Friday, July 17, 2009

ISI Web of Knowledge Alert - Holt JK

ISI Web of Knowledge Citation Alert

Cited Article: Holt JK. Fast mass transport through sub-2-nanometer carbon nanotubes
Alert Expires: 18 OCT 2009
Number of Citing Articles: 4 new records this week (4 in this e-mail)
Organization ID: 3b97d1bbc1878baed0ab183d8b03130b
========================================================================
Note: Instructions on how to purchase the full text of an article, import the records into an
ISI ResearchSoft product, and Help Desk Contact information are at the end of the e-mail.
========================================================================

FN ISI Export Format
VR 1.0

PT J
*Record 1 of 4.
L5 <http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;UT=000267698900086>
*Order Full Text [ ]
AU Gruener, S
Hofmann, T
Wallacher, D
Kityk, AV
Huber, P
AF Gruener, Simon
Hofmann, Tommy
Wallacher, Dirk
Kityk, Andriy V.
Huber, Patrick
TI Capillary rise of water in hydrophilic nanopores
SO PHYSICAL REVIEW E
LA English
DT Article
DE boundary layers; capillarity; capillary waves; flow through porous
media; hydrophilicity; nanofluidics; nanoporous materials; silicon
compounds; sorption; water
ID VYCOR GLASS; NEGATIVE PRESSURES; CARBON NANOTUBES; POROUS VYCOR;
DYNAMICS; FLOW; NANOSCALE; LIQUIDS; NANOFLUIDICS; ADSORPTION
AB We report on the capillary rise of water in three-dimensional networks
of hydrophilic silica pores with 3.5 nm and 5 nm mean radii,
respectively (porous Vycor monoliths). We find classical square root of
time Lucas-Washburn laws for the imbibition dynamics over the entire
capillary rise times of up to 16 h investigated. Provided we assume two
preadsorbed strongly bound layers of water molecules resting at the
silica walls, which corresponds to a negative velocity slip length of
-0.5 nm for water flow in silica nanopores, we can describe the filling
process by a retained fluidity and capillarity of water in the pore
center. This anticipated partitioning in two dynamic components
reflects the structural-thermodynamic partitioning in strongly silica
bound water layers and capillary condensed water in the pore center
which is documented by sorption isotherm measurements.
C1 [Gruener, Simon; Hofmann, Tommy; Huber, Patrick] Univ Saarland, Fac Phys & Mechatron Engn, D-66041 Saarbrucken, Germany.
[Wallacher, Dirk] Helmholtz Ctr Mat & Energy, D-14109 Berlin, Germany.
[Kityk, Andriy V.] Czestochowa Univ Technol, Inst Comp Sci, PL-42220 Czestochowa, Poland.
RP Gruener, S, Univ Saarland, Fac Phys & Mechatron Engn, D-66041
Saarbrucken, Germany.
EM s.gruener@mx.uni-saarland.de
p.huber@physik.uni-saarland.de
CR ALVINE KJ, 2006, PHYS REV LETT, V97, ARTN 175503
BALL P, 2008, CHEM REV, V108, P74, DOI 10.1021/cr068037a
BROVCHENKO I, 2004, ADV PHYS, V53, P83
CASTRILLON SRV, 2009, J PHYS CHEM B, V113, P1438, DOI 10.1021/jp809032n
CAUPIN F, 2008, EPL-EUROPHYS LETT, V82, ARTN 56004
CHIBBARO S, 2008, EUR PHYS J E, V27, P99, DOI 10.1140/epje/i2008-10369-4
CROSSLEY PA, 1991, APPL PHYS LETT, V59, P3553
CRUZCHU ER, 2006, J PHYS CHEM B, V110, P21497, DOI 10.1021/jp063896o
CUPELLI C, 2008, NEW J PHYS, V10, P43009, ARTN 043009
DEBYE P, 1959, J APPL PHYS, V30, P843
DIMITROV DI, 2007, PHYS REV LETT, V99, ARTN 054501
DRAKE JM, 1990, PHYS TODAY, V43, P46
EIJKEL JCT, 2005, MICROFLUID NANOFLUID, V1, P249, DOI
10.1007/s10404-004-0012-9
ELMER TH, 1992, CERAMICS GLASSES, V4, P427
FISHER LR, 1981, NATURE, V290, P575
FRADIN C, 2000, NATURE, V403, P871
GALLO P, 2000, PHYS REV LETT, V85, P4317
GALLO P, 2002, J CHEM PHYS, V116, P342
GELB LD, 2002, NANO LETT, V2, P1281, DOI 10.1021/nl025748p
GUPTA SA, 1997, J CHEM PHYS, V107, P10335
HEINBUCH U, 1989, PHYS REV A, V40, P1144
HOLT JK, 2006, SCIENCE, V312, P1034, DOI 10.1126/science.1126298
HOLT JK, 2008, MICROFLUID NANOFLUID, V5, P425, DOI
10.1007/s10404-008-0301-9
HORN RG, 1989, CHEM PHYS LETT, V162, P404
HUBER P, 1999, PHYS REV B, V60, P12657
HUBER P, 2007, EUR PHYS J-SPEC TOP, V141, P101, DOI
10.1141/epjst/e2007-00018-x
HUMMER G, 2001, NATURE, V414, P188
ISRAELACHVILI J, 2006, INTERMOLECULAR SURFA
ISRAELACHVILI JN, 1986, J COLLOID INTERF SCI, V110, P263
KOPPENSTEINER J, 2008, PHYS REV B, V78, ARTN 054203
LAMB RN, 1982, J CHEM SOC FARAD T 1, V78, P61
LASNE D, 2008, PHYS REV LETT, V100, ARTN 214502
LAUGA E, 2007, MICROFLUIDICS NO SLI
LEVITZ P, 1991, J CHEM PHYS, V95, P6151
LI TD, 2007, PHYS REV B, V75, P5415
LIN MY, 1992, PHYS REV B, V46, P10701
LUCAS R, 1918, KOLLOID Z, V23, P15
MAJUMDER M, 2005, NATURE, V438, P44, DOI 10.1038/43844a
NETO C, 2005, REP PROG PHYS, V68, P2859, DOI 10.1088/0034-4885/68/12/R05
PAGE JH, 1993, PHYS REV LETT, V71, P1216
PAUL R, 2005, J CHEM PHYS, V123, P24708
PUIBASSET J, 2005, J CHEM PHYS, V122, P94704
QUERE D, 1997, EUROPHYS LETT, V39, P533
RAUSCHER M, 2008, ANNU REV MATER RES, V38, P143, DOI
10.1146/annurev.matsci.38.060407.132451
RAVIV U, 2001, NATURE, V413, P51
SAAM WF, 1975, PHYS REV B, V11, P1086
SCHOCH RB, 2008, REV MOD PHYS, V80, P839, DOI 10.1103/RevModPhys.80.839
SHIN K, 2007, NAT MATER, V6, P961, DOI 10.1038/nmat2031
STANLEY HE, 2002, PHYSICA A, V315, P281
SUPPLE S, 2003, PHYS REV LETT, V90, ARTN 214501
TABELING P, 2004, CR PHYS, V5, P531, DOI 10.1016/j.crhy.2004.02.009
TANAKA H, 2000, EUROPHYS LETT, V50, P340
VALIULLIN R, 2006, NATURE, V443, P965, DOI 10.1038/nature05183
VANDELFT KM, 2007, NANO LETT, V7, P345, DOI 10.1021/nl062447x
WALLACHER D, 1998, J LOW TEMP PHYS, V113, P19
WASHBURN EW, 1921, PHYS REV, V17, P273
WHEELER TD, 2008, NATURE, V455, P208, DOI 10.1038/nature07226
WHITBY M, 2008, NANO LETT, V8, P2632, DOI 10.1021/nl080705f
NR 58
TC 0
PU AMER PHYSICAL SOC; ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 1539-3755
DI 10.1103/PhysRevE.79.067301
PD JUN
VL 79
IS 6
PN Part 2
AR 067301
SC Physics, Fluids & Plasmas; Physics, Mathematical
GA 466XP
UT ISI:000267698900086
ER

PT J
*Record 2 of 4.
L5 <http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;UT=000267668900002>
*Order Full Text [ ]
AU Okazaki, M
Seelan, S
Toriyama, K
AF Okazaki, M.
Seelan, S.
Toriyama, K.
TI Condensation process of alcohol molecules on mesoporous silica MCM-41
and SBA-15 and fumed silica: a spin-probe ESR study
SO APPLIED MAGNETIC RESONANCE
LA English
DT Proceedings Paper
ID LIQUID-PHASE PHOTOREACTION; CARBON NANOTUBES; DIFFUSION; FLOW;
NANOCHANNEL; MECHANISM; DYNAMICS; NMR
AB A few alcoholic solutions of di-tert-butyl nitroxide (DTBN), a spin
probe, at a high concentration were condensed on several silica
materials, such as MCM-41, two types of SBA-15, and fumed silica, at
various amounts in vacuum. At a very low solution dose the electron
spin resonance (ESR) spectrum is that of an immobilized nitroxide
radical. With increasing solution dose, the spectrum is gradually
sharpened and a well-separated three-line spectrum is observed at the
dose that is estimated to fill the surface with a monomolecular layer.
Thus, the DTBN molecule can make rapid tumbling motion on this solvent
layer. With a further increase in the solution dose the ESR spectrum is
modified in different ways from system to system: the line width
increases approximately linearly with respect to the solution dose for
the SBA-15 and fumed silica systems, but it remains almost constant for
the MCM-41 system until the solution dose exceeds the total volume of a
nanochannel. The line width increase with respect to the solution dose
is small for the SBA-15 system but large for the fumed silica system.
These results have been interpreted geometrically with the structures
of these silica materials and a condensation model for the alcohols on
these surfaces. In relation to the present results, a model of the
collective molecular flow of the alcohol solutions through the
nanochannel of MCM-41 is given.
C1 [Okazaki, M.] Natl Inst Adv Ind Sci & Technol, Res Inst Instrumentat Frontier, Moriyama Ku, Nagoya, Aichi 4638560, Japan.
RP Okazaki, M, Natl Inst Adv Ind Sci & Technol, Res Inst Instrumentat
Frontier, Moriyama Ku, 2266-98 Shimoshidami, Nagoya, Aichi 4638560,
Japan.
EM masa-okazaki@aist.go.jp
CR ANANDAN S, 2005, MICROPOR MESOPOR MAT, V87, P77, DOI
10.1016/j.micromeso.2005.07.036
BERLINER LJ, 1976, SPIN LABELING
BERNER B, 1979, J PHYS CHEM-US, V83, P1406
BURKETT SL, 1996, CHEM COMMUN 0607, P1367
COMA A, 1997, CHEM REV, V97, P2373
FULVIO PF, 2005, J MATER CHEM, V15, P5049, DOI 10.1039/b511346f
HOLT JK, 2006, SCIENCE, V312, P1034, DOI 10.1126/science.1126298
KONISHI Y, 2001, J PHYS CHEM B, V105, P9101
KRESGE CT, 1992, NATURE, V359, P710
LIKHTENSHTEIN GI, 1976, SPIN LABELLING METHO
MAJUMDER M, 2005, NATURE, V438, P44, DOI 10.1038/43844a
MORISHIGE K, 1997, J CHEM PHYS, V107, P6965
OKAZAKI M, 2000, CHEM PHYS LETT, V328, P251
OKAZAKI M, 2002, PHYS CHEM CHEM PHYS, V4, P1201
OKAZAKI M, 2003, APPL MAGN RESON, V23, P435
OKAZAKI M, 2003, J PHYS CHEM B, V107, P7654, DOI 10.1021/jp0345351
OKAZAKI M, 2007, J PHYS CHEM C, V111, P9122, DOI 10.1021/jp070605i
OKAZAKI M, 2008, J PHYS CHEM C, V112, P768
SCHNEIDER DJ, 1989, SPIN LABELING THEORY, V8, P1
STALLMACH F, 2001, MICROPOR MESOPOR MAT, V44, P745
STOLL S, 2006, J MAGN RESON, V178, P42, DOI 10.1016/j.jmr.2005.08.013
TAKAHARA S, 2005, J PHYS CHEM B, V109, P11231, DOI 10.1021/jp046036l
TAUER KJ, 1952, ACTA CRYSTALLOGR, V5, P606
YANAGISAWA T, 1990, B CHEM SOC JPN, V63, P988
ZHAO XS, 1996, IND ENG CHEM RES, V35, P2075
ZHAO XS, 1997, J PHYS CHEM B, V101, P6525
NR 26
TC 0
PU SPRINGER WIEN; SACHSENPLATZ 4-6, PO BOX 89, A-1201 WIEN, AUSTRIA
SN 0937-9347
DI 10.1007/s00723-009-0168-2
PD APR
VL 35
IS 3
BP 363
EP 378
SC Physics, Atomic, Molecular & Chemical; Spectroscopy
GA 466NM
UT ISI:000267668900002
ER

PT J
*Record 3 of 4.
L5 <http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;UT=000267533600032>
*Order Full Text [ ]
AU Zang, J
Konduri, S
Nair, S
Sholl, DS
AF Zang, Ji
Konduri, Suchitra
Nair, Sankar
Sholl, David S.
TI Self-Diffusion of Water and Simple Alcohols in Single-Walled
Aluminosilicate Nanotubes
SO ACS NANO
LA English
DT Article
DE inorganic nanotubes; aluminosilicate; self-diffusion; water; methanol;
ethanol
ID MIXED-OXIDE NANOTUBES; FAST MASS-TRANSPORT; CARBON NANOTUBE; IMOGOLITE
NANOTUBES; CORRELATED FLIGHTS; MEMBRANES; MODELS; NANOPARTICLES;
RESISTANCES; DIMENSIONS
AB Understanding transport phenomena of fluids through nanotubes (NTs) is
of great interest in order to enable potential application of NTs as
separation devices, encapsulation media for molecule storage and
delivery, and sensors. Single-walled metal oxide NTs are interesting
materials because they present a well-defined solid-state structure,
precisely tunable diameter and length, as well as a hydrophilic and
functionalizable interior for tuning transport and adsorption
selectivity. Here, we study the transport properties of
hydrogen-bonding liquids (water, methanol, and ethanol) through a
single-walled aluminosilicate NT to investigate the influence of
liquid-surface and liquid-liquid interactions and the effects of
competitive transport of different chemical species using molecular
dynamics (MD) simulations. The self-diffusivities (D-s) for all the
three species decrease with increasing loading and are comparable to
bulk liquid diffusivities at low molecular loadings. We show that the
hydrogen-bond network associated with water makes its diffusion
behavior different from methanol and ethanol. Mixtures of water and
methanol show segregation in the NT, with water located closer to the
tube wall and the alcohol molecules localized near the center of the
NT. D, values of water in an analogous aluminogermanate NT are larger
than those in the aluminosilicate NT due to a larger pore diameter.
C1 [Zang, Ji; Konduri, Suchitra; Nair, Sankar; Sholl, David S.] Georgia Inst Technol, Sch Chem & Biomol Engn, Atlanta, GA 30332 USA.
RP Sholl, DS, Georgia Inst Technol, Sch Chem & Biomol Engn, 311 Ferst Dr
NW, Atlanta, GA 30332 USA.
EM david.sholl@chbe.gatech.edu
CR ACKERMAN WC, 1993, LANGMUIR, V9, P1051
CHEN B, 2001, J PHYS CHEM B, V105, P3093
CYGAN RT, 2004, J PHYS CHEM B, V108, P1255, DOI 10.1021/jp0363287
GORDILLO MC, 2000, CHEM PHYS LETT, V329, P341
GUIMARAES L, 2007, ACS NANO, V1, P362, DOI 10.1021/nn700184k
HINDS BJ, 2004, SCIENCE, V303, P62, DOI 10.1126/science.1092048
HOLT JK, 2006, SCIENCE, V312, P1034, DOI 10.1126/science.1126298
HUMMER G, 2001, NATURE, V414, P188
IMAMURA S, 1996, J CATAL, V160, P137
JEFFREY G, 1997, INTRO HYDROGEN BONDI, R7
KALRA A, 2003, P NATL ACAD SCI USA, V100, P10175
KONDURI S, 2006, PHYS REV B, V74, ARTN 033401
KONDURI S, 2007, ACS NANO, V1, P393, DOI 10.1021/nn700104e
KONDURI S, 2008, J PHYS CHEM C, V112, P15367, DOI 10.1021/jp8025144
LIU YC, 2008, PHYS REV B, V77, ARTN 125438
MAJUMDER M, 2005, NATURE, V438, P44, DOI 10.1038/43844a
MAMONTOV E, 2006, J CHEM PHYS, V124, UNSP 194703-194706
MARZAN LL, 1994, COLLOID SURFACE A, V90, P95
MUKHERJEE S, 2005, CHEM MATER, V17, P4900, DOI 10.1021/cm0505852
MUKHERJEE S, 2007, J AM CHEM SOC, V129, P6820, DOI 10.1021/ja070124c
NEWSOME DA, 2005, J PHYS CHEM B, V109, P7237, DOI 10.1021/jp044247k
NEWSOME DA, 2006, NANO LETT, V6, P2150, DOI 10.1021/nl061181r
NOY A, 2007, NANO TODAY, V2, P22
OHASHI F, 2004, J MATER SCI, V39, P1799
PAOLI H, 2002, MICROPOR MESOPOR MAT, V55, P147
POHL PI, 1996, LANGMUIR, V12, P4463
SHOLL DS, 1994, PHYSICA D, V71, P168
SHOLL DS, 1997, PHYS REV E B, V55, P7753
SKOULIDAS AI, 2002, PHYS REV LETT, V89, ARTN 185901
SMITH W, 1996, DL POLY IS PACKAGE M
STRIOLO A, 2006, NANO LETT, V6, P633, DOI 10.1021/nl052254u
STRIOLO A, 2007, NONOTECHNOLOGY, V18, UNSP 475704-475710
TAMURA K, 2002, J PHYS CHEM B, V106, P271
VERWEIJ H, 2007, SMALL, V3, P1996, DOI 10.1002/smll.200700368
WON CY, 2006, J CHEM PHYS, V125, UNSP 114701-114709
WON CY, 2007, J AM CHEM SOC, V129, P2748, DOI 10.1021/ja0687318
YAMAMOTO K, 2007, POLYM J, V39, P1, DOI 10.1295/polymj.PJ2006128
NR 37
TC 0
PU AMER CHEMICAL SOC; 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 1936-0851
DI 10.1021/nn9001837
PD JUN
VL 3
IS 6
BP 1548
EP 1556
SC Chemistry, Multidisciplinary; Nanoscience & Nanotechnology; Materials
Science, Multidisciplinary
GA 464UP
UT ISI:000267533600032
ER

PT J
*Record 4 of 4.
L5 <http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;UT=000267536100021>
*Order Full Text [ ]
AU Nuxoll, EE
Hillmyer, MA
Wang, RF
Leighton, C
Siegel, RA
AF Nuxoll, Eric E.
Hillmyer, Marc A.
Wang, Ruifang
Leighton, C.
Siegel, Ronald A.
TI Composite Block Polymer-Microfabricated Silicon Nanoporous Membrane
SO ACS APPLIED MATERIALS & INTERFACES
LA English
DT Article
DE microelectromechanical system; nanoporous; membrane; block polymer;
size selectivity
ID POLYLACTIDE DIBLOCK COPOLYMERS; THIN-FILMS; FILTRATION MEMBRANES;
TRIBLOCK COPOLYMERS; TRANSPORT; POLYSTYRENE; ARRAYS
AB Block polymers offer an attractive route to densely packed,
monodisperse nanoscale pores. However, their fragility as thin films
complicates their use as membranes. By integrating a block polymer film
with a thin (100 mu m) silicon substrate, we have developed a composite
membrane providing both nanoscale size exclusion and fast transport of
small molecules. Here we describe the fabrication of this membrane,
evaluate its mechanical integrity, and demonstrate its transport
properties for model solutes of large and small molecular weight. The
ability to block large molecules without hindering smaller ones,
coupled with the potential for surface modification of the polymer and
the microelectromechanical system style of support, makes this
composite membrane an attractive candidate for interfacing implantable
sensing and drug-delivery devices with biological hosts.
C1 [Nuxoll, Eric E.; Siegel, Ronald A.] Univ Minnesota, Dept Pharmaceut, Minneapolis, MN 55455 USA.
[Hillmyer, Marc A.] Univ Minnesota, Dept Chem, Minneapolis, MN 55455 USA.
[Wang, Ruifang; Leighton, C.] Univ Minnesota, Dept Chem Engn & Mat Sci, Minneapolis, MN 55455 USA.
[Siegel, Ronald A.] Univ Minnesota, Dept Biomed Engn, Minneapolis, MN 55455 USA.
RP Siegel, RA, Univ Minnesota, Dept Pharmaceut, 9-177 Weaver Densford
Hall,308 Harvard St SE, Minneapolis, MN 55455 USA.
EM siege017@umn.edu
CR BAILEY TS, 2006, MACROMOLECULES, V39, P8772, DOI 10.1021/ma061892b
BANG J, 2006, J AM CHEM SOC, V128, P7622, DOI 10.1021/ja0608141
BLACK CT, 2006, J VAC SCI TECHNOL B, V24, P3188, DOI 10.1116/1.2366700
BLACK CT, 2007, IBM J RES DEV, V51, P605
CAVICCHI KA, 2007, MACROMOLECULES, V40, P1181, DOI 10.1021/ma061163w
COONEY DT, 2006, CRYSTALLOGR REV, V12, P13
DESAI TA, 2004, ADV DRUG DELIVER REV, V56, P1661, DOI
10.1016/j.addr.2003.11.006
FADEEV AY, 2000, LANGMUIR, V16, P7268
GUO SW, 2006, CHEM MATER, V18, P1719, DOI 10.1021/cm052694m
HAWKER CJ, 2005, MRS BULL, V30, P952
HILLMYER MA, 2005, ADV POLYM SCI, V190, P137, DOI 10.1007/12_002
HINDS BJ, 2004, SCIENCE, V303, P62, DOI 10.1126/science.1092048
HOLT JK, 2006, SCIENCE, V312, P1034, DOI 10.1126/science.1126298
JIRAGE KB, 1997, SCIENCE, V278, P655
KIM SH, 2004, ADV MATER, V16, P226, DOI 10.1002/adma.200304906
KUBO T, 2007, APPL PHYS LETT, V90, P33113
KUBO T, 2008, APPL PHYS LETT, V93, ARTN 133112
LEE SB, 2001, CHEM MATER, V13, P3236
LEONI L, 2002, BIOMED MICRODEVICES, V4, P131
LI YX, 2009, ANAL CHEM, V81, P851, DOI 10.1021/ac802201w
LIU GJ, 1999, ANGEW CHEM INT EDIT, V38, P835
LIU GJ, 1999, CHEM MATER, V11, P2233
LOPEZ CA, 2006, BIOMATERIALS, V27, P3075, DOI
10.1016/j.biomaterials.2005.12.017
MAO H, 2006, THESIS U MINNESOTA M
MAO HM, 2005, MACROMOLECULES, V38, P4038, DOI 10.1021/ma050008z
MARTIN CR, 1994, SCIENCE, V266, P1961
OLAYOVALLES R, 2005, MACROMOLECULES, V38, P10101, DOI 10.1021/ma0509006
PARK C, 2001, APPL PHYS LETT, V79, P848
PHILLIP WA, 2006, J MEMBRANE SCI, V286, P144, DOI
10.1016/j.memsci.2006.09.028
SHIN K, 2002, NANO LETT, V2, P933, DOI 10.1021/nl0256560
SINGH S, 2007, NANO LETT, V7, P2676, DOI 10.1021/nl071061z
STRIEMER CC, 2007, NATURE, V445, P749, DOI 10.1038/nature05532
WOLFRUM B, 2006, NANO LETT, V6, P453, DOI 10.1021/nl052370x
XIANG HQ, 2004, MACROMOLECULES, V37, P5358, DOI 10.1021/ma049888s
XU T, 2005, MACROMOLECULES, V38, P10788, DOI 10.1021/ma050221c
YAMAGUCHI A, 2004, NAT MATER, V3, P337, DOI 10.1038/nmat1107
YANG SY, 2006, ADV MATER, V18, P709, DOI 10.1002/adma.200501500
YANG SY, 2008, ADV FUNCT MATER, V18, P1371, DOI 10.1002/adfm.200700832
NR 38
TC 0
PU AMER CHEMICAL SOC; 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 1944-8244
DI 10.1021/am900013v
PD APR
VL 1
IS 4
BP 888
EP 893
GA 464VM
UT ISI:000267536100021
ER

EF

========================================================================
*Order Full Text*
All Customers
--------------
Please contact your library administrator, or person(s) responsible for
document delivery, to find out more about your organization's policy for
obtaining the full text of the above articles. If your organization does
not have a current document delivery provider, your administrator can
contact ISI Document Solution at service@isidoc.com, or call 800-603-4367
or 734-459-8565.

IDS Customers
--------------
IDS customers can purchase the full text of an article (having page number,
volume, and issue information) by returning this ENTIRE message as a Reply
to Sender or Forward to orders@isidoc.com. Mark your choices with an X in
the "Order Full Text: []" brackets for each item. For example, [X].

Please enter your account number here:

========================================================================
*Import Records into an ISI ResearchSoft product*
1) Save the email as a text file. If your e-mail software removed extra line breaks, restore them before saving.
2) From within an ISI ResearchSoft product, import the text file using the ISI-CE filter.
========================================================================
*Help Desk Contact Information*
If you have any questions, please visit the Thomson Scientific Technical Support Contact Information Web page:
http://www.thomsonscientific.com/support/techsupport
========================================================================

No comments: