Friday, February 19, 2010

ISI Web of Knowledge Alert - Thompson, P

ISI Web of Knowledge Citation Alert

Cited Article: Thompson, P. A general boundary condition for liquid flow at solid surfaces
Alert Expires: 09 NOV 2010
Number of Citing Articles: 4 new records this week (4 in this e-mail)
Organization ID: 3b97d1bbc1878baed0ab183d8b03130b
========================================================================
Note: Instructions on how to purchase the full text of an article and Help Desk Contact information are at the end of the e-mail.
========================================================================

*Record 1 of 4.
*View Full Record: http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000274225700001
*Order Full Text [ ]

Title:
THE FLOW RECTIFICATION OF A VANED MICRODIFFUSER: A NUMERICAL INVESTIGATION

Authors:
Sun, CL; Lin, GC

Author Full Names:
Sun, Chen-Li; Lin, Gu-Chiuan

Source:
JOURNAL OF THE CHINESE INSTITUTE OF ENGINEERS 33 (1): 1-13 Sp. Iss. SI JAN 2010

Language:
English

Document Type:
Article

Author Keywords:
vaned microdiffuser; oscillating flow; vane arrangement; half angle; geometric optimization

KeyWords Plus:
DIFFUSER ELEMENTS; LIQUID FLOW; MICROCHANNELS; MICROPUMPS

Abstract:
This paper presents a numerical investigation to characterize the flow rectification of a dynamic vaned microdiffuser pump. To study the impacts of vane configuration in microscale, two vanes stretching from the inlet region to the outlet region are added to divide the microdiffuser into three flowing passages. By imposing a sinusoidal pressure at the inlet, two geometric parameters are considered: half angle of the diverging section. and half angle between adjacent vanes phi. We find that when the angle between adjacent vanes remains the same (fixed phi), net flow rate is augmented with increasing.. In contrast, there exists an optimized vane configuration while the diverging section is unchanged (fixed phi). For phi < theta/3, increase in phi helps to improve flow rectification. For phi > theta/3, further increase of f results in narrower side passages, and net flow rate diminishes consequently. Hence, best flow rectification is achieved when the diverging section is equal!
ly divided by the vanes, i.e. phi = theta/3. The influences of vane configuration in flow rectification can be categorized into three regimes: central passage dominated, best rectification, and side passage dominated.

Reprint Address:
Sun, CL, Natl Taiwan Univ Sci & Technol, Dept Mech Engn, Taipei 106, Taiwan.

Research Institution addresses:
[Sun, Chen-Li; Lin, Gu-Chiuan] Natl Taiwan Univ Sci & Technol, Dept Mech Engn, Taipei 106, Taiwan

E-mail Address:
clsun@mail.ntust.edu.tw

Cited References:
*CFD ACE, 2004, V2004 US MAN.
BLEVINS R, 1984, APPL FLUID DYNAMICS.
COCHRAN DL, 1958, 4309 TN NACA.
FEIL OG, 1964, J BAS ENGNG, V86, P759.
GADELHAK M, 1999, J FLUID ENG-T ASME, V121, P5.
GERLACH T, 1998, SENSOR ACTUAT A-PHYS, V69, P181.
IDELCHIK IE, 1994, HDB HYDRAULIC RESIST.
JIANG XN, 1997, P 1997 IEEE CPMT 1 E, P119.
KOO JM, 2003, J MICROMECH MICROENG, V13, P568.
LARSEN UD, 1997, P TRANSD 97 CHIC JUN, P1319, DOI 10.1109/SENSOR.1997.635479.
LEE GB, 2001, ASME, V123, P672.
LI H, 2006, J FLUID ENG-T ASME, V128, P305, DOI 10.1115/1.2170122.
MILLER DS, 1978, INTERNAL FLOW SYSTEM.
MOORE CA, 1958, 4080 TN NACA.
NGUYEN NT, 2008, BIOMICROFLUIDICS, V2, UNSP 034101-034114.
OLSSON A, 1997, J MICROELECTROMECH S, V6, P161.
OLSSON A, 2000, SENSOR ACTUAT A-PHYS, V84, P165.
SINGHAL V, 2004, SENSOR ACTUAT A-PHYS, V113, P226, DOI 10.1016/j.sna.2004.03.002.
SOBEK D, 1994, P SOL STAT SENS ACT, P260.
SUN CL, 2006, J MICROMECH MICROENG, V16, P1331, DOI 10.1088/0960-1317/16/7/030.
SUN CL, 2007, J MICROMECH MICROENG, V17, P2031, DOI 10.1088/0960-1317/17/10/015.
THOMPSON PA, 1997, NATURE, V389, P360.
WAITMAN BA, 1961, J BASIC ENG, V83, P349.

Cited Reference Count:
23

Times Cited:
0

Publisher:
CHINESE INST ENGINEERS; #1, 4TH FL, SEC 2, JEN-AI RD, TAIPEI 10019, TAIWAN

Subject Category:
Engineering, Multidisciplinary

ISSN:
0253-3839

IDS Number:
551RC

========================================================================

*Record 2 of 4.
*View Full Record: http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000274266000010
*Order Full Text [ ]

Title:
ANALYSIS OF CONTACT MIXING WITH BOUNDARY AND HYDRODYNAMIC FLUID FILMS CONSIDERING BOUNDARY SLIPPAGE

Authors:
Zhang, YB

Author Full Names:
Zhang, Yongbin

Source:
JOURNAL OF THEORETICAL AND APPLIED MECHANICS 48 (1): 191-205 2010

Language:
English

Document Type:
Article

Author Keywords:
boundary film; nanometer-scale thin film; fluid film; boundary slippage

KeyWords Plus:
FLOW FACTOR; ELASTOHYDRODYNAMIC LUBRICATION; INTERFACE; SURFACES; LIQUID

Abstract:
An analysis is presented for a micro-contact where boundary and hydrodynamic fluid films simultaneously occur considering boundary slippage appearance at the upper contact surface in the boundary film area. The contact is one-dimensional, composed of two parallel plane surfaces, which are respectively rough rigid with rectangular projection in profile and ideally smooth rigid. In the outlet zone of the contact a boundary film occurs, and in the inlet zone of the contact a conventional hydrodynamic fluid film emerges. In the boundary film area, the film slips at the upper contact surface due to the limited shear stress capacity of the film-contact interface, while the film does not slip at the lower contact surface due to the shear stress capacity of the film-contact interface, which is large enough. In the boundary film area, the viscosity and density of the film are varied across the film thickness due to the film-contact interactions, and their effective values are used in!
modelling which depends oil the boundary film thickness. In the fluid film area, the film does not slip at either of the contact surfaces.

Reprint Address:
Zhang, YB, Zhejiang Jinlei Elect & Mech Co, Hangzhou, Zhejiang Prov, Peoples R China.

Research Institution addresses:
Zhejiang Jinlei Elect & Mech Co, Hangzhou, Zhejiang Prov, Peoples R China

E-mail Address:
engmech1@sina.com

Cited References:
BEGELINGER A, 1974, WEAR, V28, P103.
BEGELINGER A, 1976, ASME, V98, P575.
BONACCURSO E, 2003, PHYS REV LETT, V90, ARTN 144501.
CHEIKH C, 2003, PHYS REV LETT, V91, ARTN 156102.
CIEPLAK M, 2001, PHYS REV LETT, V86, P803.
CRAIG VSJ, 2001, PHYS REV LETT, V87, ARTN 054504.
GOGLIA PR, 1984, ASME, V106, P104.
HOLMES MJA, 2003, P I MECH ENG J-J ENG, V217, P305.
JIANG X, 1999, ASME, V121, P481, DOI 10.1115/1.2834093.
LUBRECHT AA, 1988, ASME, V110, P421.
PIT R, 2000, PHYS REV LETT, V85, P980.
SUN M, 1992, PHYS REV LETT, V69, P3491.
TABOR BJ, 1981, ASME, V103, P497.
THOMPSON PA, 1997, NATURE, V389, P360.
ZHANG Y, 2004, IND LUBR TRIBOL, V56, P88, DOI 10.1108/00368790410524047.
ZHANG Y, 2006, IND LUBR TRIBOL, V58, P151, DOI 10.1108/00368790610661999.
ZHANG Y, 2006, IND LUBR TRIBOL, V58, P4, DOI 10.1108/00368790610640064.
ZHANG YB, 2003, INT J FLUID MECH RES, V30, P542.
ZHANG YB, 2003, INT J FLUID MECH RES, V30, P558.
ZHANG YB, 2004, J BAL TRIB ASS, V10, P394.
ZHANG YB, 2005, J MOL LIQ, V116, P43, DOI 10.1016/j.molliq.2004.06.002.
ZHANG YB, 2006, J MOL LIQ, V128, P60, DOI 10.1016/j.molliq.2005.10.007.
ZHANG YB, 2006, J MOL LIQ, V128, P99, DOI 10.1016/j.molliq.2005.12.010.
ZHANG YB, 2007, J APPL SCI, V7, P1249.
ZHANG YB, 2007, J APPL SCI, V7, P1351.
ZHANG YB, 2007, J APPL SCI, V7, P1467.
ZHANG YB, 2009, THEOR COMP FLUID DYN, V23, P239, DOI 10.1007/s00162-009-0105-x.
ZHANG YB, 2009, THEOR COMP FLUID DYN, V23, P255, DOI 10.1007/s00162-009-0121-x.
ZHU YX, 2001, PHYS REV LETT, V87, ARTN 096105.

Cited Reference Count:
29

Times Cited:
0

Publisher:
POLISH SOC THEORETICAL & APPLIED MECHANICS; FWARSAW UNIV TECHNOLOGY, FACULTY CIVIL ENGINEERING, AL ARMII LUDOWEJ 15, RM 650, WARSZAWA, 00-637, POLAND

Subject Category:
Mechanics

ISSN:
1429-2955

IDS Number:
552CX

========================================================================

*Record 3 of 4.
*View Full Record: http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000274090700001
*Order Full Text [ ]

Title:
Stick-Slip Motion of Moving Contact Line on Chemically Patterned Surfaces

Authors:
Wu, CM; Lei, SL; Qian, TZ; Wang, XP

Author Full Names:
Wu, Congmin; Lei, Siulong; Qian, Tiezheng; Wang, Xiaoping

Source:
COMMUNICATIONS IN COMPUTATIONAL PHYSICS 7 (3): 403-422 MAR 2010

Language:
English

Document Type:
Article

Author Keywords:
Moving contact line; slip boundary condition; patterned surface

KeyWords Plus:
FLUID INTERFACE; IRREVERSIBLE-PROCESSES; RECIPROCAL RELATIONS; STEADY MOVEMENT; SOLID-SURFACES; CAPILLARY-TUBE; 2-PHASE FLUID; FLOW; DYNAMICS; LIQUID

Abstract:
Based on our continuum hydrodynamic model for immiscible two-phase flows at solid surfaces, the stick-slip motion has been predicted for moving contact line at chemically patterned surfaces [Wang et al., J. Fluid Mech., 605 (2008), pp. 59-78]. In this paper we show that the continuum predictions can be quantitatively verified by molecular dynamics (MD) simulations. Our MD simulations are carried out for two immiscible Lennard-Jones fluids confined by two planar solid walls in Poiseuille flow geometry. In particular, one solid surface is chemically patterned with alternating stripes. For comparison, the continuum model is numerically solved using material parameters directly measured in MD simulations. From oscillatory fluid-fluid interface to intermittent stick-slip motion of moving contact line, we have quantitative agreement between the continuum and MD results. This agreement is attributed to the accurate description down to molecular scale by the generalized Navier bound!
ary condition in our continuum model. Numerical results are also presented for the relaxational dynamics of fluid-fluid interface, in agreement with a theoretical analysis based on the Onsager principle of minimum energy dissipation.

Reprint Address:
Qian, TZ, Hong Kong Univ Sci & Technol, Dept Math, Kowloon, Hong Kong, Peoples R China.

Research Institution addresses:
[Wu, Congmin; Lei, Siulong; Qian, Tiezheng; Wang, Xiaoping] Hong Kong Univ Sci & Technol, Dept Math, Kowloon, Hong Kong, Peoples R China; [Qian, Tiezheng; Wang, Xiaoping] Hong Kong Univ Sci & Technol, Joint KAUST HKUST Micro Nanofluid Lab, Kowloon, Hong Kong, Peoples R China

E-mail Address:
macmin@ust.hk; malsl@ust.hk; maqian@ust.hk; mawang@ust.hk

Cited References:
BARRAT JL, 1999, PHYS REV LETT, V82, P4671.
BATCHELOR GK, 1967, INTRO FLUID DYNAMICS.
BLAKE TD, 1969, J COLLOID INTERF SCI, V30, P421.
BRIANT AJ, 2004, PHYS REV E 1, V69, ARTN 031603.
CAHN JW, 1958, J CHEM PHYS, V28, P258.
CHELLA R, 1996, PHYS REV E B, V53, P3832.
CHEN HY, 2000, PHYS REV LETT, V85, P1686.
COTTINBIZONNE C, 2003, NAT MATER, V2, P237, DOI 10.1038/nmat857.
COX RG, 1986, J FLUID MECH, V168, P169.
CUBAUD T, 2004, J COLLOID INTERF SCI, V269, P171, DOI 10.1016/j.jcis.2003.08.008.
DARHUBER AA, 2000, J APPL PHYS, V87, P7768.
DUSSAN EB, 1974, J FLUID MECH, V65, P71.
DUSSAN EB, 1979, ANNU REV FLUID MECH, V11, P371.
GAU H, 1999, SCIENCE, V283, P46.
HOCKING LM, 1977, J FLUID MECH, V79, P209.
HUH C, 1971, J COLLOID INTERF SCI, V35, P85.
HUH C, 1977, J FLUID MECH, V81, P401.
JACQMIN D, 2000, J FLUID MECH, V402, P57.
KOPLIK J, 1988, PHYS REV LETT, V60, P1282.
KUKSENOK O, 2003, PHYS REV LETT, V91, ARTN 108303.
KUSUMAATMAJA H, 2006, EUROPHYS LETT, V73, P740, DOI 10.1209/epl/i2005-10452-0.
LAUGA E, 2003, J FLUID MECH, V489, P55, DOI 10.1017/S0022112003004695.
ONSAGER L, 1931, PHYS REV, V37, P405.
ONSAGER L, 1931, PHYS REV, V38, P2265.
PHILIP JR, 1972, Z ANGEW MATH PHYS, V23, P960.
PRIEZJEV NV, 2005, PHYS REV E 1, V71, ARTN 041608.
QIAN TZ, 2003, PHYS REV E 2, V68, ARTN 016306.
QIAN TZ, 2004, PHYS REV LETT, V93, ARTN 094501.
QIAN TZ, 2005, PHYS REV E 1, V72, ARTN 022501.
QIAN TZ, 2006, COMMUN COMPUT PHYS, V1, P1.
QIAN TZ, 2006, J FLUID MECH, V564, P333, DOI 10.1017/S0022112006001935.
QIAN TZ, 2008, J FLUID MECH, V611, P333, DOI 10.1017/S0022112008002863.
REN WQ, 2005, J COMPUT PHYS, V204, P1, DOI 10.1016/j.jcp.2004.10.001.
REN WQ, 2007, PHYS FLUIDS, V19, ARTN 022101.
SEPPECHER P, 1996, INT J ENG SCI, V34, P977.
THOMPSON PA, 1989, PHYS REV LETT, V63, P766.
THOMPSON PA, 1997, NATURE, V389, P360.
WANG XP, 2008, J FLUID MECH, V605, P59, DOI 10.1017/S0022112008001456.
ZHOU MY, 1990, PHYS REV LETT, V64, P882.

Cited Reference Count:
39

Times Cited:
0

Publisher:
GLOBAL SCIENCE PRESS; ROOM 3208, CENTRAL PLAZA, 18 HARBOUR RD, WANCHAI, HONG KONG 00000, PEOPLES R CHINA

Subject Category:
Physics, Mathematical

ISSN:
1815-2406

DOI:
10.4208/cicp.2009.09.042

IDS Number:
549YL

========================================================================

*Record 4 of 4.
*View Full Record: http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000274107900005
*Order Full Text [ ]

Title:
Slip on Superhydrophobic Surfaces

Authors:
Rothstein, JP

Author Full Names:
Rothstein, Jonathan P.

Source:
ANNUAL REVIEW OF FLUID MECHANICS 42: 89-109 2010

Language:
English

Document Type:
Review

Author Keywords:
drag reduction; lotus effect; ultrahydrophobic

KeyWords Plus:
FRICTION DRAG REDUCTION; FLUID-SOLID INTERFACE; NO-SHEAR CONDITIONS; ULTRAHYDROPHOBIC SURFACES; HYDROPHOBIC MICROCHANNELS; BOUNDARY-CONDITION; GROOVED SURFACES; APPARENT SLIP; CONTACT-ANGLE; LENGTH SCALES

Abstract:
This review discusses the use of the combination of surface toughness and hydrophobicity for engineering large slip at the fluid-solid interface. These superhydrophobic surfaces were intially inspired by the unique water-repellent properties of the lotus leaf and can be employed to produce drag reduction in both laminar and turbulent flows, enhance mixing in laminar flows, and amplify diffusion-osmotic flows. We review the current state of experiments, simulations, and theory of flow past superhydrophobic surfaces. In addition, the designs and limitations of these surfaces are discussed, with an eye toward implementing these surfaces in a wide range of applications.

Reprint Address:
Rothstein, JP, Univ Massachusetts, Dept Mech & Ind Engn, Amherst, MA 01003 USA.

Research Institution addresses:
Univ Massachusetts, Dept Mech & Ind Engn, Amherst, MA 01003 USA

E-mail Address:
rothstein@ccs.umass.edu

Cited References:
AJDARI A, 2006, PHYS REV LETT, V96, ARTN 186102.
BALASUBRAMANIAN AK, 2004, AIAA J, V42, P411.
BARRAT JL, 1999, PHYS REV LETT, V82, P4671.
BARTHLOTT W, 1997, PLANTA, V202, P1.
BARTOLO D, 2006, EUROPHYS LETT, V74, P299, DOI 10.1209/epl/i2005-10522-3.
BATCHELOR GK, 1985, INTRO FLUID DYNAMICS.
BAUDRY J, 2001, LANGMUIR, V17, P5232, DOI 10.1021/la0009994.
BHUSHAN B, 2006, NANOTECHNOLOGY, V17, P2758, DOI 10.1088/0957-4484/17/11/008.
BICO J, 1999, EUROPHYS LETT, V47, P220.
BICO J, 2002, COLLOID SURFACE A, V206, P41.
BLAKE TD, 1990, COLLOID SURF A, V47, P134.
BOCQUET L, 2006, PHYS REV LETT, V97, ARTN 109601.
BOUZIGUES CI, 2008, PHILOS T R SOC A, V366, P1455, DOI 10.1098/rsta.2007.2168.
BUSH JWM, 2008, ADV INSECT PHYSIOL, V34, P117.
CASSIE ABD, 1944, T FARADAY SOC, V40, P546.
CHEN W, 1999, LANGMUIR, V15, P3395.
CHOI CH, 2003, PHYS FLUIDS, V15, P2897, DOI 10.1063/1.1605425.
CHOI CH, 2006, PHYS FLUIDS, V18, ARTN 087105.
CHOI CH, 2006, PHYS REV LETT, V96, ARTN 066001.
CHOI HC, 1991, PHYS FLUIDS A-FLUID, V3, P1892.
COTTINBIZONNE C, 2003, NAT MATER, V2, P237, DOI 10.1038/nmat857.
COTTINBIZONNE C, 2004, EUR PHYS J E, V15, P427, DOI 10.1140/epje/i2004-10061-9.
COTTINBIZONNE C, 2005, PHYS REV LETT, V94, ARTN 056102.
DANIELLO RJ, 2009, PHYS FLUIDS, V21, ARTN 085103.
DEGENNES PG, 2004, CAPILLARITY WETTING.
DENN MM, 2001, ANNU REV FLUID MECH, V33, P265.
DUSSAN EB, 1979, ANNU REV FLUID MECH, V11, P371.
ELBING BR, 2008, J FLUID MECH, V612, P201, DOI 10.1017/S0022112008003029.
FANG GP, 2008, LANGMUIR, V24, P11651, DOI 10.1021/la802033q.
FREUND JB, 2003, PHYS FLUIDS, V15, L33, DOI 10.1063/1.1565112.
FUKAGATA K, 2006, PHYS FLUIDS, V18, ARTN 051703.
FUKUDA K, 2000, J MAR SCI TECHNOL, V5, P123.
GAO LC, 2006, J AM CHEM SOC, V128, P9052, DOI 10.1021/ja062943n.
GAO LC, 2006, LANGMUIR, V22, P2966, DOI 10.1021/la0532149.
GAO LC, 2006, LANGMUIR, V22, P6234, DOI 10.1021/la060254j.
GAO XF, 2004, NATURE, V432, P36, DOI 10.1038/432036a.
GOGTE S, 2005, PHYS FLUIDS, V17, ARTN 051701.
GOLDSTEIN DB, 1998, J FLUID MECH, V363, P115.
GOLDSTEIN S, 1965, MODERN DEV FLUID DYN.
HAHN S, 2002, J FLUID MECH, V450, P259.
HARTING J, 2006, EUROPHYS LETT, V75, P328, DOI 10.1209/epl/i2006-10107-8.
HENOCH C, 2006, 3 AIAA FLOW CONTR C, V2, P840.
HOCKING LM, 1976, J FLUID MECH, V76, P801.
HUANG DM, 2008, PHYS REV LETT, V101, ARTN 064503.
HYVALUOMA J, 2008, PHYS REV LETT, V100, ARTN 246001.
ISRAELACHVILI JN, 1992, INTERMOLECULAR SURFA.
JIN S, 2004, EXP FLUIDS, V37, P825, DOI 10.1007/s00348-004-0870-7.
JOLY L, 2004, PHYS REV LETT, V93, ARTN 257805.
JOLY L, 2006, PHYS REV LETT, V96, ARTN 046101.
JOSEPH P, 2005, PHYS REV E 2, V71, ARTN 035303.
JOSEPH P, 2006, PHYS REV LETT, V97, ARTN 156104.
KARNIADAKIS G, 2005, MICROFLUIDS NANOFLUI.
KIM J, 2002, IEEE INT C MEMS LAS.
LAFUMA A, 2003, NAT MATER, V2, P457, DOI 10.1038/nmat924.
LAUGA E, 2003, J FLUID MECH, V489, P55, DOI 10.1017/S0022112003004695.
LAUGA E, 2007, HDB EXPT FLUID DYNAM, P1219.
LEE C, 2008, PHYS REV LETT, V101, ARTN 064501.
MAHADEVAN L, 1999, PHYS FLUIDS, V11, P2449.
MARTELL MB, 2009, EFFECT REYNOLD UNPUB.
MARTELL MB, 2009, J FLUID MECH, V620, P31, DOI 10.1017/S0022112008004916.
MAXWELL JC, 1879, PHILOS T R SOC LONDO, V170, P231.
MAYNES D, 2007, PHYS FLUIDS, V19, ARTN 093603.
MAYNES D, 2008, J HEAT TRANS-T ASME, V130, ARTN 022402.
MIN TG, 2004, PHYS FLUIDS, V16, L55, DOI 10.1063/1.1755723.
NAVIER CLM, 1823, MEMOIRES ACAD ROYALE, V6, P389.
ONER D, 2000, LANGMUIR, V16, P7777.
OU J, 2004, PHYS FLUIDS, V16, P4635, DOI 10.1063/1.1812011.
OU J, 2005, PHYS FLUIDS, V17, ARTN 103606.
OU J, 2007, PHYS REV E 2, V76, ARTN 016304.
OU J, 2007, THESIS U MASS AMHERS.
PHILIP JR, 1972, Z ANGEW MATH PHYS, V23, P353.
PHILIP JR, 1972, Z ANGEW MATH PHYS, V23, P960.
PIT R, 1999, TRIBOL LETT, V7, P147.
QUERE D, 1998, LANGMUIR, V14, P2213.
QUERE D, 2008, ANNU REV MATER RES, V38, P71, DOI 10.1146/annurev.matsci.38.060407.132434.
REED JC, 1994, J SHIP RES, V38, P133.
REYSSAT M, 2006, EUROPHYS LETT, V74, P306, DOI 10.1209/epl/i2005-10523-2.
REYSSAT M, 2008, EPL-EUROPHYS LETT, V81, ARTN 26006.
RICHARD D, 2000, EUROPHYS LETT, V50, P769.
RICHARDSON S, 1973, J FLUID MECHANICS 4, V59, P707.
SAKAI M, 2006, LANGMUIR, V22, P4906, DOI 10.1021/la060323u.
SANDERS WC, 2006, J FLUID MECH, V552, P353, DOI 10.1017/S0022112006008688.
SBRAGAGLIA M, 2006, PHYS REV LETT, V97, ARTN 204503.
SBRAGAGLIA M, 2007, PHYS FLUIDS, V19, ARTN 043603.
SCHNELL E, 1956, J APPL PHYS, V27, P1149.
SHASTRY A, 2006, LANGMUIR, V22, P6161, DOI 10.1021/la0601657.
STEINBERGER A, 2007, NAT MATER, V6, P665, DOI 10.1038/nmat1962.
STROOCK AD, 2002, ANAL CHEM, V74, P5306, DOI 10.1021/ac0257389.
STROOCK AD, 2002, SCIENCE, V295, P647.
THOMPSON PA, 1997, NATURE, V389, P360.
TOLSTOI DM, 1952, DOKL AKAD NAUK SSSR, V85, P1089.
TRETHEWAY DC, 2002, PHYS FLUIDS, V14, P9.
TRUESDELL R, 2006, PHYS REV LETT, V97, ARTN 044504.
VINOGRADOVA OI, 1999, INT J MINER PROCESS, V56, P31.
VIRK PS, 1975, AICHE J, V21, P625.
VORONOV RS, 2008, IND ENG CHEM RES, V47, P2455, DOI 10.1021/ie0712941.
WALSH MJ, 1990, VISCOUS DRAG REDUCTI, P203.
WATANABE K, 1999, J FLUID MECH, V381, P225.
WENZEL RN, 1936, IND ENG CHEM, V28, P988.
WIER KA, 2006, LANGMUIR, V22, P2433, DOI 10.1021/la0525877.
WOLFRAM E, 1978, WETTING SPREADING AD, P213.
YANG JT, 2006, J MICROELECTROMECH S, V15, P697, DOI 10.1109/JMEMS.2006.876791.
YBERT C, 2007, PHYS FLUIDS, V19, ARTN 123601.
YOUNG T, 1805, PHILOS T R SOC LONDO, V95, P65, DOI 10.1098/RSTL.1805.0005.
ZHU YX, 2001, PHYS REV LETT, V87, ARTN 096105.
ZHU YX, 2002, PHYS REV LETT, V88, ARTN 106102.

Cited Reference Count:
106

Times Cited:
0

Publisher:
ANNUAL REVIEWS; 4139 EL CAMINO WAY, PO BOX 10139, PALO ALTO, CA 94303-0139 USA

Subject Category:
Mechanics; Physics, Fluids & Plasmas

ISSN:
0066-4189

DOI:
10.1146/annurev-fluid-121108-145558

IDS Number:
550DG

========================================================================
*Order Full Text*
All Customers
--------------
Please contact your library administrator, or person(s) responsible for
document delivery, to find out more about your organization's policy for
obtaining the full text of the above articles. If your organization does
not have a current document delivery provider, your administrator can
contact ISI Document Solution at service@isidoc.com, or call 800-603-4367
or 734-459-8565.

IDS Customers
--------------
IDS customers can purchase the full text of an article (having page number,
volume, and issue information) by returning this ENTIRE message as a Reply
to Sender or Forward to orders@isidoc.com. Mark your choices with an X in
the "Order Full Text: []" brackets for each item. For example, [X].

Please enter your account number here:

========================================================================
*Help Desk Contact Information*
If you have any questions, please visit the Thomson Scientific Technical Support Contact Information Web page:
http://www.thomsonscientific.com/support/techsupport
========================================================================

No comments: