Support Contact Information Web page.


No comments: