Friday, July 24, 2009

ISI Web of Knowledge Alert - Hummer, G

ISI Web of Knowledge Citation Alert

Cited Article: Hummer, G. Water conduction through the hydrophobic channel of a carbon nanotube
Alert Expires: 22 OCT 2009
Number of Citing Articles: 2 new records this week (2 in this e-mail)
Organization ID: 3b97d1bbc1878baed0ab183d8b03130b
========================================================================
Note: Instructions on how to purchase the full text of an article and Help Desk Contact information are at the end of the e-mail.
========================================================================

*Record 1 of 2.
*View Full Record: http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000267799100022
*Order Full Text [ ]

Title:
Molecular dynamics investigation of hydration of nanoscopic hydrophobic paraffin-like plates

Authors:
Choudhury, N

Author Full Names:
Choudhury, Niharendu

Source:
JOURNAL OF CHEMICAL PHYSICS 131 (1): Art. No. 014507 JUL 7 2009

Language:
English

Document Type:
Article

Author Keywords:
hydrogen bonds; hydrophobicity; molecular dynamics method; molecular moments; molecular orientation; plates (structures); solvation; water; wetting

KeyWords Plus:
DEWETTING TRANSITION; HYDROPHILIC SURFACES; CARBON NANOTUBES; LIQUID WATER; SOLUTE SIZE; SIMULATION; COLLAPSE; C-60; INTERFACES; NANOSCALE

Abstract:
The effect of surface characteristics on the hydration behavior of various paraffin-like plates has been investigated. Structure and orientation characteristics of the water molecules in the solvation shells of various nanoscopic paraffin-like plates differing from each other in the intermolecular spacing have been extensively studied using molecular dynamics simulation in isothermal-isobaric ensemble. Single particle density distribution of water molecules around the plate reveals well defined solvation shells around each of the paraffin-like plates studied here. A sharp first peak in the density profile in each of the plates signifies no visible dewetting around the paraffin plate. Instantaneous density of water molecules around the plate also reveals that the plate is sufficiently hydrated and there is no intermittent fluctuation in water density in the first hydration shell leading to short lived dewetted state for any of the model plates within the two nanosecond time s!
pan. This is in contrast to the hydration behavior of the intersolute region, where intersolute dewetting has been observed for some of the model plates. Thus the present results demonstrate that dewetting in the intersolute region of nanoscopic hydrophobic plates does not stem from drying interface of the individual solute. No significant effect of surface topology on the orientational structure of water molecules as revealed through distributions of dipole moment as well as oxygen-hydrogen bond vectors of a water molecule in different solvation shells has been observed.

Reprint Address:
Choudhury, N, Bhabha Atom Res Ctr, Theoret Chem Sect, Chem Grp, Bombay 400085, Maharashtra, India.

Research Institution addresses:
Bhabha Atom Res Ctr, Theoret Chem Sect, Chem Grp, Bombay 400085, Maharashtra, India

E-mail Address:
nihcho@barc.gov.in

Cited References:
ALLEN MP, 1987, COMPUTER SIMULATION.
ALLEN R, 2002, PHYS REV LETT, V89, ARTN 175502.
ASHBAUGH HS, 2001, J AM CHEM SOC, V123, P10721.
ASHBAUGH HS, 2005, J AM CHEM SOC, V127, P2808, DOI 10.1021/ja042600u.
BALL P, 2003, NATURE, V423, P25, DOI 10.1038/423025a.
BALL P, 2008, CHEM REV, V108, P74, DOI 10.1021/cr068037a.
BECKSTEIN O, 2003, P NATL ACAD SCI USA, V100, P7063, DOI 10.1073/pnas.1136844100.
BENNAIM B, 1980, HYDROPHOBIC INTERACT.
BERARD DR, 1993, J CHEM PHYS, V98, P7236.
BERENDSEN HJC, 1987, J PHYS CHEM-US, V91, P6269.
BRATKO D, 2001, J CHEM PHYS, V115, P3873.
CHANDLER D, 2005, NATURE, V437, P640, DOI 10.1038/nature04162.
CHOUDHURY N, 2005, J AM CHEM SOC, V127, P3556, DOI 10.1021/ja0441817.
CHOUDHURY N, 2005, J PHYS CHEM B, V109, P6422, DOI 10.1021/jp045439i.
CHOUDHURY N, 2005, MOL SIMULAT, V31, P457, DOI 10.1080/08927020500035457.
CHOUDHURY N, 2006, J CHEM PHYS, V125, ARTN 034502.
CHOUDHURY N, 2006, J PHYS CHEM B, V110, P8459, DOI 10.1021/jp056909r.
CHOUDHURY N, 2006, MODELLING MOL STRUCT, P49.
CHOUDHURY N, 2007, J AM CHEM SOC, V129, P4847, DOI 10.1021/ja069242a.
CHOUDHURY N, 2007, J PHYS CHEM B, V111, P10474, DOI 10.1021/jp073571n.
CHOUDHURY N, 2007, J PHYS CHEM C, V111, P2565, DOI 10.1021/jp066883j.
CHOUDHURY N, 2008, J PHYS CHEM B, V112, P6296, DOI 10.1021/jp801852v.
GORDILLO MC, 2005, J CHEM PHYS, V123, ARTN 054707.
GORDILLO MC, 2008, PHYS REV B, V78, ARTN 075432.
HUANG X, 2003, P NATL ACAD SCI USA, V100, P11953, DOI 10.1073/pnas.1934837100.
HUANG XH, 2005, J PHYS CHEM B, V109, P3546, DOI 10.1021/jp0455201.
HUMMER G, 2001, NATURE, V414, P188.
HUMPHREY W, 1996, J MOL GRAPHICS, V14, P33.
JENSEN MO, 2004, J CHEM PHYS, V120, P9729, DOI 10.1063/1.1697379.
JENSEN TR, 2003, PHYS REV LETT, V90, ARTN 086101.
JORGENSEN WL, 1984, J AM CHEM SOC, V106, P6638.
KAUZMANN W, 1959, ADV PROTEIN CHEM, V14, P1.
LEE CY, 1984, J CHEM PHYS, V80, P4448.
LEE SH, 1994, J CHEM PHYS, V100, P3334.
LEUNG K, 2000, J CHEM PHYS, V113, P5845.
LEUNG K, 2003, PHYS REV LETT, V90, ARTN 065502.
LI JY, 2005, J PHYS CHEM B, V109, P13639, DOI 10.1021/jp044090w.
LIU P, 2005, NATURE, V437, P159, DOI 10.1038/nature03926.
LUM K, 1999, J PHYS CHEM B, V103, P4570.
LUZAR A, 1987, J CHEM PHYS, V86, P2955.
PRATT LR, 2002, CHEM REV, V102, P2671, DOI 10.1021/cr000692+.
SANSOM MSP, 2001, NATURE, V414, P156.
STILLINGER FH, 1973, J SOLUTION CHEM, V2, P141.
TANFORD C, 1973, HYDROPHOBIC EFFECT F.
TRUSKETT TM, 2001, J CHEM PHYS, V114, P2401.
VACHA R, 2008, J PHYS CHEM C, V112, P7689, DOI 10.1021/jp800888b.
VAITHEESWARAN S, 2004, P NATL ACAD SCI USA, V101, P17002, DOI 10.1073/pnas.0407968101.
WALLQVIST A, 1995, J PHYS CHEM-US, V99, P2893.
WALTHER JH, 2001, J PHYS CHEM B, V105, P9980.
WALTHER JH, 2004, CARBON, V42, P1185, DOI 10.1016/j.carbon.2003.12.071.
ZHOU RH, 2004, SCIENCE, V305, P1605.

Cited Reference Count:
51

Times Cited:
0

Publisher:
AMER INST PHYSICS; CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA

Subject Category:
Physics, Atomic, Molecular & Chemical

ISSN:
0021-9606

DOI:
10.1063/1.3155186

IDS Number:
468EY

========================================================================

*Record 2 of 2.
*View Full Record: http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000267871000012
*Order Full Text [ ]

Title:
Proton Transport Pathway in the CIC Cl-/H+ Antiporter

Authors:
Wang, D; Voth, GA

Author Full Names:
Wang, Dong; Voth, Gregory A.

Source:
BIOPHYSICAL JOURNAL 97 (1): 121-131 JUL 8 2009

Language:
English

Document Type:
Article

KeyWords Plus:
VALENCE-BOND MODEL; CHLORIDE CHANNELS; COMPUTER-SIMULATION; EXCHANGE TRANSPORTER; BIOMOLECULAR SYSTEMS; PROKARYOTIC HOMOLOG; ESCHERICHIA-COLI; SIDE-CHAIN; WATER; PROTEINS

Abstract:
A fundamental question concerning the CIC Cl-/H+ antiporters is the nature of their proton transport (PT) pathway, We addressed this issue by using a novel computational methodology capable of describing the explicit PT dynamics in the CIC-ec1 protein. The main result is that the Glu(203) residue delivers a proton from the intracellular solution to the core of CIC-ec1 via a rotation of its side chain and subsequent acid dissociation. After reorientation of the Glu(203) side chain, a transient water-mediated PT pathway between Glu(203) and Glu(148) is established that is able to receive and translocate the proton via Grotthuss shuttling after deprotonation of Glu(203). A molecular-dynamics simulation of an explicit hydrated excess proton in this pathway suggests that a negatively charged Glu(148) and the central Cl- ion act together to drive H+ to the extracellular side of the membrane. This finding is consistent with the experimental result that Cl- binding to the central si!
te facilitates the proton movement. A calculation of the PT free-energy barrier for the CIC-ec1 E203V mutant also supports the proposal that a dissociable residue is required at this position for efficient delivery of H+ to the protein interior, in agreement with recent experimental results.

Reprint Address:
Voth, GA, Univ Utah, Ctr Biophys Modeling & Simulat, Salt Lake City, UT 84112 USA.

Research Institution addresses:
[Voth, Gregory A.] Univ Utah, Ctr Biophys Modeling & Simulat, Salt Lake City, UT 84112 USA; Univ Utah, Dept Chem, Salt Lake City, UT 84112 USA

E-mail Address:
voth@chem.utah.edu

Cited References:
ABRAMSON J, 2004, MOL MEMBR BIOL, V21, P227, DOI 10.1080/09687680410001716862.
ACCARDI A, 2004, NATURE, V427, P803, DOI 10.1038/nature02314.
ACCARDI A, 2005, J GEN PHYSIOL, V126, P563, DOI 10.1085/jgp.200509417.
ACCARDI A, 2006, J MOL BIOL, V362, P691, DOI 10.1016/j.jmb.2006.07.081.
AGMON N, 1995, CHEM PHYS LETT, V244, P456.
BOSTICK DL, 2004, BIOPHYS J, V87, P1686, DOI 10.1529/biophysj.104.042465.
CHEN MF, 2003, J GEN PHYSIOL, V122, P133, DOI 10.1085/jgp.200308844.
COHEN J, 2004, BIOPHYS J, V86, P836.
CUKIERMAN S, 2006, BBA-BIOENERGETICS, V1757, P876, DOI 10.1016/j.bbabio.2005.12.001.
CUMA M, 2001, J PHYS CHEM A, V105, P2814.
DAY TJF, 2002, J CHEM PHYS, V117, P5839, DOI 10.1063/1.1497157.
DECOURSEY TE, 2003, PHYSIOL REV, V83, P475, DOI 10.1152/physrev.00028.2002.
DUTZLER R, 2002, NATURE, V415, P287.
DUTZLER R, 2003, SCIENCE, V300, P108, DOI 10.1126/science.1082708.
ESTEVEZ R, 2003, NEURON, V38, P47.
FARALDOGOMEZ JD, 2004, J MOL BIOL, V339, P981, DOI 10.1016/j.jmb.2004.04.023.
GERVASIO FL, 2006, J MOL BIOL, V361, P390, DOI 10.1016/j.jmb.2006.06.034.
HUMMER G, 2001, NATURE, V414, P188.
HUMPHREY W, 1996, J MOL GRAPHICS, V14, P33.
HUNTE C, 2005, NATURE, V435, P1197, DOI 10.1038/nature03692.
IYER R, 2002, NATURE, V419, P715, DOI 10.1038/nature01000.
JENTSCH TJ, 2005, CURR OPIN NEUROBIOL, V15, P319, DOI 10.1016/j.conb.2005.05.002.
JIAN Y, 2004, PROTEINS, V57, P414.
KAILA VRI, 2008, P NATL ACAD SCI USA, V105, P6255.
KNAUF PA, 2002, P NATL ACAD SCI USA, V99, P10861, DOI 10.1073/pnas.162402399.
KUANG ZF, 2007, PROTEINS, V68, P26, DOI 10.1002/prot.21441.
KUMAR S, 1995, J COMPUT CHEM, V16, P1339.
LEMIEUX MJ, 2004, CURR OPIN STRUC BIOL, V14, P405, DOI 10.1016/j.sbi.2004.06.003.
LIM HH, 2009, J GEN PHYSIOL, V133, P131.
MILLER C, 2006, NATURE, V440, P484, DOI 10.1038/nature04713.
MILOSHEVSKY GV, 2004, BIOPHYS J, V86, P825.
MILOSHEVSKY GV, 2005, J CHEM PHYS, V122, ARTN 214901.
NGUITRAGOOL W, 2006, J MOL BIOL, V362, P682, DOI 10.1016/j.jmb.2006.07.006.
PICOLLO A, 2005, NATURE, V436, P420, DOI 10.1038/nature03720.
RASAIAH JC, 2008, ANNU REV PHYS CHEM, V59, P713.
RIISTAMA S, 1997, FEBS LETT, V414, P275.
ROUX B, 1995, COMPUT PHYS COMMUN, V91, P275.
SCHEEL O, 2005, NATURE, V436, P424, DOI 10.1038/nature03860.
SCHMITT UW, 1998, J PHYS CHEM B, V102, P5547.
SCHMITT UW, 1999, J CHEM PHYS, V111, P9361.
SWANSON JMJ, 2007, J PHYS CHEM B, V111, P4300, DOI 10.1021/jp070104x.
TRAVERSO S, 2003, J GEN PHYSIOL, V122, P295, DOI 10.1085/jgp.200308784.
TUUKKANEN A, 2007, BBA-BIOENERGETICS, V1767, P1102, DOI 10.1016/j.bbabio.2007.06.010.
VOTH GA, 2006, ACCOUNTS CHEM RES, V39, P143, DOI 10.1021/ar0402098.
WALDEN M, 2007, J GEN PHYSIOL, V129, P317, DOI 10.1085/jgp.200709756.
WIKSTROM M, 2003, BBA-BIOENERGETICS, V1604, P61, DOI 10.1016/S0005-2728(03)00041-0.
WRAIGHT CA, 2006, BBA-BIOENERGETICS, V1757, P886, DOI 10.1016/j.bbabio.2006.06.017.
WU YJ, 2008, J PHYS CHEM B, V112, P467, DOI 10.1021/jp076658h.
XU JC, 2008, BBA-BIOENERGETICS, V1777, P196, DOI 10.1016/j.bbabio.2007.11.008.
YIN H, 2007, J AM CHEM SOC, V129, P7369, DOI 10.1021/ja070456h.
ZDEBIK AA, 2008, J BIOL CHEM, V283, P4219, DOI 10.1074/jbc.M708368200.
ZHANG L, 1996, PROTEINS, V24, P433.

Cited Reference Count:
52

Times Cited:
0

Publisher:
CELL PRESS; 600 TECHNOLOGY SQUARE, 5TH FLOOR, CAMBRIDGE, MA 02139 USA

Subject Category:
Biophysics

ISSN:
0006-3495

DOI:
10.1016/j.bpj.2009.04.038

IDS Number:
469BV

========================================================================
*Order Full Text*
All Customers
--------------
Please contact your library administrator, or person(s) responsible for
document delivery, to find out more about your organization's policy for
obtaining the full text of the above articles. If your organization does
not have a current document delivery provider, your administrator can
contact ISI Document Solution at service@isidoc.com, or call 800-603-4367
or 734-459-8565.

IDS Customers
--------------
IDS customers can purchase the full text of an article (having page number,
volume, and issue information) by returning this ENTIRE message as a Reply
to Sender or Forward to orders@isidoc.com. Mark your choices with an X in
the "Order Full Text: []" brackets for each item. For example, [X].

Please enter your account number here:

========================================================================
*Help Desk Contact Information*
If you have any questions, please visit the Thomson Scientific Technical Support Contact Information Web page:
http://www.thomsonscientific.com/support/techsupport
========================================================================

No comments: