Thursday, February 4, 2010

ISI Web of Knowledge Alert - Majumder M

ISI Web of Knowledge Citation Alert

Cited Article: Majumder M. Nanoscale hydrodynamics - Enhanced flow in carbon nanotubes
Alert Expires: 09 NOV 2010
Number of Citing Articles: 3 new records this week (3 in this e-mail)
Organization ID: 3b97d1bbc1878baed0ab183d8b03130b
========================================================================
Note: Instructions on how to purchase the full text of an article and Help Desk Contact information are at the end of the e-mail.
========================================================================

*Record 1 of 3.
*View Full Record: http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000273939500002
*Order Full Text [ ]

Title:
Odako Growth of Dense Arrays of Single-Walled Carbon Nanotubes Attached to Carbon Surfaces

Authors:
Pint, CL; Alvarez, NT; Hauge, RH

Author Full Names:
Pint, Cary L.; Alvarez, Noe T.; Hauge, Robert H.

Source:
NANO RESEARCH 2 (7): 526-534 JUL 2009

Language:
English

Document Type:
Article

Author Keywords:
Carbon nanotubes; carbon fibers; chemical vapor deposition

KeyWords Plus:
CHEMICAL-VAPOR-DEPOSITION; CARPETS; FILMS; WATER

Abstract:
A novel process is demonstrated whereby dense arrays of single-walled carbon nanotubes (SWNT) are grown directly at the interface of a carbon material or carbon fiber. This growth process combines the concepts of SWNT tip growth and alumina-supported SWNT base growth to yield what we refer to as "odako" growth. In odako growth, an alumina flake detaches from the carbon surface and supports catalytic growth of dense SWNT arrays at the tip, leaving a direct interface between the carbon surface and the dense SWNT arrays. In addition to being a new and novel form of SWNT array growth, this technique provides a route toward future development of many important applications for dense aligned SWNT arrays.

Reprint Address:
Hauge, RH, Rice Univ, Dept Chem, POB 1892, Houston, TX 77005 USA.

Research Institution addresses:
[Alvarez, Noe T.; Hauge, Robert H.] Rice Univ, Dept Chem, Houston, TX 77005 USA; [Pint, Cary L.] Rice Univ, Dept Phys & Astron, Houston, TX 77005 USA; [Pint, Cary L.; Alvarez, Noe T.; Hauge, Robert H.] Rice Univ, Richard E Smalley Inst Nanoscale Sci & Technol, Houston, TX 77005 USA

E-mail Address:
hauge@rice.edu

Cited References:
AMAMA PB, 2009, NANO LETT, V9, P44, DOI 10.1021/nl801876h.
DERICCARDIS MF, 2006, CARBON, V44, P671, DOI 10.1016/j.carbon.2005.09.024.
DOORN SK, 2008, PHYS REV B, V78, ARTN 165408.
FAN SS, 1999, SCIENCE, V283, P512.
FUTABA DN, 2006, NAT MATER, V5, P987, DOI 10.1038/nmat1782.
HATA K, 2004, SCIENCE, V306, P1362.
HUANG SM, 2004, NANO LETT, V4, P1025, DOI 10.1021/nl049691d.
HUNG KH, 2008, NANOTECHNOLOGY, V19, ARTN 295602.
LIU XM, 2009, CARBON, V47, P500, DOI 10.1016/j.carbon.2008.10.033.
MAJUMDER M, 2005, NATURE, V438, P44, DOI 10.1038/43844a.
MURAKAMI Y, 2004, CHEM PHYS LETT, V385, P298, DOI 10.1016/j.cplett.2003.12.095.
PINT CL, 2008, ACS NANO, V2, P1871, DOI 10.1021/nn8003718.
PINT CL, 2008, J PHYS CHEM C, V112, P14041, DOI 10.1021/jpS025539.
PINT CL, 2008, NANO LETT, V8, P1879, DOI 10.1021/nl0804295.
PINT CL, 2009, J PHYS CHEM C, V113, P4125, DOI 10.1021/jp8070585.
QU LT, 2006, SMALL, V2, P1052, DOI 10.1002/smll.200600097.
SETHI S, 2008, NANO LETT, V8, P822, DOI 10.1021/nl0727765.
THOSTENSON ET, 2002, J APPL PHYS, V91, P6034.
TZENG SS, 2006, CARBON, V44, P859, DOI 10.1016/j.carbon.2005.10.033.
XIAO L, 2008, NANO LETT, V8, P4539, DOI 10.1021/nl802750z.
ZHAO B, 2009, ACS NANO, V3, P108, DOI 10.1021/nn800648a.

Cited Reference Count:
21

Times Cited:
0

Publisher:
TSINGHUA UNIV PRESS; TSINGHUA UNIV, RM A703, XUEYAN BLDG, BEIJING, 10084, PEOPLES R CHINA

ISSN:
1998-0124

DOI:
10.1007/s12274-009-9050-7

IDS Number:
548DJ

========================================================================

*Record 2 of 3.
*View Full Record: http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000273689000035
*Order Full Text [ ]

Title:
Nanoscopic spontaneous motion of liquid trains: Nonequilibrium molecular dynamics simulation

Authors:
Bahrami, AH; Jalali, MA

Author Full Names:
Bahrami, Amir Houshang; Jalali, Mir Abbas

Source:
JOURNAL OF CHEMICAL PHYSICS 132 (2): Art. No. 024702 JAN 14 2010

Language:
English

Document Type:
Article

Author Keywords:
capillarity; drops; flow simulation; intermolecular forces; liquid theory; molecular dynamics method; nanofluidics; pipe flow; Poiseuille flow; surface tension; two-phase flow; viscosity; wetting

KeyWords Plus:
CARBON NANOTUBES; CAPILLARY-FLOW; TECHNOLOGIES; TUBES

Abstract:
Macroscale experiments show that a train of two immiscible liquid drops, a bislug, can spontaneously move in a capillary tube because of surface tension asymmetries. We use molecular dynamics simulation of Lennard-Jones fluids to demonstrate this phenomenon for NVT ensembles in submicron tubes. We deliberately tune the strength of intermolecular forces and control the velocity of bislug in different wetting and viscosity conditions. We compute the velocity profile of particles across the tube and explain the origin of deviations from the classical parabolae. We show that the self-generated molecular flow resembles the Poiseuille law when the ratio of the tube radius to its length is less than a critical value.

Reprint Address:
Bahrami, AH, Sharif Univ Technol, Dept Mech Engn, Computat Mech Lab, Azadi Ave, Tehran 1458889694, Iran.

Research Institution addresses:
[Bahrami, Amir Houshang; Jalali, Mir Abbas] Sharif Univ Technol, Dept Mech Engn, Computat Mech Lab, Tehran 1458889694, Iran

E-mail Address:
mjalali@sharif.edu

Cited References:
ALLEN MP, 1987, COMPUTER SIMULATION.
BACKER JA, 2005, J CHEM PHYS, V122, ARTN 154503.
BAIN CD, 1994, NATURE, V372, P414.
BICO J, 2000, EUROPHYS LETT, V51, P546.
BICO J, 2002, J FLUID MECH, V467, P101, DOI 10.1017/S002211200200126X.
CHAN WK, 2005, J MICROMECH MICROENG, V15, P1722, DOI 10.1088/0960-1317/15/9/014.
CRAIGHEAD H, 2006, NATURE, V442, P387, DOI 10.1038/nature05061.
DEGENNES PG, 1985, REV MOD PHYS, V57, P827, DOI 10.1103/REVMODPHYS.57.827.
DEGENNES PG, 1998, PHYSICA A, V249, P196.
DIAZHERRERA E, 1999, J CHEM PHYS, V110, P8084.
DIMITROV DI, 2007, PHYS REV LETT, V99, ARTN 054501.
DIMITROV DI, 2008, LANGMUIR, V24, P1232, DOI 10.1021/la7019445.
DOSSANTOS FD, 1995, PHYS REV LETT, V75, P2972.
FRENKLE D, 2002, UNDERSTANDING MOL SI.
HOOVER WG, 1985, PHYS REV A, V31, P1695.
KIRKWOOD JG, 1949, J CHEM PHYS, V17, P338.
MAJUMDER M, 2005, NATURE, V438, P44, DOI 10.1038/43844a.
MARANGONI C, 1871, ANN PHYS CHEM, V219, P337, DOI 10.1002/ANDP.18712190702.
MARTIC G, 2002, LANGMUIR, V18, P7971, DOI 10.1021/la020068n.
MAZOUCHI A, 2000, PHYS FLUIDS, V12, P542.
MIJATOVIC D, 2005, LAB CHIP, V5, P492, DOI 10.1039/b416951d.
RAO M, 1976, J CHEM PHYS, V65, P3233.
ROWLINSON JS, 1982, MOLECULAR THEORY CAP.
SQUIRES TM, 2005, REV MOD PHYS, V77, P977.
THOMAS JA, 2009, PHYS REV LETT, V102, ARTN 184502.
TURNER SWP, 2002, PHYS REV LETT, V88, ARTN 128103.
WASHBURN EW, 1921, PHYS REV, V17, P273.
WEISLOGEL MM, 1997, AICHE J, V43, P645.
WHITBY M, 2007, NAT NANOTECHNOL, V2, P87, DOI 10.1038/nnano.2006.175.
YANG LJ, 2004, J MICROMECH MICROENG, V14, P220.

Cited Reference Count:
30

Times Cited:
0

Publisher:
AMER INST PHYSICS; CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA

Subject Category:
Physics, Atomic, Molecular & Chemical

ISSN:
0021-9606

DOI:
10.1063/1.3283899

IDS Number:
544WA

========================================================================

*Record 3 of 3.
*View Full Record: http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000273738700007
*Order Full Text [ ]

Title:
Pressure-driven water flow through carbon nanotubes: Insights from molecular dynamics simulation

Authors:
Thomas, JA; McGaughey, AJH; Kuter-Arnebeck, O

Author Full Names:
Thomas, John A.; McGaughey, Alan J. H.; Kuter-Arnebeck, Ottoleo

Source:
INTERNATIONAL JOURNAL OF THERMAL SCIENCES 49 (2): 281-289 FEB 2010

Language:
English

Document Type:
Article

Author Keywords:
Molecular dynamics simulation; Water flow; Slip flow; Carbon nanotubes (CNT); Carbon nanopipes

KeyWords Plus:
FAST MASS-TRANSPORT; FLUID-FLOW; POTENTIAL FUNCTIONS; LIQUID WATER; MEMBRANES; HYDRODYNAMICS; TEMPERATURE; INTERFACE; GRAPHITE; CLUSTERS

Abstract:
Pressure-driven water flow through carbon nanotubes (CNTs) is examined using molecular dynamics simulation. The results are compared to reported experimental flow rate measurements through similarly sized CNTs and larger carbon nanopipes. By using molecular dynamics simulation to predict the variation of water viscosity and slip length with CNT diameter, we find that flow through CNTs with diameters as small as 1.66 nm can be fully understood using continuum fluid mechanics. Potential mechanisms to explain the differences between the flow rates predicted from simulation and those measured in experiments are identified and discussed. (C) 2009 Elsevier Masson SAS. All rights reserved.

Reprint Address:
McGaughey, AJH, Carnegie Mellon Univ, Dept Mech Engn, Pittsburgh, PA 15213 USA.

Research Institution addresses:
[Thomas, John A.; McGaughey, Alan J. H.; Kuter-Arnebeck, Ottoleo] Carnegie Mellon Univ, Dept Mech Engn, Pittsburgh, PA 15213 USA

E-mail Address:
mcgaughey@cmu.edu

Cited References:
ALEXIADIS A, 2008, CHEM REV, V108, P5014, DOI 10.1021/cr078140f.
ALLEN MP, 1987, COMPUTER SIMULATION.
BARBER AH, 2005, PHYS REV B, V71, ARTN 115443.
BARRAT JL, 2003, MOL PHYS, V101, P1605, DOI 10.1080/0026897031000068578.
BERENDSEN HJC, 1984, J CHEM PHYS, V81, P3684.
BERTHIER J, 2006, MICROFLUIDICS BIOTEC.
BRENNER DW, 2002, J PHYS-CONDENS MAT, V14, P783.
CHOUDHURY N, 2007, J PHYS CHEM C, V111, P2565, DOI 10.1021/jp066883j.
CORRY B, 2008, J PHYS CHEM B, V112, P1427, DOI 10.1021/jp709845u.
DANG LX, 1997, J CHEM PHYS, V106, P8149.
DEFUSCO A, 2007, MOL PHYS, V105, P2681, DOI 10.1080/00268970701620669.
FORNASIERO F, 2008, P NATL ACAD SCI USA, V45, P17250.
HANASAKI I, 2006, J CHEM PHYS, V124, ARTN 144708.
HANSEN JS, 2007, PHYS REV E 1, V76, ARTN 041121.
HINDS BJ, 2004, SCIENCE, V303, P62, DOI 10.1126/science.1092048.
HOLT JK, 2006, SCIENCE, V312, P1034, DOI 10.1126/science.1126298.
HUMMER G, 2001, NATURE, V414, P188.
JENNESS GR, 2009, J PHYS CHEM C, V113, P10242, DOI 10.1021/jp9015307.
JORGENSEN WL, 1983, J CHEM PHYS, V79, P926.
JORGENSEN WL, 1985, MOL PHYS, V56, P1381.
JOSEPH P, 2005, PHYS REV E 2, V71, ARTN 035303.
JOSEPH P, 2006, PHYS REV LETT, V97, ARTN 156104.
JOSEPH S, 2008, NANO LETT, V8, P452, DOI 10.1021/nl072385q.
JOSEPH S, 2008, PHYS REV LETT, V101, ARTN 064502.
KALRA A, 2003, P NATL ACAD SCI USA, V100, P10175.
KARNEY CFF, 2007, J MOL GRAPH MODEL, V25, P595, DOI 10.1016/j.jmgm.2006.04.002.
KASSINOS SC, 2004, MULTISCALE MODELLING, P220.
KOPLIK J, 1988, PHYS REV LETT, V60, P1282.
KOTSALIS EM, 2004, INT J MULTIPHAS FLOW, V30, P995, DOI 10.1016/j.imultiphaseflow.2004.03.009.
KOUMOUTSAKOS P, 2003, NANOTECHNOLOGY, V1, P148.
LANDRY ES, 2007, J APPL PHYS, V102, ARTN 124301.
LI J, 1998, PHYS REV E, V57, P7259.
LICHTER S, 2007, PHYS REV LETT, V98, ARTN 226001.
LONGHURST MJ, 2007, NANO LETT, V7, P3324, DOI 10.1021/nl071537e.
MAHONEY MW, 2000, J CHEM PHYS, V112, P8910.
MAJUMDER M, 2005, NATURE, V438, P44, DOI 10.1038/43844a.
MAMONTOV E, 2006, J CHEM PHYS, V124, ARTN 194703.
MARTI J, 2001, PHYS REV E, V64, UNSP 021504.
MATTIA D, 2006, J PHYS CHEM B, V110, P9850, DOI 10.1021/jp061138s.
OHARA T, 2001, MICROSCALE THERM ENG, V5, P117.
PERTSIN A, 2006, J CHEM PHYS, V125, ARTN 114707.
RAPAPORT DC, 2004, ART MOL DYNAMICS SIM.
RAVIV U, 2002, SCIENCE, V297, P1540.
RAVIV U, 2004, LANGMUIR, V20, P5322, DOI 10.1021/la030419d.
RAY SS, 2009, NANOTECHNOLOGY, V20, ARTN 095711.
SCHRLAU MG, 2009, ACS NANO, V3, P563, DOI 10.1021/nn800851d.
SHIOMI J, 2009, NANOTECHNOLOGY, V20, ARTN 055708.
SHOLL DS, 2006, SCIENCE, V312, P1003, DOI 10.1126/science.1127261.
SIMONYAN VV, 2002, J ALLOY COMPD, V330, P659.
SINHA S, 2007, PHYS FLUIDS, V19, ARTN 013603.
SKOULIDAS AI, 2006, J CHEM PHYS, V124, ARTN 054708.
SOKHAN VP, 2002, J CHEM PHYS, V117, P8531, DOI 10.1063/1.1512643.
STRIOLO A, 2006, NANO LETT, V6, P633, DOI 10.1021/nl052254u.
TERSOFF J, 1988, PHYS REV LETT, V61, P2879.
THOMAS JA, 2007, J CHEM PHYS, V126, ARTN 034707.
THOMAS JA, 2008, J CHEM PHYS, V128, ARTN 084715.
THOMAS JA, 2008, NANO LETT, V9, P2788.
THOMAS JA, 2009, PHYS REV LETT, V102, ARTN 184502.
TRAVIS KP, 1997, PHYS REV E, V55, P4288.
VERWEIJ H, 2007, SMALL, V3, P1996, DOI 10.1002/smll.200700368.
WAGHE A, 2002, J CHEM PHYS, V117, P10789, DOI 10.1063/1.1519861.
WERDER T, 2003, J PHYS CHEM B, V107, P1345, DOI 10.1021/jp0268112.
WHITBY M, 2007, NAT NANOTECHNOL, V2, P87, DOI 10.1038/nnano.2006.175.
WHITBY M, 2008, NANO LETT, V8, P2632, DOI 10.1021/nl080705f.
WHITE F, 2006, VISCOUS FLUID FLOW.
YAMADA T, 2006, NAT NANOTECHNOL, V1, P131, DOI 10.1038/nnano.2006.95.
YONGLI S, 2007, COMP MATER SCI, V38, P737.
YUN Y, 2007, P SOC PHOTOGRAPHIC I, V6528.

Cited Reference Count:
68

Times Cited:
0

Publisher:
ELSEVIER FRANCE-EDITIONS SCIENTIFIQUES MEDICALES ELSEVIER; 23 RUE LINOIS, 75724 PARIS, FRANCE

Subject Category:
Thermodynamics; Engineering, Mechanical

ISSN:
1290-0729

DOI:
10.1016/j.ijthermalsci.2009.07.008

IDS Number:
545NH

========================================================================
*Order Full Text*
All Customers
--------------
Please contact your library administrator, or person(s) responsible for
document delivery, to find out more about your organization's policy for
obtaining the full text of the above articles. If your organization does
not have a current document delivery provider, your administrator can
contact ISI Document Solution at service@isidoc.com, or call 800-603-4367
or 734-459-8565.

IDS Customers
--------------
IDS customers can purchase the full text of an article (having page number,
volume, and issue information) by returning this ENTIRE message as a Reply
to Sender or Forward to orders@isidoc.com. Mark your choices with an X in
the "Order Full Text: []" brackets for each item. For example, [X].

Please enter your account number here:

========================================================================
*Help Desk Contact Information*
If you have any questions, please visit the Thomson Scientific Technical Support Contact Information Web page:
http://www.thomsonscientific.com/support/techsupport
========================================================================

No comments: