Friday, February 5, 2010

ISI Web of Knowledge Alert - Hummer, G

ISI Web of Knowledge Citation Alert

Cited Article: Hummer, G. Water conduction through the hydrophobic channel of a carbon nanotube
Alert Expires: 09 NOV 2010
Number of Citing Articles: 4 new records this week (4 in this e-mail)
Organization ID: 3b97d1bbc1878baed0ab183d8b03130b
========================================================================
Note: Instructions on how to purchase the full text of an article and Help Desk Contact information are at the end of the e-mail.
========================================================================

*Record 1 of 4.
*View Full Record: http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000273940000004
*Order Full Text [ ]

Title:
Nanopumping Molecules via a Carbon Nanotube

Authors:
Chen, M; Zang, J; Xiao, DQ; Zhang, C; Liu, F

Author Full Names:
Chen, Min; Zang, Ji; Xiao, Dingquan; Zhang, C.; Liu, Feng

Source:
NANO RESEARCH 2 (12): 938-944 DEC 2009

Language:
English

Document Type:
Article

Author Keywords:
Carbon nanotube; nanopumping; drug delivery; MD simualtion

KeyWords Plus:
ENCAPSULATED C-60; FIELD

Abstract:
We demonstrate the feasibility of using a carbon nanotube to nanopump molecules. Molecular dynamics simulations show that the transport and ejection of a C-20 molecule via a single-walled carbon nanotube (SWNT) can be achieved by a sustained mechanical actuation driven by two oscillating tips. The optimal condition for nanopumping is found when the tip oscillation frequency and magnitude correlate to form quasi steady-state mechanical wave propagation in the SWNT, so that the energy transfer process is optimal leading to maximal molecular translational motion and minimal rotational motion. Our finding provides a potentially useful mechanism for using an SWNT as a vehicle to deliver large drug molecules.

Reprint Address:
Liu, F, Univ Utah, Dept Mat Sci & Engn, Salt Lake City, UT 84112 USA.

Research Institution addresses:
[Chen, Min; Zang, Ji; Liu, Feng] Univ Utah, Dept Mat Sci & Engn, Salt Lake City, UT 84112 USA; [Chen, Min; Xiao, Dingquan] Sichuan Univ, Dept Mat Sci & Engn, Chengdu 610064, Sichuan, Peoples R China; [Chen, Min] Chengdu Univ Informat Technol, Dept Optoelect Technol, Chengdu 610225, Sichuan, Peoples R China; [Zhang, C.] Univ Wollongong, Sch Engn Phys, Wollongong, NSW 2522, Australia

E-mail Address:
fliu@eng.utah.edu

Cited References:
CAI D, 2005, NAT METHODS, V2, P449, DOI 10.1038/NMETH761.
CHANG T, 2008, PHYS REV LETT, V101, ARTN 175501.
CHEN M, 2009, J APPL PHYS, V105, ARTN 026102.
CHOPRA NG, 1995, NATURE, V377, P135.
DAI YT, 2008, NANO RES, V1, P176, DOI 10.1007/s12274-008-8014-7.
GAO HJ, 2003, NANO LETT, V3, P471, DOI 10.1021/nl025967a.
HUMMER G, 2001, NATURE, V414, P188.
INSEPOV Z, 2006, NANO LETT, V6, P1893, DOI 10.1021/nl060932m.
KAM NWS, 2005, J AM CHEM SOC, V127, P6021, DOI 10.1021/ja050062v.
KRAL P, 1999, PHYS REV LETT, V82, P5373.
LIU F, 2008, 2008055525, US, APPL.
LIU F, 2008, 2008127797, WO.
LONGHURST MJ, 2007, NANO LETT, V7, P3324, DOI 10.1021/nl071537e.
MARTIN CR, 2003, NAT REV DRUG DISCOV, V2, P29, DOI 10.1038/nrd988.
OKADA S, 2001, PHYS REV LETT, V86, P3835.
PANTAROTTO D, 2004, CHEM COMMUN 0107, P16, DOI 10.1039/b311254c.
RAPPE AK, 1992, J AM CHEM SOC, V114, P10024.
SMITH BW, 1998, NATURE, V396, P323.
SVENSSON K, 2004, PHYS REV LETT, V93, ARTN 145901.
TERSOFF J, 1989, PHYS REV B, V39, P1052.
ULBRICHT H, 2003, PHYS REV LETT, V90, ARTN 095501.
WANG Q, 2009, NANO LETT, V9, P245, DOI 10.1021/nl802829z.
WU JA, 2004, PHYS REV B, V69, ARTN 153406.

Cited Reference Count:
23

Times Cited:
0

Publisher:
TSINGHUA UNIV PRESS; TSINGHUA UNIV, RM A703, XUEYAN BLDG, BEIJING, 10084, PEOPLES R CHINA

ISSN:
1998-0124

DOI:
10.1007/s12274-009-9096-6

IDS Number:
548DO

========================================================================

*Record 2 of 4.
*View Full Record: http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000273862900006
*Order Full Text [ ]

Title:
Atomistic simulations of water and organic templates occluded during the synthesis of zeolites

Authors:
Bushuev, YG; Sastre, G

Author Full Names:
Bushuev, Yuriy G.; Sastre, German

Source:
MICROPOROUS AND MESOPOROUS MATERIALS 129 (1-2): 42-53 APR 1 2010

Language:
English

Document Type:
Article

Author Keywords:
Zeolites; ITH zeolite; Forcefield; Computer simulation; Water in zeolites

KeyWords Plus:
STRUCTURE-DIRECTING AGENTS; PURE SILICA POLYMORPH; MOLECULAR-DYNAMICS; COMPUTER-SIMULATION; ORTHORHOMBIC FRAMEWORK; INTERATOMIC POTENTIALS; VIBRATIONAL PROPERTIES; PREFERENTIAL LOCATION; AQUEOUS-SOLUTIONS; CARBON NANOTUBE

Abstract:
The amount and location of water trapped during the synthesis of pure silica ITH zeolite has been carefully predicted by atomistic simulations with the employment of a new forcefield. The presented forcefield can be used to model accurately the structural and thermodynamic behavior of water in (Si, Al) zeolites, and the presence of ions (organic cations and fluoride anions) can be included in the system. Finally, the heats of formation of silica polymorphs are reproduced with more accuracy than with previous forcefields, which makes this new forcefield very appropriate to model aspects related to the stability of zeolites. (C) 2009 Elsevier Inc. All rights reserved.

Reprint Address:
Bushuev, YG, UPV CSIC, Inst Tecnol Quim, Avda Naranjos S-N, Valencia 46022, Spain.

Research Institution addresses:
[Bushuev, Yuriy G.; Sastre, German] UPV CSIC, Inst Tecnol Quim, Valencia 46022, Spain; [Bushuev, Yuriy G.] Ivanovo State Univ Chem & Technol, Ivanovo, Russia

E-mail Address:
yuriyb2005@gmail.com

Cited References:
ASTALA R, 2004, J PHYS CHEM B, V108, P9208, DOI 10.1021/jp0493733.
ATTFIELD MP, 2001, CHEM MATER, V13, P4708, DOI 10.1021/cm011141i.
BAERLOCHER C, 2007, ATLAS ZEOLITE FRAMEW.
BAI JE, 2006, P NATL ACAD SCI USA, V103, P19664, DOI 10.1073/pnas.0608401104.
BARRETT PA, 1997, CHEM MATER, V9, P1713.
BARTHOMEUF D, 1979, J PHYS CHEM-US, V83, P249.
BERENDSEN HJC, 1981, INTERMOLECULAR FORCE, P331.
BORNHAUSER P, 2001, J PHYS CHEM B, V105, P36.
BOUGEARD D, 2007, PHYS CHEM CHEM PHYS, V9, P226, DOI 10.1039/b614463m.
BOULARD B, 1992, J NON-CRYST SOLIDS, V140, P350.
BURTON AW, 2006, MICROPOR MESOPOR MAT, V90, P129, DOI 10.1016/j.micromeso.2005.11.022.
BUSHUEV Y, 2005, SENSORS-BASEL, V5, P139.
BUSHUEV YG, 2004, RUSS CHEM B+, V53, P742.
BUSHUEV YG, 2004, RUSS J PHYS CHEM+, V78, P1954.
BUSHUEV YG, 2004, RUSS J PHYS CHEM+, V78, P1960.
CAMBLOR MA, 1997, ANGEW CHEM INT EDIT, V36, P2659.
CAMBLOR MA, 1998, J PHYS CHEM B, V102, P44.
CARTIN AA, 2006, ANGEW CHEM INT EDIT, V45, P8013.
CAULLET P, 2005, CR CHIM, V8, P245, DOI 10.1016/j.crci.2005.02.001.
CHIALVO AA, 2000, CHEM PHYS, V258, P109.
CORA F, 2003, J SOLID STATE CHEM, V176, P496, DOI 10.1016/S0022-4596(03)00275-5.
CORMA A, 2003, ANGEW CHEM INT EDIT, V42, P1156.
CORMA A, 2004, NATURE, V431, P287, DOI 10.1038/nature02909.
COUDERT FX, 2006, CHEMPHYSCHEM, V7, P2464, DOI 10.1002/cphc.200600561.
CRUCIANI G, 2006, J PHYS CHEM SOLIDS, V67, P1973, DOI 10.1016/j.jpcs.2006.05.057.
CYGAN RT, 2004, J PHYS CHEM B, V108, P1255, DOI 10.1021/jp0363287.
DANG LX, 1998, J PHYS CHEM B, V102, P620.
DEMONTIS P, 2003, J PHYS CHEM B, V107, P4426, DOI 10.1021/jp0300849.
DEMONTIS P, 2008, ACS NANO, V2, P1603, DOI 10.1021/nn800303r.
DIAZCABANAS MJ, 1998, CHEM COMMUN 0907, P1881.
FLANIGEN EM, 2001, STUD SURF SCI CATAL, V137, P11.
FYFE CA, 2001, J AM CHEM SOC, V123, P6882.
GALE JD, 1997, J CHEM SOC FARADAY T, V93, P629.
GALE JD, 2003, MOL SIMULAT, V29, P291, DOI 10.1080/0892702031000104887.
GUILLOT B, 2002, J MOL LIQ, V101, P219.
HILL JR, 1995, J PHYS CHEM-US, V99, P9536.
HRILJAC JA, 1993, J SOLID STATE CHEM, V106, P66.
HUMMER G, 2001, NATURE, V414, P188.
JORDA JL, 2007, Z KRISTALLORG S, V26, P393.
KAPLAN I, 2006, INTERMOLECULAR INTER.
KISELEV AV, 1985, ZEOLITES, V5, P261.
KOLLER H, 1999, J AM CHEM SOC, V121, P3368.
LEVIEN L, 1980, AM MINERAL, V65, P920.
MARSH KN, 1987, RECOMMENDED REFERENC.
MUSAT R, 2008, ANGEW CHEM INT EDIT, V47, P1.
OIE T, 1981, INT J QUANTUM CHEM, V8, P1.
PEDONE A, 2008, CHEM MATER, V20, P2522, DOI 10.1021/cm703437y.
PICCIONE PM, 2000, J PHYS CHEM B, V104, P10001.
PICCIONE PM, 2001, J PHYS CHEM B, V105, P6025.
REY F, UNPUB.
RICHARDSON JW, 1988, J PHYS CHEM-US, V92, P243.
SACERDOTI M, 2007, MICROPOR MESOPOR MAT, V102, P299, DOI 10.1016/j.micromeso.2007.01.012.
SANDERS MJ, 1984, J CHEM SOC CHEM COMM, P1271.
SASTRE G, 1996, J PHYS CHEM-US, V100, P6722.
SASTRE G, 2002, ANGEW CHEM INT EDIT, V41, P4722.
SASTRE G, 2002, J PHYS CHEM B, V106, P701, DOI 10.1021/jp013189p.
SASTRE G, 2003, CHEM MATER, V15, P1788, DOI 10.1021/cm021262y.
SASTRE G, 2003, J PHYS CHEM B, V107, P5432, DOI 10.1021/jp027506j.
SCHRODER KP, 1992, CHEM PHYS LETT, V188, P320.
SCHUSTER P, 1976, RECENT DEV THEORY EX.
SMIRNOV KS, 2003, CHEM PHYS, V292, P53, DOI 10.1016/S0301-0104(03)00275-1.
SVISHCHEV IM, 1996, J CHEM PHYS, V105, P4742.
TAKAIWA D, 2008, P NATL ACAD SCI USA, V105, P39, DOI 10.1073/pnas.0707917105.
TERASAKI O, 1996, CHEM MATER, V8, P463.
TSUNEYUKI S, 1988, PHYS REV LETT, V61, P869.
VANBEEST BWH, 1990, PHYS REV LETT, V64, P1955.
VANKONINGSVELD H, 1990, ACTA CRYSTALLOGR B, V46, P731.
VANKONINGSVELD H, 1990, ZEOLITES, V10, P235.
VANREEUWIJK LP, 1974, THERMAL DEHYDRATION, P1.
VILLAESCUSA LA, 1998, CHEM MATER, V10, P3966.
VILLAESCUSA LA, 1999, ANGEW CHEM INT EDIT, V38, P1997.
WILSON M, 1996, PHYS REV LETT, V77, P4023.
YOSHIKAWA M, 1998, J PHYS CHEM B, V102, P7139.
ZHU SB, 1991, J CHEM PHYS, V95, P2791.
ZONES SI, 2005, J PHYS CHEM B, V109, P652, DOI 10.1021/jp04202434.
ZONES SI, 2007, J AM CHEM SOC, V129, P9066, DOI 10.1021/ja0709122.
ZWIJNENBURG MA, 2007, J PHYS CHEM B, V111, P6156, DOI 10.1021/jp071060v.

Cited Reference Count:
77

Times Cited:
1

Publisher:
ELSEVIER SCIENCE BV; PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS

Subject Category:
Chemistry, Applied; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary

ISSN:
1387-1811

DOI:
10.1016/j.micromeso.2009.08.031

IDS Number:
547CK

========================================================================

*Record 3 of 4.
*View Full Record: http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000273753500011
*Order Full Text [ ]

Title:
On the Origin of Ion Selectivity in the Cys-Loop Receptor Family

Authors:
Sine, SM; Wang, HL; Hansen, S; Taylor, P

Author Full Names:
Sine, Steven M.; Wang, Hai-Long; Hansen, Scott; Taylor, Palmer

Source:
JOURNAL OF MOLECULAR NEUROSCIENCE 40 (1-2): 70-76 JAN 2010

Language:
English

Document Type:
Proceedings Paper

Author Keywords:
Cys-loop receptor family; Ion conductance and selectivity; Single channel recording; Acetylcholine binding protein; Molecular dynamics simulation

KeyWords Plus:
X-RAY-STRUCTURE; ACETYLCHOLINE-RECEPTOR; MECHANOSENSITIVE CHANNEL; SMALL-CONDUCTANCE; MOLECULAR-BASIS; PERMEATION; RESOLUTION; HYDRATION; REVEALS; PROTON

Abstract:
Agonist binding to Cys-loop receptors promotes a large transmembrane ion flux of several million cations or anions per second. To investigate structural bases for the rapid and charge-selective flux, we used all atom molecular dynamics (MD) simulations, X-ray crystallography, and single channel recording. MD simulations of the muscle nicotinic receptor, imbedded in a lipid bilayer with an applied transmembrane potential, reveal single cation translocation events during transient periods of channel hydration. During the simulation trajectory, cations paused for prolonged periods near several rings of anionic residues projecting from the lumen of the extracellular domain of the receptor, but subsequently the cation moved rapidly through the hydrophobic transmembrane region as the constituent alpha-helices exhibited back and forth rocking motions. Cocrystallization of acetylcholine binding protein with sulfate ions revealed coordination of five sulfates with residues from one o!
f these charged rings; in cation-selective Cys-loop receptors this ring contains negatively charged residues, whereas in anion-selective receptors it contains positively charged residues. In the muscle nicotinic receptor, charge reversal of residues of this ring decreases unitary conductance by up to 80%. Thus in Cys-loop receptors, a series of charged rings along the ion translocation pathway concentrates hydrated ions relative to bulk solution, giving rise to charge selectivity, and then subtle motions of the hydrophobic transmembrane, coupled with transient periods of water filling, enable rapid ion flux.

Reprint Address:
Sine, SM, Mayo Clin, Coll Med, Dept Physiol & Biomed Engn, Receptor Biol Lab, Rochester, MN 55905 USA.

Research Institution addresses:
[Sine, Steven M.; Wang, Hai-Long] Mayo Clin, Coll Med, Dept Physiol & Biomed Engn, Receptor Biol Lab, Rochester, MN 55905 USA; [Sine, Steven M.; Wang, Hai-Long] Mayo Clin, Coll Med, Dept Neurol, Receptor Biol Lab, Rochester, MN 55905 USA; [Hansen, Scott; Taylor, Palmer] Univ Calif San Diego, Skaggs Sch Pharm & Pharmaceut Sci, Dept Pharmacol, La Jolla, CA 92093 USA

E-mail Address:
sine@mayo.edu

Cited References:
BECKSTEIN O, 2004, J AM CHEM SOC, V126, P14694, DOI 10.1021/ja045271e.
BOCQUET N, 2009, NATURE, V457, P111, DOI 10.1038/nature07462.
CYMES GD, 2005, NATURE, V438, P975, DOI 10.1038/nature04293.
DOYLE DA, 1998, SCIENCE, V280, P69.
DUTZLER R, 2002, NATURE, V415, P287.
HANSEN SB, 2004, J BIOL CHEM, V279, P24197, DOI 10.1074/jbc.M402452200.
HANSEN SB, 2005, EMBO J, V24, P3635, DOI 10.1038/sj.emboj.7600828.
HANSEN SB, 2008, J BIOL CHEM, V283, P36066, DOI 10.1074/jbc.C800194200.
HILF RJC, 2008, NATURE, V452, P375, DOI 10.1038/nature06717.
HILF RJC, 2009, NATURE, V457, P115, DOI 10.1038/nature07461.
HUMMER G, 2001, NATURE, V414, P188.
IMOTO K, 1988, NATURE, V335, P645.
KEHOE J, 1998, J NEUROSCI, V18, P8198.
KELLEY SP, 2003, NATURE, V424, P321, DOI 10.1038/nature01788.
LEWIS CA, 1983, P NATL ACAD SCI-BIOL, V80, P6110.
MILLER C, 1992, CURR BIOL, V2, P573.
MIYAZAWA A, 2003, NATURE, V423, P949, DOI 10.1038/nature01748.
REEVES PJ, 2002, P NATL ACAD SCI USA, V99, P13419, DOI 10.1073/pnas.212519299.
SMART OS, 1996, J MOL GRAPHICS, V14, P376.
SOTOMAYOR M, 2006, BIOPHYS J, V90, P3496, DOI 10.1529/biophysj.105.080069.
SOTOMAYOR M, 2007, BIOPHYS J, V92, P886, DOI 10.1529/biophysj.106.095232.
SPRONK SA, 2006, BIOPHYS J, V90, P3555, DOI 10.1529/biophysj.105.080432.
TASNEEM A, 2005, GENOME BIOL, V6, ARTN R4.
UNWIN N, 2005, J MOL BIOL, V346, P967, DOI 10.1016/j.jmb.2004.12.031.
WANG HL, 2008, PLOS COMPUT BIOL, V4, ARTN e41.
ZHOU YF, 2001, NATURE, V414, P43.

Cited Reference Count:
26

Times Cited:
0

Publisher:
HUMANA PRESS INC; 999 RIVERVIEW DRIVE SUITE 208, TOTOWA, NJ 07512 USA

Subject Category:
Biochemistry & Molecular Biology; Neurosciences

ISSN:
0895-8696

DOI:
10.1007/s12031-009-9260-1

IDS Number:
545RG

========================================================================

*Record 4 of 4.
*View Full Record: http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000273738700007
*Order Full Text [ ]

Title:
Pressure-driven water flow through carbon nanotubes: Insights from molecular dynamics simulation

Authors:
Thomas, JA; McGaughey, AJH; Kuter-Arnebeck, O

Author Full Names:
Thomas, John A.; McGaughey, Alan J. H.; Kuter-Arnebeck, Ottoleo

Source:
INTERNATIONAL JOURNAL OF THERMAL SCIENCES 49 (2): 281-289 FEB 2010

Language:
English

Document Type:
Article

Author Keywords:
Molecular dynamics simulation; Water flow; Slip flow; Carbon nanotubes (CNT); Carbon nanopipes

KeyWords Plus:
FAST MASS-TRANSPORT; FLUID-FLOW; POTENTIAL FUNCTIONS; LIQUID WATER; MEMBRANES; HYDRODYNAMICS; TEMPERATURE; INTERFACE; GRAPHITE; CLUSTERS

Abstract:
Pressure-driven water flow through carbon nanotubes (CNTs) is examined using molecular dynamics simulation. The results are compared to reported experimental flow rate measurements through similarly sized CNTs and larger carbon nanopipes. By using molecular dynamics simulation to predict the variation of water viscosity and slip length with CNT diameter, we find that flow through CNTs with diameters as small as 1.66 nm can be fully understood using continuum fluid mechanics. Potential mechanisms to explain the differences between the flow rates predicted from simulation and those measured in experiments are identified and discussed. (C) 2009 Elsevier Masson SAS. All rights reserved.

Reprint Address:
McGaughey, AJH, Carnegie Mellon Univ, Dept Mech Engn, Pittsburgh, PA 15213 USA.

Research Institution addresses:
[Thomas, John A.; McGaughey, Alan J. H.; Kuter-Arnebeck, Ottoleo] Carnegie Mellon Univ, Dept Mech Engn, Pittsburgh, PA 15213 USA

E-mail Address:
mcgaughey@cmu.edu

Cited References:
ALEXIADIS A, 2008, CHEM REV, V108, P5014, DOI 10.1021/cr078140f.
ALLEN MP, 1987, COMPUTER SIMULATION.
BARBER AH, 2005, PHYS REV B, V71, ARTN 115443.
BARRAT JL, 2003, MOL PHYS, V101, P1605, DOI 10.1080/0026897031000068578.
BERENDSEN HJC, 1984, J CHEM PHYS, V81, P3684.
BERTHIER J, 2006, MICROFLUIDICS BIOTEC.
BRENNER DW, 2002, J PHYS-CONDENS MAT, V14, P783.
CHOUDHURY N, 2007, J PHYS CHEM C, V111, P2565, DOI 10.1021/jp066883j.
CORRY B, 2008, J PHYS CHEM B, V112, P1427, DOI 10.1021/jp709845u.
DANG LX, 1997, J CHEM PHYS, V106, P8149.
DEFUSCO A, 2007, MOL PHYS, V105, P2681, DOI 10.1080/00268970701620669.
FORNASIERO F, 2008, P NATL ACAD SCI USA, V45, P17250.
HANASAKI I, 2006, J CHEM PHYS, V124, ARTN 144708.
HANSEN JS, 2007, PHYS REV E 1, V76, ARTN 041121.
HINDS BJ, 2004, SCIENCE, V303, P62, DOI 10.1126/science.1092048.
HOLT JK, 2006, SCIENCE, V312, P1034, DOI 10.1126/science.1126298.
HUMMER G, 2001, NATURE, V414, P188.
JENNESS GR, 2009, J PHYS CHEM C, V113, P10242, DOI 10.1021/jp9015307.
JORGENSEN WL, 1983, J CHEM PHYS, V79, P926.
JORGENSEN WL, 1985, MOL PHYS, V56, P1381.
JOSEPH P, 2005, PHYS REV E 2, V71, ARTN 035303.
JOSEPH P, 2006, PHYS REV LETT, V97, ARTN 156104.
JOSEPH S, 2008, NANO LETT, V8, P452, DOI 10.1021/nl072385q.
JOSEPH S, 2008, PHYS REV LETT, V101, ARTN 064502.
KALRA A, 2003, P NATL ACAD SCI USA, V100, P10175.
KARNEY CFF, 2007, J MOL GRAPH MODEL, V25, P595, DOI 10.1016/j.jmgm.2006.04.002.
KASSINOS SC, 2004, MULTISCALE MODELLING, P220.
KOPLIK J, 1988, PHYS REV LETT, V60, P1282.
KOTSALIS EM, 2004, INT J MULTIPHAS FLOW, V30, P995, DOI 10.1016/j.imultiphaseflow.2004.03.009.
KOUMOUTSAKOS P, 2003, NANOTECHNOLOGY, V1, P148.
LANDRY ES, 2007, J APPL PHYS, V102, ARTN 124301.
LI J, 1998, PHYS REV E, V57, P7259.
LICHTER S, 2007, PHYS REV LETT, V98, ARTN 226001.
LONGHURST MJ, 2007, NANO LETT, V7, P3324, DOI 10.1021/nl071537e.
MAHONEY MW, 2000, J CHEM PHYS, V112, P8910.
MAJUMDER M, 2005, NATURE, V438, P44, DOI 10.1038/43844a.
MAMONTOV E, 2006, J CHEM PHYS, V124, ARTN 194703.
MARTI J, 2001, PHYS REV E, V64, UNSP 021504.
MATTIA D, 2006, J PHYS CHEM B, V110, P9850, DOI 10.1021/jp061138s.
OHARA T, 2001, MICROSCALE THERM ENG, V5, P117.
PERTSIN A, 2006, J CHEM PHYS, V125, ARTN 114707.
RAPAPORT DC, 2004, ART MOL DYNAMICS SIM.
RAVIV U, 2002, SCIENCE, V297, P1540.
RAVIV U, 2004, LANGMUIR, V20, P5322, DOI 10.1021/la030419d.
RAY SS, 2009, NANOTECHNOLOGY, V20, ARTN 095711.
SCHRLAU MG, 2009, ACS NANO, V3, P563, DOI 10.1021/nn800851d.
SHIOMI J, 2009, NANOTECHNOLOGY, V20, ARTN 055708.
SHOLL DS, 2006, SCIENCE, V312, P1003, DOI 10.1126/science.1127261.
SIMONYAN VV, 2002, J ALLOY COMPD, V330, P659.
SINHA S, 2007, PHYS FLUIDS, V19, ARTN 013603.
SKOULIDAS AI, 2006, J CHEM PHYS, V124, ARTN 054708.
SOKHAN VP, 2002, J CHEM PHYS, V117, P8531, DOI 10.1063/1.1512643.
STRIOLO A, 2006, NANO LETT, V6, P633, DOI 10.1021/nl052254u.
TERSOFF J, 1988, PHYS REV LETT, V61, P2879.
THOMAS JA, 2007, J CHEM PHYS, V126, ARTN 034707.
THOMAS JA, 2008, J CHEM PHYS, V128, ARTN 084715.
THOMAS JA, 2008, NANO LETT, V9, P2788.
THOMAS JA, 2009, PHYS REV LETT, V102, ARTN 184502.
TRAVIS KP, 1997, PHYS REV E, V55, P4288.
VERWEIJ H, 2007, SMALL, V3, P1996, DOI 10.1002/smll.200700368.
WAGHE A, 2002, J CHEM PHYS, V117, P10789, DOI 10.1063/1.1519861.
WERDER T, 2003, J PHYS CHEM B, V107, P1345, DOI 10.1021/jp0268112.
WHITBY M, 2007, NAT NANOTECHNOL, V2, P87, DOI 10.1038/nnano.2006.175.
WHITBY M, 2008, NANO LETT, V8, P2632, DOI 10.1021/nl080705f.
WHITE F, 2006, VISCOUS FLUID FLOW.
YAMADA T, 2006, NAT NANOTECHNOL, V1, P131, DOI 10.1038/nnano.2006.95.
YONGLI S, 2007, COMP MATER SCI, V38, P737.
YUN Y, 2007, P SOC PHOTOGRAPHIC I, V6528.

Cited Reference Count:
68

Times Cited:
0

Publisher:
ELSEVIER FRANCE-EDITIONS SCIENTIFIQUES MEDICALES ELSEVIER; 23 RUE LINOIS, 75724 PARIS, FRANCE

Subject Category:
Thermodynamics; Engineering, Mechanical

ISSN:
1290-0729

DOI:
10.1016/j.ijthermalsci.2009.07.008

IDS Number:
545NH

========================================================================
*Order Full Text*
All Customers
--------------
Please contact your library administrator, or person(s) responsible for
document delivery, to find out more about your organization's policy for
obtaining the full text of the above articles. If your organization does
not have a current document delivery provider, your administrator can
contact ISI Document Solution at service@isidoc.com, or call 800-603-4367
or 734-459-8565.

IDS Customers
--------------
IDS customers can purchase the full text of an article (having page number,
volume, and issue information) by returning this ENTIRE message as a Reply
to Sender or Forward to orders@isidoc.com. Mark your choices with an X in
the "Order Full Text: []" brackets for each item. For example, [X].

Please enter your account number here:

========================================================================
*Help Desk Contact Information*
If you have any questions, please visit the Thomson Scientific Technical Support Contact Information Web page:
http://www.thomsonscientific.com/support/techsupport
========================================================================

No comments: