Friday, February 19, 2010

ISI Web of Knowledge Alert - Hummer, G

ISI Web of Knowledge Citation Alert

Cited Article: Hummer, G. Water conduction through the hydrophobic channel of a carbon nanotube
Alert Expires: 09 NOV 2010
Number of Citing Articles: 4 new records this week (4 in this e-mail)
Organization ID: 3b97d1bbc1878baed0ab183d8b03130b
========================================================================
Note: Instructions on how to purchase the full text of an article and Help Desk Contact information are at the end of the e-mail.
========================================================================

*Record 1 of 4.
*View Full Record: http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000274092200003
*Order Full Text [ ]

Title:
Molecular Transport through a Bottleneck Driven by External Force

Authors:
Nakajima, C; Hayakawa, H

Author Full Names:
Nakajima, Chihiro; Hayakawa, Hisao

Source:
PROGRESS OF THEORETICAL PHYSICS 122 (6): 1377-1390 DEC 2009

Language:
English

Document Type:
Article

KeyWords Plus:
DYNAMICS SIMULATION; FLOW; CONDUCTION; SYSTEMS; CHANNEL; MODEL

Abstract:
The transport phenomena of Lennard-Jones molecules through a structural bottleneck driven by all external force are investigated by molecular dynamics simulations. We observe two distinct molecular flow regimes distinguished by a critical external force F-c and find scaling behaviors between external forces and flow rates. Below the threshold F-c, molecules are essentially stuck in the bottleneck due to the attractive interaction between the molecules, while above F-c, molecules can smoothly move in the pipe. A critical flow rate q(c) corresponding to F-c satisfies a simple relationship with angles, and the value of q(c) can be estimated from a simple argument. We further clarify the role of the temperature dependence in the molecular flows through the bottleneck.

Reprint Address:
Nakajima, C, Kyoto Univ, Yukawa Inst Theoret Phys, Kyoto 6068502, Japan.

Research Institution addresses:
[Nakajima, Chihiro; Hayakawa, Hisao] Kyoto Univ, Yukawa Inst Theoret Phys, Kyoto 6068502, Japan

Cited References:
BEREZHKOVSKII A, 2002, PHYS REV LETT, V89, UNSP 064503.
BONTHUIS DJ, 2006, PHYS REV LETT, V97, ARTN 128104.
BURRIEL P, 2008, PHYS REV LETT, V100, ARTN 134503.
CARMINATI A, 2007, PHYS REV E 2, V76, ARTN 026311.
CRACKNELL RF, 1995, PHYS REV LETT, V74, P2463.
DOYLE DA, 1998, SCIENCE, V280, P69.
GREULICH P, 2008, J STAT MECH-THEORY E, V4, UNSP P04009.
GRUENER S, 2008, PHYS REV LETT, V100, ARTN 064502.
HEFFELFINGER GS, 1994, J CHEM PHYS, V100, P7548.
HELBING D, 2001, REV MOD PHYS, V73, P1067.
HELBING D, 2006, PHYS REV LETT, V97, ARTN 168001.
HIMENO A, 2005, APPL PHYS LETT, V87, ARTN 243108.
HORLUCK S, 2003, PHYS REV E 1, V67, ARTN 021304.
HUMMER G, 2001, NATURE, V414, P188.
ISOBE M, 2004, PHYS REV E 2, V69, ARTN 066132.
JEPPS OG, 2003, PHYS REV LETT, V91, ARTN 126102.
KOGA K, 2001, NATURE, V412, P802.
KONIG C, 2007, PHYS REV B, V75, ARTN 144428.
KOYAMA T, 2008, APPL PHYS EXPRESS, V1, ARTN 101303.
KRETZ T, 2006, J STAT MECH-THEORY E, V10, UNSP P10014.
LIEPMANN HW, 1957, ELEMENTS GAS DYNAMIC.
LONGHI E, 2002, PHYS REV LETT, V89, ARTN 045501.
MIDGLEY S, 2001, PHYS REV B, V64, ARTN 153304.
NAGAI R, 2006, PHYSICA A, V367, P449, DOI 10.1016/j.physa.2005.11.031.
NAGATANI T, 2001, PHYSICA A, V300, P558.
NAGATANI T, 2002, REP PROG PHYS, V65, P1331.
NHISHINO TH, 2005, J PHYS SOC JPN, V74, P2655.
PENNEC TL, 1996, PHYS REV E, V53, P2257.
PIEROBON P, 2006, PHYS REV E 1, V74, ARTN 031906.
POPKOV V, 1999, EUROPHYS LETT, V48, P257.
SMIT B, 1991, J CHEM PHYS, V94, P5663.
SREENIVASAN S, 2007, PHYS REV E 2, V75, ARTN 036105.
TAJIMA Y, 2001, PHYSICA A, V292, P545.
TANIGAWA H, 2006, J APPL PHYS, V99, ARTN 08G520.
TO KW, 2005, PHYS REV E 1, V71, ARTN 060301.
VARGIAMIDIS V, 2005, PHYS REV B, V71, ARTN 075301.
VEJE CT, 1997, PHYS REV E, V56, P4376.
WALLACHER D, 2004, PHYS REV LETT, V92, ARTN 195704.
YAMAMOTO S, 2006, J PHYS SOC JPN, V75, ARTN 114601.
ZHANG J, 2005, PHYS REV LETT, V95, ARTN 148101.

Cited Reference Count:
40

Times Cited:
0

Publisher:
PROGRESS THEORETICAL PHYSICS PUBLICATION OFFICE; C/O KYOTO UNIV, YUKAWA HALL, KYOTO, 606-8502, JAPAN

Subject Category:
Physics, Multidisciplinary

ISSN:
0033-068X

IDS Number:
549YT

========================================================================

*Record 2 of 4.
*View Full Record: http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000274270100025
*Order Full Text [ ]

Title:
Classical Density-Functional Theory of Inhomogeneous Water Including Explicit Molecular Structure and Nonlinear Dielectric Response

Authors:
Lischner, J; Arias, TA

Author Full Names:
Lischner, Johannes; Arias, T. A.

Source:
JOURNAL OF PHYSICAL CHEMISTRY B 114 (5): 1946-1953 FEB 11 2010

Language:
English

Document Type:
Article

KeyWords Plus:
NONUNIFORM POLYATOMIC SYSTEMS; FREEZING TRANSITION; ELECTRIC-FIELDS; LIQUID WATER; DYNAMICS; INTERFACE; SIMULATIONS; POTENTIALS; SOLVATION; FORCES

Abstract:
We present an accurate free-energy functional for liquid water written in terms of a set of effective potential fields in which fictitious noninteracting water molecules move. The functional contains an exact expression of the entropy of noninteracting molecules and thus provides an ideal starting point for the inclusion of complex intermolecular interactions which depend on the orientation of the interacting molecules. We show how an excess free-energy functional can be constructed to reproduce the following properties of water: the dielectric response; the experimental site-site correlation functions; the surface tension; the bulk modulus of the liquid and the variation of this modulus with pressure; the density of the liquid and the vapor phase; and liquid-vapor coexistence. As a demonstration, we present results for the application of this theory to the behavior of liquid water in a parallel plate capacitor. In particular, we make predictions for the dielectric response !
of water in the nonlinear regime, finding excellent agreement with known data.

Reprint Address:
Lischner, J, Cornell Univ, Atom & Solid State Phys Lab, Ithaca, NY 14853 USA.

Research Institution addresses:
[Lischner, Johannes; Arias, T. A.] Cornell Univ, Atom & Solid State Phys Lab, Ithaca, NY 14853 USA

E-mail Address:
jl597@cornell.edu

Cited References:
ASHBAUGH HS, 2006, REV MOD PHYS, V78, P159, DOI 10.1103/RevModPhys.78.159.
ASHCROFT NW, 1996, AUST J PHYS, V49, P3.
BERENDSEN HJC, 1987, J PHYS CHEM-US, V91, P6269.
BOOTH F, 1951, J CHEM PHYS, V19, P391.
CAMMI R, 1995, J COMPUT CHEM, V16, P1449.
CHANDLER D, 1986, J CHEM PHYS, V85, P5971.
CHANDLER D, 1986, J CHEM PHYS, V85, P5977.
CHANDLER D, 2005, NATURE, V437, P640, DOI 10.1038/nature04162.
CURTIN WA, 1985, PHYS REV A, V32, P2909.
CURTIN WA, 1986, PHYS REV LETT, V56, P2775.
DING KJ, 1987, PHYS REV LETT, V59, P1698.
EBNER C, 1976, PHYS REV A-GEN PHYS-, V14, P2264.
FIELD MJ, 1990, J COMPUT CHEM, V11, P700.
FORSMAN J, 2006, MACROMOLECULES, V39, P1261, DOI 10.1021/ma051934g.
HANSEN JP, 2006, THEORY SIMPLE LIQUID.
HODAK M, 2008, J CHEM PHYS, V128, ARTN 014101.
HUMMER G, 2001, NATURE, V414, P188.
HYUN JK, 1998, J CHEM PHYS, V109, P1074.
KOHN W, 1965, PHYS REV, V140, A1133, DOI 10.1103/PHYSREV.140.A1133.
KUSALIK PG, 1994, SCIENCE, V265, P1219.
LENG YS, 2005, PHYS REV LETT, V94, ARTN 026101.
LIDE DR, 2005, CRC HDB CHEM PHYS.
LISCHNER J, 2008, PHYS REV LETT, V101, ARTN 216401.
LIU P, 2005, NATURE, V437, P159, DOI 10.1038/nature03926.
MCCOY JD, 1987, J CHEM PHYS, V87, P4853.
MCCOY JD, 1991, J CHEM PHYS, V95, P9348.
MERMIN ND, 1965, PHYS REV, V137, A1441.
MIERTUS S, 1981, CHEM PHYS, V55, P117.
NATH SK, 1997, J CHEM PHYS, V106, P1950.
RAGHAVAN K, 1991, J CHEM PHYS, V94, P2110.
REDDY G, 2003, J CHEM PHYS, V119, P13012, DOI 10.1063/1.1627326.
ROSENFELD Y, 1989, PHYS REV LETT, V63, P980.
SEN S, 1994, J CHEM PHYS, V101, P9010.
SINGH UC, 1986, J COMPUT CHEM, V7, P718.
SOPER AK, 1994, J CHEM PHYS, V101, P6888.
SOPER AK, 2000, CHEM PHYS, V258, P121.
SUTMANN G, 1998, J ELECTROANAL CHEM, V450, P289.
SVISHCHEV IM, 1994, J PHYS CHEM-US, V98, P728.
TALMAN JD, 1976, PHYS REV A, V14, P36.
TANSEL T, 2006, PHYS REV LETT, V96, ARTN 026101.
TAREK M, 2002, PHYS REV LETT, V88, UNSP 138101.
TONEY MF, 1994, NATURE, V368, P444.
WARSHEL A, 1976, J MOL BIOL, V103, P227.
WEEKS JD, 1998, PHYS REV LETT, V81, P4400.
WILHELM E, 1975, J CHEM PHYS, V63, P3379.
WOODWARD CE, 1990, J CHEM PHYS, V94, P3183.
WOODWARD CE, 1994, J CHEM PHYS, V100, P3181.
XIA XF, 1995, PHYS REV LETT, V74, P3193.
YEH IC, 1999, J CHEM PHYS, V110, P7935.
YETHIRAJ A, 1995, J CHEM PHYS, V102, P5499.
YETHIRAJ A, 2001, J CHEM PHYS, V114, P4323.

Cited Reference Count:
51

Times Cited:
0

Publisher:
AMER CHEMICAL SOC; 1155 16TH ST, NW, WASHINGTON, DC 20036 USA

Subject Category:
Chemistry, Physical

ISSN:
1520-6106

DOI:
10.1021/jp9012224

IDS Number:
552EG

========================================================================

*Record 3 of 4.
*View Full Record: http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000274355400015
*Order Full Text [ ]

Title:
Effects of Ligand Density on Hydrophobic Charge Induction Chromatography: Molecular Dynamics Simulation

Authors:
Zhang, L; Zhao, GF; Sun, Y

Author Full Names:
Zhang, Lin; Zhao, Guofeng; Sun, Yan

Source:
JOURNAL OF PHYSICAL CHEMISTRY B 114 (6): 2203-2211 FEB 18 2010

Language:
English

Document Type:
Article

KeyWords Plus:
PHASE LIQUID-CHROMATOGRAPHY; STATIONARY-PHASE; ADSORPTION MECHANISM; RETENTION MECHANISM; SURFACE COVERAGE; FOLDING KINETICS; BETA-HAIRPIN; CHAIN-LENGTH; PROTEIN-A; PURIFICATION

Abstract:
High ligand density is usually required in hydrophobic charge induction chromatography (HCIC) for high adsorption capacity. However, it is not clear to what extent the ligand density alters the adsorption and desorption behaviors, or if this leads to the protein conformational transition within adsorbent pores. In the present study, molecular dynamics simulation is performed to examine the effects of ligand density in HCIC using a 46-bead beta-barrel coarse-grained model protein and a coarse-grained adsorbent pore model established in our earlier work. Four ligand densities (1.474, 1.769, 2.212, and 2.949 mu mol/m(2)) are simulated at 298.15 K. The simulations indicate that both the capacity and irreversibility of adsorption increase with ligand density. However, it is found that the fastest adsorption occurs at a ligand density of 2.212 mu mol/m(2) rather than at the highest density studied. Analyses of adsorption trajectories, protein-ligand interaction energy, and the fre!
e energy map indicate that there is repulsion of protein when unfavorable contacts of the protein and ligands occur. There is an enhanced repulsion at 2.949 mu mol/m(2), which increases the energy barrier to the transition region and reduces the opportunities to get stable adsorption, thus leading to the decreased adsorption rate. At 2.212 mu mol/m(2), however, the repulsion is mild and the high ligand coverage provides abundant opportunities for the protein to get the fastest adsorption and thus causes the maximum unfolding. In the following simulations, complete and irreversible desorption is observed at all ligand densities, in agreement with the easy pH-induced elution behavior of HCIC observed experimentally. It is found that there is a suitable balance between hydrophobic attraction and electrostatic repulsion at 2.212 mu mol/m(2), which leads to the slowest desorption kinetics and causes the maximum unfolding. Moreover, analysis of unfolded protein distribution indic!
ates that unfolding occurs mainly on the ligand surface in bot!
h adsorp
tion and desorption. The behaviors have been comprehensively elucidated by molecular and thermodynamic analyses.

Reprint Address:
Sun, Y, Tianjin Univ, Dept Biochem Engn, Sch Chem Engn & Technol, Tianjin 300072, Peoples R China.

Research Institution addresses:
[Zhang, Lin; Zhao, Guofeng; Sun, Yan] Tianjin Univ, Dept Biochem Engn, Sch Chem Engn & Technol, Tianjin 300072, Peoples R China

E-mail Address:
ysun@tju.edu.cn

Cited References:
ALLEN MP, 1989, COMPUTER SIMULATION.
BERENDSEN HJC, 1995, COMPUT PHYS COMMUN, V91, P43.
BOND PJ, 2006, J AM CHEM SOC, V128, P2697, DOI 10.1021/ja0569104.
BOSCHETTI E, 2002, TRENDS BIOTECHNOL, V20, P333.
BURTON SC, 1997, BIOTECHNOL BIOENG, V56, P45.
BURTON SC, 1998, J CHROMATOGR A, V814, P71.
BUSZEWSKI B, 1990, J CHROMATOGR, V499, P305.
CELLMER T, 2005, BIOTECHNOL BIOENG, V89, P78, DOI 10.1002/bit.20302.
COULON D, 2004, J CHROMATOGR B, V808, P111, DOI 10.1016/j.jchromb.2004.03.025.
DISMER F, 2007, J CHROMATOGR A, V1149, P312, DOI 10.1016/j.chroma.2007.03.074.
DRESSELHAUS MS, 2001, TOP APPL PHYS, V80, P1.
DUX MP, 2006, PROTEIN EXPRES PURIF, V45, P359, DOI 10.1016/j.pep.2005.08.015.
FOUQUEAU A, 2007, J PHYS CHEM B, V111, P10208, DOI 10.1021/jp071721o.
FRENKEL D, 2002, UNDERSTANDING MOL SI.
GHOSE S, 2006, J CHROMATOGR A, V1122, P144, DOI 10.1016/j.chroma.2006.04.083.
GRITTI F, 2006, J CHROMATOGR A, V1115, P142, DOI 10.1016/j.chroma.2006.02.095.
GUERRIER L, 2000, BIOSEPARATION, V9, P211.
GUERRIER L, 2001, J CHROMATOGR B, V755, P37.
GUO ZY, 1992, J CHEM PHYS, V97, P525.
GUO ZY, 1995, BIOPOLYMERS, V36, P83.
HENNION MC, 1978, J CHROMATOGR, V166, P21.
HONEYCUTT JD, 1990, P NATL ACAD SCI USA, V87, P3526.
HUMMER G, 2001, NATURE, V414, P188.
JANG HB, 2004, BIOPHYS J 1, V86, P31.
KIKTA EJ, 1976, ANAL CHEM, V48, P1098.
KLIMOV DK, 1998, FOLD DES, V3, P481.
KLIMOV DK, 2002, P NATL ACAD SCI USA, V99, P8019.
LIN FY, 2000, J CHROMATOGR A, V872, P37.
LINDAHL E, 2001, J MOL MODEL, V7, P306.
LIPPA KA, 2005, ANAL CHEM, V77, P7852, DOI 10.1021/ac0510843.
LIPPA KA, 2005, ANAL CHEM, V77, P7862, DOI 10.1021/ac051085v.
LIPPA KA, 2006, J CHROMATOGR A, V1128, P79, DOI 10.1016/j.chroma.2006.06.043.
LU DN, 2006, BIOPHYS J, V90, P3224, DOI 10.1529/biophysj.105.071761.
LU DN, 2008, J PHYS CHEM B, V112, P2686, DOI 10.1021/jp076940o.
MIYABE K, 2000, J CHROMATOGR A, V903, P1.
NGUYEN PH, 2005, PROTEINS, V61, P795, DOI 10.1002/prot.20696.
RAFFERTY JL, 2007, ANAL CHEM, V79, P6551, DOI 10.1021/ac0705115.
RAFFERTY JL, 2008, J CHROMATOGR A, V1204, P11, DOI 10.1016/j.chroma.2008.07.037.
RAFFERTY JL, 2008, J CHROMATOGR A, V1204, P20, DOI 10.1016/j.chroma.2008.07.038.
RICCARDI E, 2008, J PHYS CHEM B, V112, P7478, DOI 10.1021/jp800078v.
SAYLE RA, 1995, TRENDS BIOCHEM SCI, V20, P374.
SCHWARTZ W, 2001, J CHROMATOGR A, V908, P251.
SENTELL KB, 1989, ANAL CHEM, V61, P930.
SHEA JE, 1998, J CHEM PHYS, V109, P2895.
TAN LC, 1997, J CHROMATOGR A, V775, P1.
VAITHEESWARAN S, 2008, P NATL ACAD SCI USA, V105, P17636, DOI 10.1073/pnas.0803990105.
VEITSHANS T, 1997, FOLD DES, V2, P1.
WEATHERLY GT, 2002, J CHROMATOGR A, V952, P99.
ZAMOLO L, 2008, BIOTECHNOL PROGR, V24, P527, DOI 10.1021/bp070469z.
ZHANG L, 2009, J CHROMATOGR A, V1216, P2483, DOI 10.1016/j.chroma.2009.01.038.
ZHANG L, 2009, J PHYS CHEM B, V113, P6873, DOI 10.1021/jp809754k.
ZHANG X, 2005, J PHYS CHEM B, V109, P21028, DOI 10.1021/jp053421h.
ZHAO GF, 2007, J CHROMATOGR A, V1165, P109, DOI 10.1016/j.chroma.2007.07.067.
ZHAO GF, 2008, J CHROMATOGR A, V1211, P90, DOI 10.1016/j.chroma.2008.09.108.
ZHENG J, 2005, J CHEM PHYS, V122, UNSP 214702-7.

Cited Reference Count:
55

Times Cited:
0

Publisher:
AMER CHEMICAL SOC; 1155 16TH ST, NW, WASHINGTON, DC 20036 USA

Subject Category:
Chemistry, Physical

ISSN:
1520-6106

DOI:
10.1021/jp903852c

IDS Number:
553GV

========================================================================

*Record 4 of 4.
*View Full Record: http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000274362000007
*Order Full Text [ ]

Title:
Collective properties of water confined in carbon nanotubes: A computer simulation study

Authors:
Garberoglio, G

Author Full Names:
Garberoglio, G.

Source:
EUROPEAN PHYSICAL JOURNAL E 31 (1): 73-80 JAN 2010

Language:
English

Document Type:
Article

KeyWords Plus:
X-RAY-SCATTERING; LIQUID WATER; DYNAMICAL PROPERTIES; FAST SOUND; HYDROGEN STORAGE; LOW-FREQUENCY; BEHAVIOR; DIFFUSION; PHASE; MODE

Abstract:
The collective properties of water confined in the (10,10), (8,8) and (6,6) carbon nanotubes are studied by analysing the longitudinal-current autocorrelation function, calculated from computer-simulated trajectories. The corresponding spectra clearly show the presence of two excitations, but their behaviour is quite different from that observed in the case of bulk water. Instead of the strong positive dispersion of the hydrodynamic sound mode characteristic of bulk water (the fast-sound phenomenon), the sound dispersion relation of confined water is observed to flatten into a non-propagating mode, while a second excitation appears at a higher frequency. This behaviour is analysed in terms of the localized oscillation modes of the hydrogen-bond network.

Reprint Address:
Garberoglio, G, Univ Trent, CNISM, Via Sommarive 14, I-38100 Trento, Italy.

Research Institution addresses:
[Garberoglio, G.] Univ Trent, CNISM, I-38100 Trento, Italy; [Garberoglio, G.] Univ Trent, Dipartimento Fis, I-38100 Trento, Italy

E-mail Address:
garberog@science.unitn.it

Cited References:
ALEXIADIS A, 2008, CHEM REV, V108, P5014, DOI 10.1021/cr078140f.
ALLEN M, 1987, COMPUTER SIMULATIONS.
ANGELL CA, 1983, ANNU REV PHYS CHEM, V34, P593.
BAGCHI B, 2005, CHEM REV, V105, P3197, DOI 10.1021/cr020661+.
BALUCANI U, 1993, CHEM PHYS LETT, V209, P408.
BALUCANI U, 1993, PHYS REV E, V47, P1677.
BALUCANI U, 1996, J PHYS CONDENS MATT, V8, P6138.
BALUCANI U, 1996, J PHYS-CONDENS MAT, V8, P9269.
BERENDSEN HJC, 1984, J CHEM PHYS, V81, P3684.
BROVCHENKO I, 2003, EUR PHYS J E, V12, P69, DOI 10.1140/epje/i2003-10028-4.
CHENG HM, 2001, CARBON, V39, P1447.
CHU XQ, 2007, PHYS REV E 1, V76, ARTN 021505.
GARBEROGLIO G, 2002, J CHEM PHYS, V117, P3278, DOI 10.1063/1.1493775.
GARBEROGLIO G, 2003, PHYS LETT A, V316, P407, DOI 10.1016/j.physleta.2003.07.001.
GARBEROGLIO G, 2005, J MOL LIQ, V117, P43, DOI 10.1016/j.molliq.2004.08.029.
GARBEROGLIO G, 2007, J CHEM PHYS, V126, ARTN 125103.
GORDILLO MC, 2000, CHEM PHYS LETT, V329, P341.
HIRSCHER M, 2002, J ALLOY COMPD, V330, P654.
HUMMER G, 2001, NATURE, V414, P188.
JORGENSEN WL, 1983, J CHEM PHYS, V79, P926.
KOLESNIKOV AI, 2004, PHYS REV LETT, V93, ARTN 035503.
LEVITT DG, 1973, PHYS REV A, V8, P3050.
MAMONTOV E, 2006, J CHEM PHYS, V124, ARTN 194703.
MARTI J, 2001, J CHEM PHYS, V114, P10486.
MARTI J, 2001, PHYS REV E, V64, UNSP 021504.
MARTI J, 2006, J CHEM PHYS, V124, ARTN 094703.
MIURA S, 1996, MOL PHYS, V87, P1405.
MONACO G, 1999, PHYS REV E A, V60, P5505.
MUDI A, 2004, MOL PHYS, V102, P681, DOI 10.1080/00268970410001698937.
MUKHERJEE B, 2007, J CHEM PHYS, V126, ARTN 124704.
PETRILLO C, 2000, PHYS REV E A, V62, P3611.
PONTECORVO E, 2005, PHYS REV E 1, V71, ARTN 011501.
REICH S, 2005, CARBON NANOTUBES, CH2.
ROVERE M, 2003, EUR PHYS J E, V12, P77, DOI 10.1140/epje/i2003-10027-5.
RUOCCO G, 2008, CONDENS MATTER PHYS, V1, P29.
SACCHETTI F, 2004, PHYS REV E 1, V69, ARTN 061203.
SAENGER W, 1987, ANNU REV BIOPHYS BIO, V16, P93.
SAMPOLI M, 1997, PHYS REV LETT, V79, P1678.
SANTUCCI SC, 2006, PHYS REV LETT, V97, ARTN 225701.
SASTRY S, 1991, J CHEM PHYS, V95, P7775.
SCIORTINO F, 1994, J CHEM PHYS, V100, P3881.
SETTE F, 1995, PHYS REV LETT, V75, P850.
SETTE F, 1996, PHYS REV LETT, V77, P83.
STANLEY HE, 1980, J CHEM PHYS, V73, P3404.
STEELE WA, 1978, J PHYS CHEM-US, V82, P817.
STRIOLO A, 2006, NANO LETT, V6, P633, DOI 10.1021/nl052254u.
SUTMANN G, 1998, J PHYS-CONDENS MAT, V10, P9231.
SWENSON J, 2006, PHYS REV LETT, V96, ARTN 247802.
WOJCIK M, 1986, J CHEM PHYS, V85, P6085.
YINGCHUN L, 2005, PHYS REV B, V72, UNSP 085420.

Cited Reference Count:
50

Times Cited:
0

Publisher:
SPRINGER; 233 SPRING ST, NEW YORK, NY 10013 USA

Subject Category:
Chemistry, Physical; Materials Science, Multidisciplinary; Physics, Applied; Polymer Science

ISSN:
0253-2786

DOI:
10.1140/epje/i2010-10552-0

IDS Number:
553JG

========================================================================
*Order Full Text*
All Customers
--------------
Please contact your library administrator, or person(s) responsible for
document delivery, to find out more about your organization's policy for
obtaining the full text of the above articles. If your organization does
not have a current document delivery provider, your administrator can
contact ISI Document Solution at service@isidoc.com, or call 800-603-4367
or 734-459-8565.

IDS Customers
--------------
IDS customers can purchase the full text of an article (having page number,
volume, and issue information) by returning this ENTIRE message as a Reply
to Sender or Forward to orders@isidoc.com. Mark your choices with an X in
the "Order Full Text: []" brackets for each item. For example, [X].

Please enter your account number here:

========================================================================
*Help Desk Contact Information*
If you have any questions, please visit the Thomson Scientific Technical Support Contact Information Web page:
http://www.thomsonscientific.com/support/techsupport
========================================================================

No comments: