Thursday, February 11, 2010

ISI Web of Knowledge Alert - Thompson, P

ISI Web of Knowledge Citation Alert

Cited Article: Thompson, P. A general boundary condition for liquid flow at solid surfaces
Alert Expires: 09 NOV 2010
Number of Citing Articles: 2 new records this week (2 in this e-mail)
Organization ID: 3b97d1bbc1878baed0ab183d8b03130b
========================================================================
Note: Instructions on how to purchase the full text of an article and Help Desk Contact information are at the end of the e-mail.
========================================================================

*Record 1 of 2.
*View Full Record: http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000274003300046
*Order Full Text [ ]

Title:
Rarefied-gas heat transfer in micro- and nanoscale Couette flows

Authors:
Zhou, WD; Liu, B; Yu, SK; Hua, W

Author Full Names:
Zhou, W. D.; Liu, B.; Yu, S. K.; Hua, W.

Source:
PHYSICAL REVIEW E 81 (1): Art. No. 011204 Part 1 JAN 2010

Language:
English

Document Type:
Article

KeyWords Plus:
DISK INTERFACE; FLYING-HEIGHT; AIR-BEARING; LIQUID FLOW; TRANSPORT

Abstract:
The physics of the heat conduction and viscous dissipation in rarefied gases is analyzed and discussed. A heat transfer model valid for arbitrary Knudsen numbers, defined as the ratio of the molecular mean free path to the characteristic length of channels, is derived by treating the heat transfer behavior in the slip and transition regimes as an intermediate function of continuum heat transfer model and free molecular heat transfer model. Comparison studies reveal that this model not only shows good agreement with the numerical results based on the direct simulation Monte Carlo method, but also has some unique features that can overcome the deficiencies existing in the previous models. Therefore, this model is capable to study the heat transport phenomena in very dilute gas Couette flows through micro/nanochannels more accurately.

Reprint Address:
Zhou, WD, A STAR Agcy Sci Technol & Res, Data Storage Inst, DSI Bldg,5 Engn Dr 1, Singapore 117608, Singapore.

Research Institution addresses:
[Zhou, W. D.; Liu, B.; Yu, S. K.; Hua, W.] A STAR Agcy Sci Technol & Res, Data Storage Inst, Singapore 117608, Singapore

Cited References:
BESKOK A, 1994, J THERMOPHYS HEAT TR, V8, P647.
BHATTACHARYA DK, 1989, PHYS REV LETT, V62, P897.
BIRD GA, 1994, MOL GAS DYNAMICS DIR.
CALVERT M, 1998, J THERMOPHYS HEAT TR, V12, P138.
CAO BY, 2005, APPL PHYS LETT, V86, P91905, ARTN 066311.
FUKUI S, 1988, ASME, V110, P253.
GALLIS MA, 2006, PHYS FLUIDS, V18, P17104, ARTN 017104.
JU YS, 2000, ASME J HEAT TRANSFER, V122, P817.
JU YS, 2005, IEEE T MAGN, V41, P4443, DOI 10.1109/TMAG.2005.858697.
JUANG JY, 2007, ASME, V129, P570.
KARNIADAKIS G, 2005, MICROFLOWS NANOFLOWS.
KATAOKA DE, 1999, NATURE, V402, P794.
KOUMURA N, 1999, NATURE, V401, P152.
LIOU WW, 2001, J MICROELECTROMECH S, V10, P274.
LIU B, 2007, IEEE T MAGN 2, V43, P715, DOI 10.1109/TMAG.2006.888366.
LIU B, 2008, IEEE T MAGN 2, V44, P145, DOI 10.1109/TMAG.2007.911036.
PENG W, 2005, TRIBOL INT, V38, P588, DOI 10.1016/j.tiboint.2005.01.040.
SHEN S, 2008, J APPL PHYS, V103, P54304, ARTN 054304.
SPRINGER GS, 1971, ADV HEAT TRANSFER.
THOMPSON PA, 1997, NATURE, V389, P360.
TIEN CL, 1973, ADV HEAT TRANSFER.
WANG M, 2003, PHYS REV E 2, V68, ARTN 046704.
ZHANG S, 1999, INT J HEAT MASS TRAN, V42, P1791.
ZHOU WD, 2008, APPL PHYS LETT, V92, P43109, ARTN 043109.

Cited Reference Count:
24

Times Cited:
0

Publisher:
AMER PHYSICAL SOC; ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA

Subject Category:
Physics, Fluids & Plasmas; Physics, Mathematical

ISSN:
1539-3755

DOI:
10.1103/PhysRevE.81.011204

IDS Number:
548XN

========================================================================

*Record 2 of 2.
*View Full Record: http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000274003300067
*Order Full Text [ ]

Title:
Modeling the combined effect of surface roughness and shear rate on slip flow of simple fluids

Authors:
Niavarani, A; Priezjev, NV

Author Full Names:
Niavarani, Anoosheh; Priezjev, Nikolai V.

Source:
PHYSICAL REVIEW E 81 (1): Art. No. 011606 Part 1 JAN 2010

Language:
English

Document Type:
Article

KeyWords Plus:
MOLECULAR-DYNAMICS SIMULATION; BOUNDARY-CONDITION; SOLID-SURFACES; LIQUID FLOW; NO-SLIP; CONTINUUM; INTERFACE; MICROCHANNELS; WALL

Abstract:
Molecular dynamics (MD) and continuum simulations are carried out to investigate the influence of shear rate and surface roughness on slip flow of a Newtonian fluid. For weak wall-fluid interaction energy, the nonlinear shear-rate dependence of the intrinsic slip length in the flow over an atomically flat surface is computed by MD simulations. We describe laminar flow away from a curved boundary by means of the effective slip length defined with respect to the mean height of the surface roughness. Both the magnitude of the effective slip length and the slope of its rate dependence are significantly reduced in the presence of periodic surface roughness. We then numerically solve the Navier-Stokes equation for the flow over the rough surface using the rate-dependent intrinsic slip length as a local boundary condition. Continuum simulations reproduce the behavior of the effective slip length obtained from MD simulations at low shear rates. The slight discrepancy between MD and !
continuum results at high shear rates is explained by examination of the local velocity profiles and the pressure distribution along the wavy surface. We found that in the region where the curved boundary faces the mainstream flow, the local slip is suppressed due to the increase in pressure. The results of the comparative analysis can potentially lead to the development of an efficient algorithm for modeling rate-dependent slip flows over rough surfaces.

Reprint Address:
Niavarani, A, Michigan State Univ, Dept Mech Engn, E Lansing, MI 48824 USA.

Research Institution addresses:
[Niavarani, Anoosheh; Priezjev, Nikolai V.] Michigan State Univ, Dept Mech Engn, E Lansing, MI 48824 USA

Cited References:
ALLEN MP, 1987, COMPUTER SIMULATION.
BARRAT JL, 1999, FARADAY DISCUSS, V112, P119.
BARRAT JL, 1999, PHYS REV LETT, V82, P4671.
BAUDRY J, 2001, LANGMUIR, V17, P5232, DOI 10.1021/la0009994.
CHOI CH, 2003, PHYS FLUIDS, V15, P2897, DOI 10.1063/1.1605425.
CHURAEV NV, 1984, J COLLOID INTERF SCI, V97, P574.
EINZEL D, 1990, PHYS REV LETT, V64, P2269.
FLEKKOY EG, 2000, EUROPHYS LETT, V52, P271.
GALEA TM, 2004, LANGMUIR, V20, P3477, DOI 10.1021/la035880k.
GREST GS, 1986, PHYS REV A, V33, P3628.
HADJICONSTANTINOU NG, 1999, J COMPUT PHYS, V154, P245.
HEINBUCH U, 1989, PHYS REV A, V40, P1144.
HEINRICH JC, 1999, INTERMEDIATE FINITE.
IRVING JH, 1950, J CHEM PHYS, V18, P817.
KOPLIK J, 1989, PHYS FLUIDS A-FLUID, V1, P781.
KOUMOUTSAKOS P, 2005, ANNU REV FLUID MECH, V37, P457, DOI 10.1146/annurev.fluid.37.061903.175753.
LI Q, 2009, BIOMICROFLUIDICS, V3, P22409, ARTN 022409.
MARTINI A, 2008, PHYS REV LETT, V100, ARTN 206001.
NIAVARANI A, 2008, J CHEM PHYS, V129, P44902, ARTN 144902.
NIAVARANI A, 2008, PHYS REV E 1, V77, ARTN 041606.
NIAVARANI A, 2009, PHYS FLUIDS, V21, P52105, ARTN 052105.
NIE XB, 2004, J FLUID MECH, V500, P55, DOI 10.1017/S0022112003007225.
NIE XB, 2004, PHYS FLUIDS, V16, P3579, DOI 10.1063/1.1779531.
NIELD DA, 2006, CONVECTION POROUS ME.
OCONNELL ST, 1995, PHYS REV E A, V52, R5792.
PANZER P, 1992, INT J MOD PHYS B, V6, P3251.
PLIMPTON S, 1995, J COMPUT PHYS, V117, P1.
PRIEZJEV NV, 2004, PHYS REV LETT, V92, ARTN 018302.
PRIEZJEV NV, 2005, PHYS REV E 1, V71, ARTN 041608.
PRIEZJEV NV, 2006, J FLUID MECH, V554, P25, DOI 10.1017/S0022112006009086.
PRIEZJEV NV, 2007, J CHEM PHYS, V127, P44708, ARTN 144708.
PRIEZJEV NV, 2007, PHYS REV E 1, V75, ARTN 051605.
PRIEZJEV NV, 2009, PHYS REV E 1, V80, ARTN 031608.
REN WQ, 2005, J COMPUT PHYS, V204, P1, DOI 10.1016/j.jcp.2004.10.001.
SCHMATKO T, 2006, LANGMUIR, V22, P6843, DOI 10.1021/la060061w.
THOMPSON PA, 1990, PHYS REV A, V41, P6830.
THOMPSON PA, 1997, NATURE, V389, P360.
ULMANELLA U, 2008, PHYS FLUIDS, V20, ARTN 101512.
VINOGRADOVA OI, 2006, PHYS REV E 2, V73, ARTN 045302.
YANG SC, 2005, MOL SIMULAT, V31, P971, DOI 10.1080/08927020500423778.
ZHU YX, 2001, PHYS REV LETT, V87, ARTN 096105.
ZHU YX, 2002, LANGMUIR, V18, P10058, DOI 10.1021/la026016f.
ZHU YX, 2002, PHYS REV LETT, V88, ARTN 106102.

Cited Reference Count:
43

Times Cited:
0

Publisher:
AMER PHYSICAL SOC; ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA

Subject Category:
Physics, Fluids & Plasmas; Physics, Mathematical

ISSN:
1539-3755

DOI:
10.1103/PhysRevE.81.011606

IDS Number:
548XN

========================================================================
*Order Full Text*
All Customers
--------------
Please contact your library administrator, or person(s) responsible for
document delivery, to find out more about your organization's policy for
obtaining the full text of the above articles. If your organization does
not have a current document delivery provider, your administrator can
contact ISI Document Solution at service@isidoc.com, or call 800-603-4367
or 734-459-8565.

IDS Customers
--------------
IDS customers can purchase the full text of an article (having page number,
volume, and issue information) by returning this ENTIRE message as a Reply
to Sender or Forward to orders@isidoc.com. Mark your choices with an X in
the "Order Full Text: []" brackets for each item. For example, [X].

Please enter your account number here:

========================================================================
*Help Desk Contact Information*
If you have any questions, please visit the Thomson Scientific Technical Support Contact Information Web page:
http://www.thomsonscientific.com/support/techsupport
========================================================================

No comments: