Friday, July 17, 2009

ISI Web of Knowledge Alert - Hummer, G

ISI Web of Knowledge Citation Alert

Cited Article: Hummer, G. Water conduction through the hydrophobic channel of a carbon nanotube
Alert Expires: 22 OCT 2009
Number of Citing Articles: 4 new records this week (4 in this e-mail)
Organization ID: 3b97d1bbc1878baed0ab183d8b03130b
========================================================================
Note: Instructions on how to purchase the full text of an article and Help Desk Contact information are at the end of the e-mail.
========================================================================

*Record 1 of 4.
*View Full Record: http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000267698900086
*Order Full Text [ ]

Title:
Capillary rise of water in hydrophilic nanopores

Authors:
Gruener, S; Hofmann, T; Wallacher, D; Kityk, AV; Huber, P

Author Full Names:
Gruener, Simon; Hofmann, Tommy; Wallacher, Dirk; Kityk, Andriy V.; Huber, Patrick

Source:
PHYSICAL REVIEW E 79 (6): Art. No. 067301 Part 2 JUN 2009

Language:
English

Document Type:
Article

Author Keywords:
boundary layers; capillarity; capillary waves; flow through porous media; hydrophilicity; nanofluidics; nanoporous materials; silicon compounds; sorption; water

KeyWords Plus:
VYCOR GLASS; NEGATIVE PRESSURES; CARBON NANOTUBES; POROUS VYCOR; DYNAMICS; FLOW; NANOSCALE; LIQUIDS; NANOFLUIDICS; ADSORPTION

Abstract:
We report on the capillary rise of water in three-dimensional networks of hydrophilic silica pores with 3.5 nm and 5 nm mean radii, respectively (porous Vycor monoliths). We find classical square root of time Lucas-Washburn laws for the imbibition dynamics over the entire capillary rise times of up to 16 h investigated. Provided we assume two preadsorbed strongly bound layers of water molecules resting at the silica walls, which corresponds to a negative velocity slip length of -0.5 nm for water flow in silica nanopores, we can describe the filling process by a retained fluidity and capillarity of water in the pore center. This anticipated partitioning in two dynamic components reflects the structural-thermodynamic partitioning in strongly silica bound water layers and capillary condensed water in the pore center which is documented by sorption isotherm measurements.

Reprint Address:
Gruener, S, Univ Saarland, Fac Phys & Mechatron Engn, D-66041 Saarbrucken, Germany.

Research Institution addresses:
[Gruener, Simon; Hofmann, Tommy; Huber, Patrick] Univ Saarland, Fac Phys & Mechatron Engn, D-66041 Saarbrucken, Germany; [Wallacher, Dirk] Helmholtz Ctr Mat & Energy, D-14109 Berlin, Germany; [Kityk, Andriy V.] Czestochowa Univ Technol, Inst Comp Sci, PL-42220 Czestochowa, Poland

E-mail Address:
s.gruener@mx.uni-saarland.de; p.huber@physik.uni-saarland.de

Cited References:
ALVINE KJ, 2006, PHYS REV LETT, V97, ARTN 175503.
BALL P, 2008, CHEM REV, V108, P74, DOI 10.1021/cr068037a.
BROVCHENKO I, 2004, ADV PHYS, V53, P83.
CASTRILLON SRV, 2009, J PHYS CHEM B, V113, P1438, DOI 10.1021/jp809032n.
CAUPIN F, 2008, EPL-EUROPHYS LETT, V82, ARTN 56004.
CHIBBARO S, 2008, EUR PHYS J E, V27, P99, DOI 10.1140/epje/i2008-10369-4.
CROSSLEY PA, 1991, APPL PHYS LETT, V59, P3553.
CRUZCHU ER, 2006, J PHYS CHEM B, V110, P21497, DOI 10.1021/jp063896o.
CUPELLI C, 2008, NEW J PHYS, V10, P43009, ARTN 043009.
DEBYE P, 1959, J APPL PHYS, V30, P843.
DIMITROV DI, 2007, PHYS REV LETT, V99, ARTN 054501.
DRAKE JM, 1990, PHYS TODAY, V43, P46.
EIJKEL JCT, 2005, MICROFLUID NANOFLUID, V1, P249, DOI 10.1007/s10404-004-0012-9.
ELMER TH, 1992, CERAMICS GLASSES, V4, P427.
FISHER LR, 1981, NATURE, V290, P575.
FRADIN C, 2000, NATURE, V403, P871.
GALLO P, 2000, PHYS REV LETT, V85, P4317.
GALLO P, 2002, J CHEM PHYS, V116, P342.
GELB LD, 2002, NANO LETT, V2, P1281, DOI 10.1021/nl025748p.
GUPTA SA, 1997, J CHEM PHYS, V107, P10335.
HEINBUCH U, 1989, PHYS REV A, V40, P1144.
HOLT JK, 2006, SCIENCE, V312, P1034, DOI 10.1126/science.1126298.
HOLT JK, 2008, MICROFLUID NANOFLUID, V5, P425, DOI 10.1007/s10404-008-0301-9.
HORN RG, 1989, CHEM PHYS LETT, V162, P404.
HUBER P, 1999, PHYS REV B, V60, P12657.
HUBER P, 2007, EUR PHYS J-SPEC TOP, V141, P101, DOI 10.1141/epjst/e2007-00018-x.
HUMMER G, 2001, NATURE, V414, P188.
ISRAELACHVILI J, 2006, INTERMOLECULAR SURFA.
ISRAELACHVILI JN, 1986, J COLLOID INTERF SCI, V110, P263.
KOPPENSTEINER J, 2008, PHYS REV B, V78, ARTN 054203.
LAMB RN, 1982, J CHEM SOC FARAD T 1, V78, P61.
LASNE D, 2008, PHYS REV LETT, V100, ARTN 214502.
LAUGA E, 2007, MICROFLUIDICS NO SLI.
LEVITZ P, 1991, J CHEM PHYS, V95, P6151.
LI TD, 2007, PHYS REV B, V75, P5415.
LIN MY, 1992, PHYS REV B, V46, P10701.
LUCAS R, 1918, KOLLOID Z, V23, P15.
MAJUMDER M, 2005, NATURE, V438, P44, DOI 10.1038/43844a.
NETO C, 2005, REP PROG PHYS, V68, P2859, DOI 10.1088/0034-4885/68/12/R05.
PAGE JH, 1993, PHYS REV LETT, V71, P1216.
PAUL R, 2005, J CHEM PHYS, V123, P24708.
PUIBASSET J, 2005, J CHEM PHYS, V122, P94704.
QUERE D, 1997, EUROPHYS LETT, V39, P533.
RAUSCHER M, 2008, ANNU REV MATER RES, V38, P143, DOI 10.1146/annurev.matsci.38.060407.132451.
RAVIV U, 2001, NATURE, V413, P51.
SAAM WF, 1975, PHYS REV B, V11, P1086.
SCHOCH RB, 2008, REV MOD PHYS, V80, P839, DOI 10.1103/RevModPhys.80.839.
SHIN K, 2007, NAT MATER, V6, P961, DOI 10.1038/nmat2031.
STANLEY HE, 2002, PHYSICA A, V315, P281.
SUPPLE S, 2003, PHYS REV LETT, V90, ARTN 214501.
TABELING P, 2004, CR PHYS, V5, P531, DOI 10.1016/j.crhy.2004.02.009.
TANAKA H, 2000, EUROPHYS LETT, V50, P340.
VALIULLIN R, 2006, NATURE, V443, P965, DOI 10.1038/nature05183.
VANDELFT KM, 2007, NANO LETT, V7, P345, DOI 10.1021/nl062447x.
WALLACHER D, 1998, J LOW TEMP PHYS, V113, P19.
WASHBURN EW, 1921, PHYS REV, V17, P273.
WHEELER TD, 2008, NATURE, V455, P208, DOI 10.1038/nature07226.
WHITBY M, 2008, NANO LETT, V8, P2632, DOI 10.1021/nl080705f.

Cited Reference Count:
58

Times Cited:
0

Publisher:
AMER PHYSICAL SOC; ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA

Subject Category:
Physics, Fluids & Plasmas; Physics, Mathematical

ISSN:
1539-3755

DOI:
10.1103/PhysRevE.79.067301

IDS Number:
466XP

========================================================================

*Record 2 of 4.
*View Full Record: http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000267504400011
*Order Full Text [ ]

Title:
Unorthodox Uses of Bennett's Acceptance Ratio Method

Authors:
Konig, G; Bruckner, S; Boresch, S

Author Full Names:
Koenig, Gerhard; Bruckner, Stefan; Boresch, Stefan

Source:
JOURNAL OF COMPUTATIONAL CHEMISTRY 30 (11): 1712-1718 Sp. Iss. SI AUG 2009

Language:
English

Document Type:
Article

Author Keywords:
free energy stimulation; acceptance ratio method; force field; implicit solvent

KeyWords Plus:
FREE-ENERGY SIMULATIONS; HISTOGRAM ANALYSIS METHOD; SOLVATION; DYNAMICS; WATER; EQUILIBRIUM; AVERAGES; PROTEINS; SYSTEMS

Abstract:
We illustrate the application of Bennett's acceptance ratio method (BAR) to problems in which standard methods to compute free energy differences (thermodynamic integration, exponential formula) are not practical. Our starting point is the observation that BAR can often compute the free energy difference between two states without the need for intermediate states usually employed (and necessary) in alchemical free energy simulations. This is demonstrated first for the free energy difference between ethane and methanol in aqueous solution. We then show how BAR can be used to compute directly rather unusual free energy differences, such as the free energy difference resulting from changing the treatment of electrostatic interactions, from switching the force field, or from using an implicit solvent model. Calculations of this kind should prove useful for force field development and the validation of implicit solvent methods. (C) 2009 Wiley Periodicals. Inc. J Comput Chem 30: 1!
712-1718, 2009

Reprint Address:
Boresch, S, Univ Vienna, Dept Computat Biol Chem, Wahringerstr 17, A-1090 Vienna, Austria.

Research Institution addresses:
[Koenig, Gerhard; Bruckner, Stefan; Boresch, Stefan] Univ Vienna, Dept Computat Biol Chem, A-1090 Vienna, Austria

E-mail Address:
stefan@mdy.univie.ac.at

Cited References:
BENNETT CH, 1976, J COMPUT PHYS, V22, P245.
BORESCH S, 1999, J PHYS CHEM A, V103, P119.
BORESCH S, 2005, J AM CHEM SOC, V127, P4640, DOI 10.1021/ja044935h.
BROOKS BR, 1983, J COMPUT CHEM, V4, P187.
CHANG J, 2007, J PHYS CHEM B, V111, P2098, DOI 10.1021/jp0620163.
COMELL WD, 1995, J AM CHEM SOC, V117, P5179.
CROOKS GE, 2000, PHYS REV E, V61, P2361.
ESSMANN U, 1995, J CHEM PHYS, V103, P8577.
FERGUSON DM, 1993, J CHEM PHYS, V99, UNSP 100860.
HABERTHUR U, 2008, J COMPUT CHEM, V29, P701, DOI 10.1002/jcc.20832.
HOOVER WG, 1985, PHYS REV A, V31, P1695.
HUMMER G, 1995, J PHYS CHEM-US, V99, P14188.
HUMMER G, 2001, NATURE, V414, P188.
JARZYNSKI C, 1997, PHYS REV LETT, V78, P2690.
JORGENSEN WL, 1983, J CHEM PHYS, V79, P926.
KIRKWOOD JG, 1935, J CHEM PHYS, V3, P300.
KUMAR S, 1992, J COMPUT CHEM, V13, P1011.
LAZARIDIS T, 1999, PROTEINS, V35, P133.
LEITGEB M, 2005, J CHEM PHYS, V122, ARTN 084109.
LU N, 2004, PHYS REV E, V69, UNSP 05772.
LU ND, 2003, J CHEM PHYS, V118, P2977, DOI 10.1063/1.1537241.
MACKERELL AD, 1998, J PHYS CHEM B, V102, P3586.
MOBLEY DL, 2008, J PHYS CHEM B, V112, P938, DOI 10.1021/jp0764384.
NERIA E, 1996, J CHEM PHYS, V105, P1902.
NILSSON L, 2009, J COMPUT CHEM, V30, P1490, DOI 10.1002/jcc.21169.
RAHA K, 2005, ANN REP COMPUT CHEM, V1, P113.
RODINGER T, 2005, CURR OPIN STRUC BIOL, V15, P164, DOI 10.1016/j.sbi.2005.03.001.
ROUX B, 1999, BIOPHYS CHEM, V78, P1.
SHIRTS MR, 2003, PHYS REV LETT, V91, ARTN 140601.
SHIRTS MR, 2005, J CHEM PHYS, V122, UNSP 144107-1.
SHIRTS MR, 2007, ANN REP COMPUT CHEM, V3, P41.
SIMONSON T, 2002, ACCOUNTS CHEM RES, V35, P430.
SOUAILLE M, 2001, COMPUT PHYS COMMUN, V135, P40.
TEMBE BL, 1984, COMPUT CHEM, V8, P281.
ZUCKERMAN DM, 2002, PHYS REV LETT, V89, ARTN 180602.
ZWANZIG RW, 1954, J CHEM PHYS, V22, P1420.

Cited Reference Count:
36

Times Cited:
0

Publisher:
JOHN WILEY & SONS INC; 111 RIVER ST, HOBOKEN, NJ 07030 USA

Subject Category:
Chemistry, Multidisciplinary

ISSN:
0192-8651

DOI:
10.1002/jcc.21255

IDS Number:
464KS

========================================================================

*Record 3 of 4.
*View Full Record: http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000267600300013
*Order Full Text [ ]

Title:
Transport properties and induced voltage in the structure of water-filled single-walled boron-nitrogen nanotubes

Authors:
Yuan, QZ; Zhao, YP

Author Full Names:
Yuan, Quanzi; Zhao, Ya-Pu

Source:
BIOMICROFLUIDICS 3 (2): Art. No. 022411 APR-JUN 2009

Language:
English

Document Type:
Proceedings Paper

Author Keywords:
boron compounds; density functional theory; diffusion; III-V semiconductors; molecular dynamics method; nanofluidics; pipe flow; semiconductor nanotubes; wide band gap semiconductors

KeyWords Plus:
CARBON NANOTUBES; MOLECULAR-DYNAMICS; NITRIDE NANOTUBES; CHANNEL; FLOW; LIQUIDS

Abstract:
Density functional theory/molecular dynamics simulations were employed to give insights into the mechanism of voltage generation based on a water-filled single-walled boron-nitrogen nanotube (SWBNNT). Our calculations showed that (1) the transport properties of confined water in a SWBNNT are different from those of bulk water in view of configuration, the diffusion coefficient, the dipole orientation, and the density distribution, and (2) a voltage difference of several millivolts would generate between the two ends of a SWBNNT due to interactions between the water dipole chains and charge carriers in the tube. Therefore, this structure of a water-filled SWBNNT can be a promising candidate for a synthetic nanoscale power cell as well as a practical nanopower harvesting device.

Reprint Address:
Zhao, YP, Chinese Acad Sci, Inst Mech, State Key Lab Nonlinear Mech LNM, Beijing 100190, Peoples R China.

Research Institution addresses:
[Yuan, Quanzi; Zhao, Ya-Pu] Chinese Acad Sci, Inst Mech, State Key Lab Nonlinear Mech LNM, Beijing 100190, Peoples R China

E-mail Address:
yzhao@imech.ac.cn

Cited References:
BLASE X, 1994, EUROPHYS LETT, V28, P335.
CHEN Y, 2004, APPL PHYS LETT, V84, P2430, DOI 10.1063/1.1667278.
FRISCH MJ, 2004, GAUSSIAN03 REVISION.
GHOSH S, 2003, SCIENCE, V299, P1042, DOI 10.1126/science.1079080.
GHOSH S, 2004, PHYS REV B, V70, P5423.
HOCKNEY RW, 1989, COMPUTER SIMULATION.
HUMMER G, 2001, NATURE, V414, P188.
JORGENSEN WL, 1983, J CHEM PHYS, V79, P926.
KALRA A, 2003, P NATL ACAD SCI USA, V100, P10175.
KRAL P, 2001, PHYS REV LETT, V86, P131.
LI JY, 2007, P NATL ACAD SCI USA, V104, P3687, DOI 10.1073/pnas.0604541104.
LIU YC, 2005, PHYS REV B, V104.
MAJUMDER M, 2005, NATURE, V438, P44, DOI 10.1038/43844a.
MANN DJ, 2003, PHYS REV LETT, V90, P5503.
MASHL RJ, 2003, NANO LETT, V3, P589, DOI 10.1021/nl0340226.
MATTIA D, 2008, MICROFLUID NANOFLUID, V5, P289, DOI 10.1007/s10404-008-0293-5.
NOY A, 2007, NANO TODAY, V2, P22.
PLIMPTON S, 1995, J COMPUT PHYS, V117, P1.
SUN H, 1998, J PHYS CHEM B, V102, P7338.
WAGHE A, 2002, J CHEM PHYS, V117, P10789, DOI 10.1063/1.1519861.
WAN RZ, 2005, J AM CHEM SOC, V127, P7166, DOI 10.1021/ja050044d.
WHITBY M, 2007, NAT NANOTECHNOL, V2, P87, DOI 10.1038/nnano.2006.175.
WON CY, 2006, J CHEM PHYS, V125, P14701.
WON CY, 2007, J AM CHEM SOC, V129, P2748, DOI 10.1021/ja0687318.
WON CY, 2008, J PHYS CHEM C, V112, P1812, DOI 10.1021/jp076747u.
YUAN OZ, 2009, J AM CHEM SOC, V131, P6374.
ZHAO YC, 2008, ADV MATER, V20, P1772, DOI 10.1002/adma.200702956.
ZHU FQ, 2002, BIOPHYS J, V83, P154.

Cited Reference Count:
28

Times Cited:
1

Publisher:
AMER INST PHYSICS; CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA

Subject Category:
Biophysics; Nanoscience & Nanotechnology; Physics, Fluids & Plasmas

ISSN:
1932-1058

DOI:
10.1063/1.3158618

IDS Number:
465PW

========================================================================

*Record 4 of 4.
*View Full Record: http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000267533600032
*Order Full Text [ ]

Title:
Self-Diffusion of Water and Simple Alcohols in Single-Walled Aluminosilicate Nanotubes

Authors:
Zang, J; Konduri, S; Nair, S; Sholl, DS

Author Full Names:
Zang, Ji; Konduri, Suchitra; Nair, Sankar; Sholl, David S.

Source:
ACS NANO 3 (6): 1548-1556 JUN 2009

Language:
English

Document Type:
Article

Author Keywords:
inorganic nanotubes; aluminosilicate; self-diffusion; water; methanol; ethanol

KeyWords Plus:
MIXED-OXIDE NANOTUBES; FAST MASS-TRANSPORT; CARBON NANOTUBE; IMOGOLITE NANOTUBES; CORRELATED FLIGHTS; MEMBRANES; MODELS; NANOPARTICLES; RESISTANCES; DIMENSIONS

Abstract:
Understanding transport phenomena of fluids through nanotubes (NTs) is of great interest in order to enable potential application of NTs as separation devices, encapsulation media for molecule storage and delivery, and sensors. Single-walled metal oxide NTs are interesting materials because they present a well-defined solid-state structure, precisely tunable diameter and length, as well as a hydrophilic and functionalizable interior for tuning transport and adsorption selectivity. Here, we study the transport properties of hydrogen-bonding liquids (water, methanol, and ethanol) through a single-walled aluminosilicate NT to investigate the influence of liquid-surface and liquid-liquid interactions and the effects of competitive transport of different chemical species using molecular dynamics (MD) simulations. The self-diffusivities (D-s) for all the three species decrease with increasing loading and are comparable to bulk liquid diffusivities at low molecular loadings. We sho!
w that the hydrogen-bond network associated with water makes its diffusion behavior different from methanol and ethanol. Mixtures of water and methanol show segregation in the NT, with water located closer to the tube wall and the alcohol molecules localized near the center of the NT. D, values of water in an analogous aluminogermanate NT are larger than those in the aluminosilicate NT due to a larger pore diameter.

Reprint Address:
Sholl, DS, Georgia Inst Technol, Sch Chem & Biomol Engn, 311 Ferst Dr NW, Atlanta, GA 30332 USA.

Research Institution addresses:
[Zang, Ji; Konduri, Suchitra; Nair, Sankar; Sholl, David S.] Georgia Inst Technol, Sch Chem & Biomol Engn, Atlanta, GA 30332 USA

E-mail Address:
david.sholl@chbe.gatech.edu

Cited References:
ACKERMAN WC, 1993, LANGMUIR, V9, P1051.
CHEN B, 2001, J PHYS CHEM B, V105, P3093.
CYGAN RT, 2004, J PHYS CHEM B, V108, P1255, DOI 10.1021/jp0363287.
GORDILLO MC, 2000, CHEM PHYS LETT, V329, P341.
GUIMARAES L, 2007, ACS NANO, V1, P362, DOI 10.1021/nn700184k.
HINDS BJ, 2004, SCIENCE, V303, P62, DOI 10.1126/science.1092048.
HOLT JK, 2006, SCIENCE, V312, P1034, DOI 10.1126/science.1126298.
HUMMER G, 2001, NATURE, V414, P188.
IMAMURA S, 1996, J CATAL, V160, P137.
JEFFREY G, 1997, INTRO HYDROGEN BONDI, R7.
KALRA A, 2003, P NATL ACAD SCI USA, V100, P10175.
KONDURI S, 2006, PHYS REV B, V74, ARTN 033401.
KONDURI S, 2007, ACS NANO, V1, P393, DOI 10.1021/nn700104e.
KONDURI S, 2008, J PHYS CHEM C, V112, P15367, DOI 10.1021/jp8025144.
LIU YC, 2008, PHYS REV B, V77, ARTN 125438.
MAJUMDER M, 2005, NATURE, V438, P44, DOI 10.1038/43844a.
MAMONTOV E, 2006, J CHEM PHYS, V124, UNSP 194703-194706.
MARZAN LL, 1994, COLLOID SURFACE A, V90, P95.
MUKHERJEE S, 2005, CHEM MATER, V17, P4900, DOI 10.1021/cm0505852.
MUKHERJEE S, 2007, J AM CHEM SOC, V129, P6820, DOI 10.1021/ja070124c.
NEWSOME DA, 2005, J PHYS CHEM B, V109, P7237, DOI 10.1021/jp044247k.
NEWSOME DA, 2006, NANO LETT, V6, P2150, DOI 10.1021/nl061181r.
NOY A, 2007, NANO TODAY, V2, P22.
OHASHI F, 2004, J MATER SCI, V39, P1799.
PAOLI H, 2002, MICROPOR MESOPOR MAT, V55, P147.
POHL PI, 1996, LANGMUIR, V12, P4463.
SHOLL DS, 1994, PHYSICA D, V71, P168.
SHOLL DS, 1997, PHYS REV E B, V55, P7753.
SKOULIDAS AI, 2002, PHYS REV LETT, V89, ARTN 185901.
SMITH W, 1996, DL POLY IS PACKAGE M.
STRIOLO A, 2006, NANO LETT, V6, P633, DOI 10.1021/nl052254u.
STRIOLO A, 2007, NONOTECHNOLOGY, V18, UNSP 475704-475710.
TAMURA K, 2002, J PHYS CHEM B, V106, P271.
VERWEIJ H, 2007, SMALL, V3, P1996, DOI 10.1002/smll.200700368.
WON CY, 2006, J CHEM PHYS, V125, UNSP 114701-114709.
WON CY, 2007, J AM CHEM SOC, V129, P2748, DOI 10.1021/ja0687318.
YAMAMOTO K, 2007, POLYM J, V39, P1, DOI 10.1295/polymj.PJ2006128.

Cited Reference Count:
37

Times Cited:
0

Publisher:
AMER CHEMICAL SOC; 1155 16TH ST, NW, WASHINGTON, DC 20036 USA

Subject Category:
Chemistry, Multidisciplinary; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary

ISSN:
1936-0851

DOI:
10.1021/nn9001837

IDS Number:
464UP

========================================================================
*Order Full Text*
All Customers
--------------
Please contact your library administrator, or person(s) responsible for
document delivery, to find out more about your organization's policy for
obtaining the full text of the above articles. If your organization does
not have a current document delivery provider, your administrator can
contact ISI Document Solution at service@isidoc.com, or call 800-603-4367
or 734-459-8565.

IDS Customers
--------------
IDS customers can purchase the full text of an article (having page number,
volume, and issue information) by returning this ENTIRE message as a Reply
to Sender or Forward to orders@isidoc.com. Mark your choices with an X in
the "Order Full Text: []" brackets for each item. For example, [X].

Please enter your account number here:

========================================================================
*Help Desk Contact Information*
If you have any questions, please visit the Thomson Scientific Technical Support Contact Information Web page:
http://www.thomsonscientific.com/support/techsupport
========================================================================

No comments: